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Abstract. In this paper we propose a general method for a posteriori error estimation in the
solution of initial value problems in ordinary differential equations (ODEs). With the help of adjoint
sensitivity software, this method can be implemented efficiently. It provides a condition estimate for
the ODE system. We also propose an algorithm for global error control, based on the condition of
the system and the perturbation due to the numerical approximation.
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1. Introduction. Error is one of the major concerns in numerical analysis.
There are many sources of errors, including roundoff error, truncation error, error
in the data, and uncertainty in the model. Most of these errors cannot be determined
a priori. An important task for numerical analysis is to build up reliable and efficient
algorithms. It is desirable to be able to estimate or control the error in the final
solution within a tolerance when we solve a problem. An error estimate can help
us to determine whether or not we can trust the solution or even the model itself.
Particularly for ODEs, the error estimate is also very important for adaptive error
control. In this paper, we propose a general method for a posteriori error estimation
in the solution of the ODE initial value problem{

ẋ = f(x, t), 0 < t ≤ T,
x(0) = x0,

(1)

where x ∈ R
n. This method is based on a condition analysis of system (1) and a

perturbation analysis of the particular numerical discretization method. With this
error estimation method, we also propose a global error control algorithm which can
be combined with existing local error control schemes.

Error estimation and error control have been important topics from the very
first numerical analysis of ODEs (see [9, 16, 20, 29]). Algorithms for the estimation
and control of local error have been studied quite deeply and implemented in ODE
solvers like DASSL and DASPK [4], VODE [5], DIFSUB [14], and RADAU5 [17].
Many methods for estimating global errors have also been proposed; see, for example,
[29, 31, 32]. A good review of basic methods for estimation of the global error can be
found in [31]. Most of these estimates are based on a priori methods and asymptotic
analysis in the limit of small stepsize. A simple method of this type for computing
the global error is to compute the solution with two different formulas or stepsizes.
The difference serves as the asymptotic estimate of the global error. However, this
type of estimate is not ideal because it is neither rigorous nor efficient.
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An error bound similar to what is obtained in linear algebra using the matrix
condition number would be desirable if the additional computations were not too ex-
pensive. Recently, much work has been done towards this end for ODEs and partial
differential equations (PDEs) (see [9, 10, 11, 12, 13, 15, 21, 26, 27]). An extensive re-
view is given in [12] of the theoretical framework of a posteriori error estimation, which
includes a discussion of implementation, particularly for reaction-diffusion equations.
The analysis is based on finite elements and formulating the error through the dual
(adjoint) problem. Goal-oriented a posteriori error estimation for a single derived
function has been proposed for error estimation and adaptive error control for PDEs
(see [1, 2, 3, 15, 19]) and ODEs (see [10, 21, 26, 27]). Implementation details for
adaptive stepsize control for ODEs can also be found in [11, 12, 13, 25]. This method
has been very successful for a single derived function (the “goal”). For the general
case, the “choice of data” (initial condition) for the dual problem [12] has remained
an open problem. A brief discussion on this issue has been given in [12, section 4.2].
One approach is to use random initial data. Another approach is to try to compute
an approximation to the direction of the error and use that as initial data for the
dual problem. It is reported in [12] that “we experimented with this approach using
several different approximations based on heuristic reasoning and in almost every case
obtained worse results than those obtained using random initial data for the dual prob-
lem.” This is an interesting observation. It suggests that probability theory could
play a role here.

There are two main contributions of this paper. The first is to show how a
posteriori error estimates can be relatively easily implemented within the framework
of existing ODE solvers with the help of adjoint sensitivity software. We derive the
error estimate using the adjoint system for the sensitivity analysis of ODEs [6, 7]. This
adjoint system is equivalent to the dual system in [12]. We consider the numerical
discretization error as a perturbation to the ODE system. The error in the solution has
two parts: the error at each time step due to the discretization and the propagation
of these errors which is measured by the condition. We begin by taking the numerical
solution as the solution to a perturbed ODE system. According to [28], the condition
of the ODE system is the sensitivity of the solution with respect to these perturbations.
Thus the condition problem becomes a sensitivity problem. With the help of adjoint
sensitivity analysis, we solve the sensitivity problem and estimate the condition of
the system. We present the corresponding perturbation analysis for the backward
differentiation formula (BDF) method and obtain the error estimate. This approach
is not limited to BDF methods.

The error estimate using the analysis of the numerical solution as the solution to
a perturbed ODE system was first proposed in [14] and has been further developed
in [18]. But at that time it was not deemed to be practical. The difficulty is in
the estimation of the condition. The perturbations can arise at any time during the
solution of the system and thus has an infinite dimension. Therefore the sensitivity
will have an infinite dimension and is difficult, if not impossible, to compute. Thus
we must estimate the sensitivity. We consider the condition problem as a sensitivity
problem. Since there are a large number of parameters (perturbations), the adjoint
method is an attractive choice. A detailed analysis of the adjoint sensitivity method
for differential-algebraic equations (DAEs) can be found in [6, 7]. The advantage of the
adjoint method is that when the number of parameters increases, the computational
cost does not increase much once we have the adjoint solution. Furthermore, the
adjoint problems are linear and can be computed in parallel.

The second main contribution of this paper is to present a method to give a
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probabilistic error estimate for the solution or for a multidimensional derived function.
The adjoint sensitivity method applies best to the case of a small-dimensional output
space and a large-dimensional parameter space. But the error estimation problