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Abstract

An e4cient numerical method for sensitivity computation of large-scale di$erential-algebraic systems is
developed based on the adjoint method. Issues that are critical for the implementation are addressed. Com-
plexity analysis and numerical results demonstrate that the adjoint sensitivity method is advantageous over the
forward sensitivity method for applications with a large number of sensitivity parameters and few objective
functions.
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1. Introduction

Recent work on methods and software for sensitivity analysis of di$erential-algebraic equation
DAE systems [7,9,13–16] has demonstrated that forward sensitivities can be computed reliably and
e4ciently via automatic di$erentiation [2] in combination with DAE solution techniques designed
to exploit the structure of the sensitivity system. The DASPK3.0 [15,13] software package was de-
veloped for forward sensitivity analysis of DAE systems with index up to two, and has been used
in sensitivity analysis and design optimization of several large-scale engineering problems [11,18].
DASPK3.0 is an extension of the DASPK software [1,3,4] developed by Brown et al. for the solution
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of large-scale DAE systems. For a DAE depending on parameters,

F(x; ẋ; t; p) = 0;

x(0) = x0(p); (1)

these problems take the form: Knd dx=dpj at time T , for j = 1; : : : ; np. Their solution requires
the simultaneous solution of the original DAE system with the np sensitivity systems obtained by
di$erentiating the original DAE with respect to each parameter in turn. For large systems this may
look like a lot of work but it can be done e4ciently, if np is relatively small, by exploiting the
fact that the sensitivity systems are linear and all share the same Jacobian matrices with the original
system.

Some problems require the sensitivities with respect to a large number of parameters. For these
problems, particularly if the number of state variables is also large, the forward sensitivity approach
is intractable. These problems can often be handled more e4ciently by the adjoint method [8]. In
this approach, we are interested in calculating the sensitivity of an objective function

G(x; p) =
∫ T

0
g(x; t; p) dt (2)

or alternatively the sensitivity of a function g(x; T; p) deKned only at time T . The function g must
be smooth enough that gp and gx exist and are bounded. While forward sensitivity analysis is best
suited to the situation of Knding the sensitivities of a potentially large number of solution variables
with respect to a small number of parameters, reverse (adjoint) sensitivity analysis is best suited to
the complementary situation of Knding the sensitivity of a scalar (or small-dimensional) function of
the solution with respect to a large number of parameters.

In [6] we derived the adjoint sensitivity system for DAEs of index up to two (Hessenberg) and
investigated some of its fundamental properties. In this paper, we address some of the issues for the
numerical solution and demonstrate the e$ectiveness of the adjoint method via our implementation
of the adjoint DAE solver DASPKADJOINT.

The outline of this paper is as follows. In Section 2 we outline the adjoint sensitivity method
for DAEs and summarize some of the relevant results from [6]. In Section 3 we describe how
the adjoint DAE may be evaluated accurately and e4ciently by an automatic di$erentiation tool.
In Section 4 we study the consistent initialization of the adjoint DAE. Section 5 outlines some
important considerations for implementation of the adjoint sensitivity method for DAEs and how
they are addressed in our software, DASPKADJOINT. Finally, the algorithms and software are
tested for several examples in Section 6. The numerical results show that the adjoint sensitivity
method is advantageous over the forward sensitivity method for applications with a large number of
sensitivity parameters and few derived functions.

2. The adjoint DAE system and sensitivity calculation

In this section we deKne the adjoint sensitivity system for DAEs and summarize some of the
relevant results concerning initial values, stability and numerical stability from [6].

The adjoint system for the DAE

F(t; x; ẋ; p) = 0
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with respect to the derived function G(x; p) (2) is given by

(∗Fẋ)′ − ∗Fx =−gx; (3)

where ∗ denotes the transpose operator and prime denotes the total derivative with respect to t.
The adjoint system is solved backwards in time. For index-0 and index-1 DAE systems, the initial

conditions for (3) are taken to be ∗Fẋ|t=T = 0, and the sensitivities of G(x; p) with respect to the
parameters p are given by

dG
dp

=
∫ T

0
(gp − ∗Fp) dt + (∗Fẋ)|t=0(x0)p: (4)

For Hessenberg index-2 DAE systems, the initial conditions are more complicated, and will be
described in detail along with an algorithm for their computation in Section 4. For index-2 DAE
systems, if the index-2 constraints depend on p explicitly, an additional term must be added to the
sensitivity (4) [6].

For a scalar derived function g(x; T; p), the corresponding adjoint DAE system is given by

(∗TFẋ)′ − ∗TFx = 0; (5)

where T denotes 9=9T . For index-0 and index-1 DAE systems, the initial conditions T (T ) for (5)
satisfy (∗TFẋ)|t=T =[gx−∗Fx]|t=T . We note that the initial condition T (T ) is derived in such a way
that the computation of (t) can be avoided. This is the case also for index-2 DAE systems. The
full algorithm for consistent initialization of the adjoint DAE system will be described in Section
4. The sensitivities of g(x; T; p) with respect to the parameters p are given for index-0 and index-1
DAE systems by

dg
dp

= (gp − ∗Fp)|t=T −
∫ T

0
(∗TFp) + (∗TFẋ)|t=0(x0)p: (6)

Note that the values of both  at t = T and T at t = 0 are required in (6). If Fp �=0, the transient
value of T is also needed. For an index-2 system, if the index-2 constraints depend on p explicitly,
an additional term must be added to the sensitivity (6).

We focus on the adjoint system with respect to the scalar objective function g(x; T; p) throughout
this paper. If the objective function is of the integral form G(x; p) (2), it can be computed easily by
adding a quadrature variable, which is equal to the value of the objective function, to the original
DAE. For example, if the number of variables in the original DAEs is N , we append a variable
xN+1 and equation

ẋN+1 = g(x; t; p):

Then G = xN+1(x; T; p). In this way, we can transform any objective function in the integral form
(2) into the scalar form g(x; T; p). The quadrature variables can be calculated very e4ciently [15]
by a staggered method in DASPK3.0; they do not enter into the Jacobian matrix.

From [6] we know that for DAE systems of index up to two (Hessenberg), asymptotic numerical
stability in solving the forward problem is preserved by the backward Euler method, but only (for
fully implicit DAE systems) if the discretization of the time derivative is performed ‘conservatively’,
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which corresponds to solving an augmented adjoint DAE system

Ȯ− F∗
x =0;

O− F∗
ẋ =0: (7)

It was shown in [6] that the system (7) with respect to O preserves the stability of the original
system. Note that the augmented system (7) is of (one) higher index than the original adjoint
system (5). This is not a problem in the implementation since the newly high-index variables do not
enter into the error estimate (see Section 5.4) and it can be shown that basic DAE structures such as
combinations of semi-explicit index-1 and Hessenberg index-2 are preserved under the augmentation.
Also, the linear algebra is accomplished in such a way (see Section 5.1) that the matrix needed is
the transpose of that required for the original systems. Thus, there are no additional conditioning
problems for the linear algebra due to the use of the augmented adjoint system.

3. Evaluation of the adjoint DAE

As we have seen, the adjoint DAE must be solved backward for its solution at t = 0. Since
not every DAE solver can take backward steps during the integration, we apply a time reversing
transformation �= T − t to the adjoint system (5). This yields

̇
∗
TFẋ(T − �; x) + ∗T

(
Fx(T − �; x)− dFẋ

dt
(T − �; x)

)
= 0; (8)

where ̇
∗
T = d∗T =d�; ẋ = dx=dt, and dFẋ=dt is the total derivative of Fẋ with respect to t. If we

assume that the DAE system is linear with respect to ẋ, then for any constant vector v, this term
may be evaluated by

v
dFẋ

dt
= vFẋt + (vFẋ)xẋ: (9)

For many applications, Fẋ is constant and Eq. (8) becomes

̇
∗
TFẋ + ∗TFx(T − �; x) = 0: (10)

In these cases, we do not need to evaluate the term dFẋ=dt. If Fẋ is time-varying, the augmented
adjoint system (7), which becomes

Ȯ+ F∗
x =0;

O− F∗
ẋ =0 (11)

under the time-reversing transformation, is used to preserve the stability.
Eqs. (10) and (11) involve matrix–vector products from the left side (referred to as vector–matrix

products in the following). Although a matrix–vector product Fxv can be approximated via a di-
rectional derivative Knite di$erence method, it is di4cult to evaluate the vector–matrix product vFx
directly via a Knite di$erence method. The vector–matrix product vFx can be written as a gradient of
the function vF(x) with respect to x. However, N evaluations of vF(x) are required to calculate the
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gradient by a Knite-di$erence method if we do not assume any sparsity in the Jacobian. Therefore,
automatic di$erentiation (AD) is necessary to improve the computational e4ciency. A forward mode
AD tool cannot compute the vector–matrix products without evaluation of the full Jacobian. It has
been shown [10] that an AD tool with reverse mode can evaluate the vector-Jacobian product as e4-
ciently as a forward mode AD tool can evaluate the Jacobian-vector product. In our implementation
with DASPK3.0, we use the AD tool TAMC [10] to calculate the vector–matrix products.

ADIFOR [2] is another AD tool. Until ADIFOR3.0 is released, ADIFOR includes only the for-
ward mode. If the SparseLinC option is used, ADIFOR can evaluate the non-zero elements of the
Jacobian e4ciently. After the Jacobian is computed, the vector-Jacobian product can be easily ob-
tained. This method still requires the evaluation of a full Jacobian, which is far more expensive than
a vector–matrix product.

4. Initialization of the adjoint DAE

In this section, we consider the initialization of the adjoint DAE for the scalar objective function
g(x; T; p). All of the adjoint DAE systems in this section are of the form (8), which means that the
time reversing transformation has already been applied.

4.1. ODE systems

From Section 2, we know that the adjoint variables must satisfy initial conditions at time t = T .
For index-0 or index-1 DAEs, ∗(T ) satisKes ∗Fẋ|t=T =0. If the original DAE is of ODE standard
form or regular implicit form (non-singular mass matrix Fẋ), we can take (T ) = 0. Then T (T ) is
given by

T (T ) =−d
dt

|t=T = d=d�|t=T = (F∗
ẋ )

−1gx|t=T :

An important point to note is that computation of (t) is not required for the initialization of T .
This will be the case also for higher-index DAEs, although there it may be less obvious.

4.2. Semi-explicit index-one DAE systems

For index-1 DAE systems of the form

M (t; xd)ẋd =f(t; xd; xa; p);
0= h(t; xd; xa; p);

where xd and xa denote the di$erential and algebraic solution variables, respectively, 9h=9xa is
non-singular, and the mass matrix M (t; xa) is a non-singular square matrix, a two-step process can be
used. First we initialize the adjoint DAE for the objective function of integral form G=

∫ T
0 g(x; t; p) dt

M (t; xd)∗̇
d
= (fxd + dM=dt − d(Mẋd)=dxd)∗d + h∗xd

a + gxd ;

0=f∗
xa

d + h∗xa
a + gxa
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with d(T )=0 to obtain consistent initial values for ̇
d
and a. ̇

d
is the derivative of d with respect

to �. During the initialization, the values of the di$erential variables d(T ) are Kxed. Second, we
set dT (T ) = ̇

d
(T ) and initialize the adjoint DAE

M (t; xd)∗̇
d
T = (fxd + dM=dt − d(Mẋd)=dxd)∗dT + h∗xd

a
T ;

0=f∗
xa

d
T + h∗xa

a
T

for the objective function g(x; T; p). The di$erential variables dT (T ) are Kxed during the second
step. Each initialization can be done easily in DASPK3.0 [13].

4.3. Fully implicit index-one DAE systems

For fully implicit index-1 DAE systems

F(x; ẋ; t; p) = 0;

the initialization can be posed as a least-squares problem for

A∗̇+ B∗= g∗x ;

A∗= 0;

where A= 9F=9ẋ|t=T and B= 9F=9x|t=T . The solution of this problem is not currently implemented
in DASPKADJOINT.

4.4. Hessenberg index-two DAE systems

For Hessenberg index-2 DAE systems

ẋd = f(t; xd; xa; p);

0 = h(t; xd; p); (12)

the adjoint DAE system for the objective function g(x; T; p) is given by

̇
d∗
T =−d∗T fxd − a∗T hxd ;
0= d∗T fxa :

The initial values for the adjoint variable dT satisfy [6]

dT (T ) = P∗(g∗xd + f∗
xd

d − ḣ
∗
xd(f

∗
xah

∗
xd)

−1g∗xa)|t=T (13)

or

d∗T (T ) = (gxd + d∗fxd − gxa(hxdfxa)
−1ḣxd)P|t=T ; (14)

where d∗ =−gxa(hxdfxa)−1hxd is the adjoint variable for the objective function G =
∫ T
0 g(t; x; p) dt,

P = I − fy(hxfy)−1hx is a projection matrix for the original index-2 system, and ḣxd is the total
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derivative of hxd with respect to t, ḣxd =hxdt +(hxd ẋ
d)xd . Note that fxd; fxa ; hxd and ḣxd are matrices,

and the initialization in this case is much more complicated. In the following, with the help of an
AD tool and the options of DASPK3.0, we give a matrix-free implementation.

The matrix-free initialization procedure can be split into four steps. First we compute d∗(T ) =
−gxa(hxdfxa)−1hxd |t=T by solving the following initialization problem:

̇
d∗
1 = d∗1 fxd + a∗1 hxd ;

0= ̇
d∗
1 fxa − d∗1 ḟxa − gxa (15)

for ̇
d
1(T ) and a1(T ) with d1(T ) = 0 Kxed. In (15), ḟxa represents the total derivative of fxa with

respect to t. Note that a∗1 (T ) = gxa(hxdfxa)−1|T=T ; d∗(T ) = −̇
d∗
1 (T ) = −gxa(hxdfxa)−1hxd |t=T . If

gxa = 0, then d∗(T ) = 0.
In step 2, we calculate

v1 = gxd + d∗fxd − gxa(hxdfxa)
−1ḣxd |t=T = gxd + d∗fxd − a∗1 ḣxd |t=T : (16)

If gxa = 0, then v1 = gxd |t=T and we can go directly to step 3. d∗fxd can be calculated easily by
an AD tool with reverse mode. The calculation of a∗1 ḣxd is more troublesome. If hxd is a constant
matrix then a∗1 ḣxd = 0. Otherwise, an AD tool with a combination of reverse and forward modes is
used to evaluate a∗1 ḣxd . a∗1 hxd is Krst calculated by a reverse mode AD tool. Then the vector–matrix
product is di$erentiated explicitly by a forward mode AD-tool with respect to t and xd.
In step 3, we calculate the initial values of dT

d∗T (T ) = v1P|t=T = v1(I − fxa(hxdfxa)
−1hxd)|t=T (17)

by initializing the following system:

̇
d∗
2 = d∗2 fxd + a∗2 hxd + v1;

0= ̇
d∗
2 fxa − d∗2 ḟxa (18)

with d∗2 (T )=0 Kxed. Noting that a∗2 (T )=−v1fxa(hxdfxa)−1|t=T and ̇
d∗
2 =v1(I−fxa(hxdfxa)−1hxd)|t=T ,

we set dT (T ) = ̇
d∗
2 (T ).

In step 4, we initialize the adjoint system for the objective function g(x; T; p) by Kxing the value
of d∗T (T ). The index-2 constraints must be di$erentiated during the initialization, which results in

̇
d∗
T = d∗T fxd + a∗T hxd ;

0= ̇
d∗
T fxa − d∗T ḟxa ; (19)

where dT (T ) is Kxed and ̇
d
T (T ) and aT (T ) are computed.

The DAE systems (15) and (18) have the same format except for the forcing terms. Therefore,
we can solve them e4ciently with the same algorithm. The second equation of the adjoint DAE
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system (19) is actually the derivative of the index-2 constraint dfxa with respect to reversed time
�. DASPKADJOINT has a mechanism to di$erentiate the index-2 constraints and then to perform
the initialization for index-2 DAE systems in DASPK3.0 [15].

For index-2 DAE systems which are not explicitly in Hessenberg form, but which have a non-
singular square mass matrix, i.e.,

M (t; xd)ẋd =f(t; xd; xa; p);

0= h(t; xd; p); (20)

where M (t; xd) is a non-singular square matrix, the adjoint system is

M (t; xd)∗̇
d
T = (fxd + Ṁ − (Mẋd)xd)

∗dT + h∗xd
a
T ;

0=f∗
xa

d
T : (21)

The initial values for the adjoint variables dT satisfy

d∗T =
(
̇
d − gxa(hxdM

−1fxa)−1 d(hxdM
−1)

dt

)
P

= ((gxd + d∗(fxd + Ṁ − (Mẋd)xd))M
−1 − gxa(hxdM

−1fxa)−1(ḣxdM
−1 − hxdM

−1ṀM−1))P

= (gxd + d∗(fxd − (Mẋd)xd)− gxa(hxdM
−1fxa)−1ḣxd)M

−1P

= (gxd − d∗Fxd − a∗1 ḣxd)M
−1P

= v1M−1P

at t = T , where d∗ = −gxa(hxdM−1fxa)−1hxdM−1; P = I − fxa(hxdM−1fxa)−1hxdM−1; F = Mẋd −
f(xd; xa; p); a∗1 =gxa(hxdM−1fxa)−1, and v1=gxd−d∗Fxd−a∗1 ḣxd . The above initialization procedures
for Hessenberg form can still be used by replacing the adjoint DAE system with (21).

5. Implementation

In this section we outline some of the issues for implementation of the adjoint method for DAE
sensitivity analysis. Although any DAE solver could in principle be used for the forward and
backward integration of the adjoint DAE system, we describe the implementation via our software
DASPK3.0 [15].

In the adjoint system (5) and the sensitivity calculation (6), the derivatives Fx; Fẋ and Fp may
depend on the state variables x, which are the solutions of the original DAEs. Ideally, the adjoint
DAE (5) should be coupled with the original DAE and solved together as we did in the forward
sensitivity method. However, in general it is not feasible to solve them together because the original
DAE may be unstable when solved backward. Alternatively, it would be extremely ine4cient to
solve the original DAE forward any time we need the values of the state variables.
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The implementation of the adjoint sensitivity method consists of three major steps. First, we must
solve the original ODE=DAE forward to a speciKc output time T . Second, at time T , we compute
the consistent initial conditions for the adjoint system. The consistent initial conditions must satisfy
the boundary conditions of (3). Finally, we solve the adjoint system backward to the start point,
and calculate the sensitivities.

With enough memory, we can store all of the necessary information about the state variables
at each time step during the forward integration and then use it to obtain the values of the state
variables by interpolation during the backward integration of the adjoint DAEs. For example, we can
store x and ẋ at each time step during the forward integration and reconstruct the solution at any
time by cubic Hermite interpolation 1 during the backward integration. The memory requirements for
this approach are proportional to the number of time steps and the dimension of the state variables
x, and are unpredictable because the number of time steps varies with di$erent options and error
tolerances of the ODE=DAE solver.

To reduce the memory requirements and also make them predictable, we use a two-level check-
pointing technique. First we set up a checkpoint after every Kxed number of time steps during the
forward integration of the original DAE. Then we recompute the forward information between two
consecutive checkpoints during the backward integration by starting the forward integration from the
checkpoint. This approach needs to store only the forward information at the checkpoints and at
Kxed number of times between two checkpoints.

In the implementation we allocated a special bu$er to communicate between the forward and
backward integration. The bu$er is used for two purposes: to store the necessary information to
restart the forward integration at the checkpoints, and to store the state variables and derivatives at
each time step between two checkpoints for reconstruction of the state variable solutions during the
backward integration.

In order to obtain the Kxed number of time steps between two consecutive checkpoints, the second
forward integration should make exactly the same adaptive decisions as the Krst pass if it restarts
from the checkpoint. Therefore, the information saved at each checkpoint should be enough that
the integration can repeat itself. In the case of DASPK3.0, the necessary information includes the
order and stepsize for the next time step, the coe4cients of the BDF formula, the history information
array of the previous k time steps, the Jacobian information at the current time, etc. To avoid storing
Jacobian data (which is much larger than other information) in the bu$er, we enforce a reevaluation
of the iteration matrix at each checkpoint during the Krst forward integration.

If the size of the bu$er is speciKed, the maximum number of time steps allowed between two
consecutive checkpoints and the maximum number of checkpoints allowed in the bu$er can be easily
determined. However, the total number of checkpoints is problem-dependent and unpredictable. It
is possible that the number of checkpoints is also too large for some applications to be held in
the bu$er. We then write the data of the checkpoints from the bu$er to a disk Kle and reuse the
bu$er again. Whenever we need the information on the disk Kle, we can access it from the disk.
We assume that the disk is always large enough to hold the required information.

1 We could of course consider basing the interpolant on the interpolating polynomial underlying the BDF formula, but
this is more complicated, requires more storage, and it not as smooth.
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5.1. Jacobian or preconditioner evaluation and Newton solver

For an implicit ODE=DAE solver (e.g., BDF, SIRK), a Jacobian (or preconditioner) is required
for solving the non-linear system at each time step. The Jacobian for the adjoint DAE is exactly the
transpose of the Jacobian for the original DAE when the mass matrix Fẋ is constant. Therefore, we
can evaluate the Jacobian of the original DAE and transpose it to obtain the Jacobian for the adjoint
DAE.

If Fẋ depends on either t or x, we can use the adjoint DAE (7) or (11) for discretization. The
Jacobian for system (11) is(

�I F∗
x

I −F∗
ẋ

)
;

where � is a scalar coe4cient in DASPK3.0. If we solve only for , then the second column is
multiplied by −� and added to the Krst column, which yields the Jacobian for  only, �F ∗̇

x + F∗
x ,

which remains the transpose of the original Jacobian for the forward integration.
The adjoint system is a linear time-varying system. The Newton solver can converge in one

iteration if the Jacobian is up to date. In DASPK3.0, the convergence test of the Newton solver is
�

1− �
‖y(m+1) − y(m)‖¡ 0:33; (22)

where the rate of convergence � is given by

�=
(‖y(m+1) − y(m)‖

‖y(1) − y(0)‖
)1=m

:

If the Newton solver converges in one iteration, � can be very small and is passed on to future
time steps. The near-zero � can make (22) satisKed even if ‖y(m+1)−y(m)‖ is large. The large value
of ‖y(m+1) − y(m)‖ can yield bad results if the Jacobian is not current. This is a deKciency in the
convergence test of DASPK3.0 (and previous versions), but to our knowledge it has never before
been the source of di4culty because unlike the adjoint DAE, the vast majority of DAEs solved in
practice are non-linear.

There are two options to Kx the convergence test for the adjoint system: force a Jacobian eval-
uation on every step, or force a recalculation of the convergence rate on every step. Because a
Jacobian evaluation takes much more time than a function evaluation, we force a recalculation of
the convergence rate on every step for the adjoint method using DASPK3.0. The initial value of �
is always 0.99.

5.2. Krylov iterative method

For the Krylov iterative method, we need to evaluate the matrix–vector product

u= (�F∗
ẋ + F∗

x )v: (23)

Since we already have the mechanism to evaluate vFẋ and vFx when we evaluate the adjoint DAE,
(23) can be evaluated directly.
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A preconditioner must be provided by the user for the Krylov iterative method in DASPK3.0.
The preconditioner provided by the user usually works well for the forward integration of the state
variables and for the forward sensitivity computation. However, it is not always a simple matter to
apply this preconditioner for the adjoint system. Because the Jacobian for the adjoint system is the
transpose of the forward Jacobian, a transpose of the preconditioner is needed. If a matrix-free method
has been used to construct the preconditioner for the forward system, it is di4cult to transpose
the preconditioner and apply it to the adjoint system. On the other hand, if the Jacobian matrix
is constructed during computation of the preconditioner as, for example, with the incomplete LU
factorization (ILU) preconditioner, the preconditioner for the adjoint system can be easily obtained
by transposing the Jacobian Krst and then doing the incomplete LU factorization.

5.3. Sensitivity calculation

The integral in Eq. (6) can be computed either outside DASPK after each time step or as a
quadrature variable during the solution of the adjoint DAE. If the quadrature variable method is
chosen, we append a variable, say N+1, and an equation

̇N+1 = ∗TFp
to the original adjoint system. Then

N+1|t=0 =
∫ T

0
∗TFp dt:

N+1 is called a quadrature variable in DASPK3.0 and can be calculated e4ciently [15] without
participating in Newton iterations and Jacobian evaluations via a staggered method. The other terms
in (6) can be easily obtained: ∗Fp and TFẋ can be computed by an AD tool with reverse mode.
(x0)p is the Jacobian matrix of the initial condition x0 with respect to the sensitivity parameter

p. When p is the initial condition for an ODE (or implicit ODE), (x0)p = I is the identity matrix.
For an index-1 or index-2 system, (x0)p must be consistent with the algebraic constraints and=or
any hidden constraints. (x0)p can be input either by the user or evaluated by an AD tool. When the
number of parameters is large, the matrix (x0)p is huge. However, the number of non-zero elements
in (x0)p may be small. A sparse format to store and compute (x0)p is necessary.

For the Hessenberg index-2 DAE system (12), the value of a∗ is required when hp �=0, because
a∗hp should be calculated in the sensitivity (6). To solve for a∗ correctly in (16), we need the
value of dgxa=dt, which is di4cult for the user to provide. However, there is an additional term
for the sensitivity (6) if hp �=0, which is d(−gxa(hxdfxa)−1hp)=dt. Then the combination of the two
terms will be

(d∗fp + a∗hp) +
d
dt
(−gxa(hxdfxa)

−1hp)

=d∗fp − a∗1 ḣp +
(
a∗ − dgxa

dt
(hxdfxa)

−1 + gxa(hxdfxa)
−1 (ḣxdfxa + hxdḟ xa

)
(hxdfxa)

−1

)
hp

=d∗fp − a∗1 ḣp + (a∗hxd − ̇
d∗

+ a∗1 ḣxd)fxa(hxdfxa)
−1hp

=d∗fp − a∗1 ḣp + a∗2 hp:
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where d∗fxa+gxa=0 is used and a∗1 =−gxa(hxdfxa)−1 and a∗2 =−(gxd+d∗fxd−a∗1 ḣxd)fxa(hxdfxa)−1

can be obtained from Eqs. (15) and (18), respectively. It can be veriKed that the last equation is
also valid for the case of non-Hessenberg form given by (20).

5.4. Error estimation

Two of the most important decisions that an adaptive DAE solver must make on each step are
whether to accept the results of the current step and what stepsize should be used on the next
step. Both of these decisions are based on the error estimate. DASSL=DASPK estimates the local
truncation error, but it is not obvious how this should be implemented for the adjoint solution.

To get a better understanding, consider applying the implicit Euler method to the augmented
adjoint system (11),

On+1 − On
hn+1

+ F∗
x n+1 = 0;

On+1 − F∗
ẋ n+1 = 0: (24)

The true solution to (11) satisKes

O(tn+1)− O(tn)− (h2n+1=2) O
′′
(!)

hn+1
+ F∗

x (tn+1) = 0;

O(tn+1)− F∗
ẋ (tn+1) = 0: (25)

Subtracting (25) from (24), we obtain

Oen+1 − Oen + (h2n+1=2) O
′′
(!)

hn+1
+ F∗

x en+1 = 0;

where Oen = On − O(tn) and en = n − (tn). Thus, the local truncation error (the amount by which
the true solution fails to satisfy the di$erence formula) depends on O

′′
rather than on ′′. Therefore,

the error estimate should be based on O. Since the errors in the algebraic variables on previous time
steps do not directly inQuence the errors in any of the variables at the current time [17], we can
consider deleting the  from the error estimate in order to promote the smooth operation of a code.
However, the value of  is important and determines the accuracy of the sensitivities. So for the
 variables which are index-1 in the augmented adjoint system, we opted to include them and to
exclude those which are index-2.

5.5. E;ciency of the adjoint sensitivity method

In this subsection we compare the adjoint sensitivity method with the forward sensitivity method.
Suppose the cost of the forward integration for N state variables is Cf, the cost of the forward
integration for N sensitivity variables is Cfs, the cost of the backward integration for N adjoint
variables is Cbs, the number of parameters is np, and the number of objective functions is nf.
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Then our implementation of the adjoint sensitivity method includes two forward integrations and
one backward integration. 2 The total cost is roughly

Casm = 2Cf + C∗
bs + (nf − 1)Cbs;

where C∗
bs denotes the cost for the Krst objective function, which is more costly than the others

because it involves the Jacobian evaluation. The total cost for the forward sensitivity method to
perform the equivalent computation is roughly

Cfsm = Cf + npCfs:

The computational e4ciency and memory requirements for the forward sensitivity method are roughly
proportional to the number of sensitivity parameters and are insensitive to the number of objective
functions. For the adjoint sensitivity method, the computational e4ciency and memory requirements
are proportional to the number of objective functions and are insensitive to the number of sensitivity
parameters. Thus the two methods are complementary. The adjoint sensitivity method is advantageous
over the forward sensitivity method when the number of sensitivity parameters is large and the
number of objective functions is small.

The adjoint sensitivity method has a disadvantage that it can only compute the sensitivity at a
speciKc output time. Unlike the forward sensitivity method, the intermediate results of the adjoint
variables have no physical meaning.

6. Numerical experiments

In this section we give some examples to demonstrate the e$ectiveness and e4ciency of the adjoint
sensitivity method as implemented in DASPKADJOINT. In all of our examples, the tolerance for
the adjoint variables has been taken to be double the tolerance for the state variables, because we
have found that it is helpful in the solution of the adjoint equations to have solved for the state
variables with slightly greater accuracy than we request for the adjoint variables. The integration
methods used are the direct method (D) and Krylov method (K). The sensitivity methods are the
forward sensitivity method (F), using the staggered corrector option, from DASPK3.0 [14] and the
adjoint sensitivity method (A). Therefore, we use AD to represent the adjoint direct method, AK to
represent the adjoint Krylov method, FD to represent the forward direct method, and FK to represent
the forward Krylov method. The computation was performed on a Linux machine with Pentium III
450 MHZ CPU.

6.1. ODE case

6.1.1. 2-D heat equation
We Krst consider the heat equation

ut = p1uxx + p2uyy (26)

2 This assumes that checkpointing is used. If checkpointing is not needed, it requires only one forward integration.
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Table 1
Results for heat equation example. NP is the number of sensitivity parameters

METH NP g1 w.r.t. p1 g2 w.r.t. p1 RWORK size IWORK size CPU

FD 20 −15.21783 −2.72675 669025 10630 44.15
FD 10 −15.21783 −2.72675 457205 10630 24.40
AD 1766 −15.21831 −2.72685 563563 12462 21.11

FK 10 −15.21782 −2.72675 329420 83868 15.39
AK 1766 −15.21794 −2.72667 235388 167751 6.63

posed on the 2-D unit square with zero Dirichlet boundary conditions. An M + 2 by M + 2 mesh
is used with uniform spacing 1=(M + 1). The spatial derivatives are represented by standard central
Knite di$erence approximations. At each interior point of the mesh, the discretized PDE becomes an
ODE for the discrete value of u. At each point on the boundary, we pose the equation ut = 0. The
discrete values of u form a vector U , ordered Krst by x, then by y. The result is an ODE system
G(t; U; U ′) = 0 of size NEQ = (M + 2)× (M + 2). Initial conditions are posed as

ut=0 = 16x(1− x)y(1− y):

The sensitivity parameters consist of p1 = p2 = 1:0 and the initial values ut=0. The problem was
solved previously by DASPK3.0 with M = 40 in [15]. To compute the sensitivities by the adjoint
method, we used the time interval [0; 0:16], and the error tolerances for DASPK3.0 were taken as
RTOL=ATOL=1:0e− 5. The size of the bu$er was set to such a number that it allows nine time
steps between two consecutive checkpoints, and the maximum number of checkpoints the bu$er
allows was set to 3. There are a total of 10 checkpoints during the forward integration of the state
variables and the information at the checkpoints has to be written to the disk Kle three times. For the
direct method, we used the ADIFOR option with SparseLinC to generate the Jacobian. For the Krylov
method, we used the incomplete LU (ILU) preconditioner, which is part of the DASPK package. The
Jacobian for the ILU preconditioner was also evaluated by ADIFOR with the SparseLinC option.
We compared the results with that of the forward sensitivity method where the sensitivity residuals
are evaluated by ADIFOR with the seed matrix option. Due to the memory restriction, we used only
20 sensitivity parameters (including p1 and p2) in the forward sensitivity method. For comparison,
we used two objective functions:

g1 =
NEQ∑
1

u2i ;

g2 =
∫ T

0

NEQ∑
1

ui dt;

where g2 is treated as a quadrature variable. Table 1 gives the results of the adjoint and forward
methods.
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Fig. 1. Sensitivities of the objective functions with respect to the initial conditions for the heat equation example. The
x-axis represents the order number of the points.

Fig. 1 shows the sensitivities of the objective functions with respect to the initial conditions. We
chose the points between 13 and 27 in the 20th row on the 42× 42 mesh as our sample points for
the Kgure.

6.1.2. Index-0 example with state-dependent mass matrix
We also tested the case when the coe4cient matrix Fẋ is not constant. Consider the system(

y1 y2

−y2 y1

)(
ẏ 1

ẏ 2

)
=

(
0

−(y2
1 + y2

2)

)
(27)

with initial conditions y1(0) = 0; y2(0) = 1. We used the time interval [0,1.57] and the objective
function g(y) = y1 + y2 in the test. The sensitivity parameters were taken to be y1(0) and y2(0).
The augmented adjoint system for g is

O−
(
y1 −y2

y2 y1

)
= 0;
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Table 2
Results for example (27). Errmax is the maximum error in . NSTP is the number of time steps, NRES is the number of
function evaluations, NJAC is the number of Jacobian evaluations, NETF is the number of error test failures and NNL is
the number of non-linear iterations. There are no convergence test failures in any of the tests

Error control Recalculate � NSTP NRES NJAC NETF NNL Errmax

O No 64 245 31 7 121 0.6025
; O No 144 383 31 7 259 8.0e-7
 No 2662 28486 4174 2660 11790 5.65e-4
O Yes 61 254 28 7 142 7.0e-7
; O Yes 86 317 28 7 205 1.4e-7
 Yes 2662 28487 4174 2660 11791 5.65e-4

Ȯ+

(
y′
1 y′

2 + 2y1

y′
2 −y′

1 + 2y2

)
= 0:

We used the error tolerances ATOL = 10−9; RTOL = 10−7 for DASPK3.0 in the test. The results
were

METH g w.r.t. y1(0) g w.r.t. y2(0)

FD −0.999204383 1.00079725
AD −0.999203795 1.00079653
True solution −0.999203356 1.00079601

This example illustrates the need for the modiKcations to the DASPK3.0 error test and Newton
convergence test strategies described earlier for solving the augmented adjoint system. It can be
shown that when y1 = sin(t) and y2 = cos(t), ̇= 0. If we base the error estimate only on , which
may at Krst glance seem to be natural, it results in a large number of error test failures. The reason is
that according to the dynamics of , DASPK3.0 tries with this error estimate to double the stepsize
at almost every time step. However, the local truncation error is determined by O instead of , so
these large stepsizes fail based on the dynamics of O. We also observed that if we did not force a
recalculation of the convergence rate � during the Newton iteration, a large error can occur in  if
we base the error test only on O. The results are good and the code operates e4ciently when we
base the error test on both  and O, or base the error test only on O and recalculate the convergence
rate. Table 2 gives the results of the di$erent options for the error control and convergence tests.

6.2. Index-1 DAE case

6.2.1. 2-D food web problem
We consider a multi-species food web [5], in which mutual competition and=or predator-prey rela-

tionships in the spatial domain are simulated. SpeciKcally, the model equations for the concentration
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vector c = (c1; c2)T are

c1t =f1(x; y; t; c) + d1(c1xx + c1yy);

0=f2(x; y; t; c) + d2(c2xx + c2yy)

with

fi(x; y; t; c) = ci


bi +

2∑
j=1

aijcj


 :

The coe4cients aij; bi; di are:

aii =−1; i = 1; 2;

a12 =−0:5× 10−6; a21 = 104;

aij = e; i¿p and j¡p;

b1 = 1 + �xy + , sin(4-x) sin(4-y)) =−b2;

d1 = 1; d2 = 0:05:

The domain is the unit square 06 x; y6 1. The boundary conditions are of Neumann type with
normal derivative equal to 0. The PDEs are discretized by central di$erencing on an M by M mesh.
We have taken M = 20. Therefore, the resulting DAE system has size NEQ = 2M 2 = 800. The
DASPK3.0 tolerances used were RTOL = ATOL = 10−5.
For sensitivity analysis, � and , were taken as the sensitivity parameters, with nominal values

�= 50 and , = 100. The initial conditions were taken as

c10 = 10 + (16x(1− x)y(1− y))2;

c20 = 100;

which do not satisfy the constraint equations. Therefore, a consistent initialization is required. For
comparison, we also took the initial values c10 as sensitivity parameters. Unlike the ODE case, we
cannot take both c10 and c20 as independent sensitivity parameters, because c20 are index-1 variables
and they depend on c10. We used the time interval [0; 5], and tolerances for DASPK3.0 of RTOL =
ATOL=10−5. For the adjoint method, the size of the bu$er was set to such a number that it allows
12 time steps between two consecutive checkpoints. The maximum number of checkpoints the bu$er
allows was set to 4. There are a total of 10 checkpoints during the forward integration of the state
variables, and the information at the checkpoints has to be written to the disk Kle twice. We used
two identical objective functions

g1 =
NEQ∑
1

u2i ;

g2 = g2:

Table 3 gives the results of the adjoint and forward methods. Note that the storage requirement
(RWORK) and the CPU time for the forward sensitivity method are proportional to the number of
sensitivity parameters, whereas for the adjoint method they remain the same.
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Table 3
Results for food-web problem. NP is the number of sensitivity parameters

METH NP g1 w.r.t. p1 g1 w.r.t. p2 RWORK size IWORK size CPU

FD 20 6467.01 3287.73 312890 4840 26.77
FD 10 6467.01 3287.73 208870 4840 14.73
FD 2 6467.01 3287.73 125654 4840 6.09

AD 402 6467.12 3287.79 249350 7313 13.14

6.2.2. Index-1 example with state-dependent mass matrix
We also tested a simple index-1 example with non-constant matrix Fẋ. The equations are(

y2 0

0 0

)(
ẏ 1

ẏ 2

)
=

(−y2(y2 − 1)

y2 − y1 − 1

)
(28)

with initial values y1(0)=1 and y2(0)=2. We used the time interval [0,1] and the objective function
g(y) = y1 + y2. We cannot select both y1(0) and y2(0) as sensitivity parameters for a well-posed
problem. Thus we chose y1(0) as the sensitivity parameter. The DASPK3.0 error tolerances are
ATOL = 10−9; RTOL = 10−7. The results are

METH g w.r.t. y1(0)

FD 0.73575887
AD 0.73575898
True solution 0.73575882

6.3. Index-2 DAE case

We consider an index-2 DAE from mechanics. This problem is selected from the set of initial
value test problems [12]. It is of the form

M
dy
dt

= f(y); y(0) = y0; y′(0) = y′
0

with y; f∈R160; t ∈ [0; 1000]. M is a constant mass matrix given by(
I120 0

0 0

)
;

where I120 is the identity matrix of dimension 120. For the deKnition of the function f, we refer to
[12]. The Krst 120 components are of index-0, the last 40 of index 2.



Y. Cao et al. / Journal of Computational and Applied Mathematics 149 (2002) 171–191 189

The components y0; i of the initial vector y0 are deKned by


y0;3( j−1)+1

y0;3( j−1)+2

y0;3( j−1)+3


=




cos(!j) cos(,j)

sin(!j) cos(,j)

sin(,j)


 for j = 1; : : : ; 20;

where

,j = �1- and !j =
2j
3
-+ �2- for j = 1; : : : ; 3;

,j = �3- and !j =
2(j − 3)

7
-+ �4- for j = 4; : : : ; 10;

,j = �5- and !j =
2(j − 10)

6
-+ �6- for j = 11; : : : ; 16;

,j = �7- and !j =
2(j − 17)

4
-+ �8- for j = 11; : : : ; 16:

For the remainder of the initial conditions, the reader is referred to [12]. The vector �i contains the
sensitivity parameters, with nominal values

�1 = 3
8 ; �2 = 1

13 ; �3 = 1
8 ; �4 = 1

29 ;

�5 =− 2
15 ; �6 = 1

7 ; �7 =− 3
10 ; �4 = 1

17 :

The origin of the problem is to compute the elliptic Fekete points. For any conKguration x := (x1;
x2; : : : ; xN )T in a unit sphere in R3, the points x̂1; x̂2; : : : ; x̂N are called the elliptic Fekete points of
order N if the function

V (x) :=
∏
i¡j

‖xi − xj‖2

reaches its global maximum at x. This optimization problem can be formulated as an index-2 DAE
[12]. Since it is a global optimization problem, the value of V (x) at the Knal time should not depend
on the initial conditions, i.e., the sensitivity of V (x) with respect to the sensitivity parameters �i
should be zero or close to zero. The bu$er size for the adjoint method was set to be large enough
to hold the information for 30 time steps and 10 checkpoints. There are a total of eight checkpoints.
Thus no temporary disk Kle was written.

We Krst computed the sensitivities by the forward sensitivity method (see Table 4). Then the
adjoint sensitivity method was used. The tolerances for both methods were RTOL =ATOL= 10−4.
Table 4 gives the results of the adjoint and forward methods. Note that the results for the adjoint
method are not as good as that of the forward sensitivity method. However, they are within the
error tolerances. The CPU time used for the forward method was 11.49, and for the adjoint method
6.78. The CPU time will be almost the same for the adjoint method if more sensitivity parameters
are considered, whereas it will increase for the forward method.
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Table 4
Results for Fekete problem

Sensitivity FD AD

V�1 −3.7873e-11 6.3065e-4
V�2 0 4.8950e-5
V�3 4.4342e-11 2.5240e-4
V�4 0 2.4969e-5
V�5 4.4272e-11 −9.3772e-4
V�6 −3.7543e-11 −1.4526e-4
V�7 −3.8355e-11 5.4515e-4
V�8 −3.7363e-11 1.0331e-4
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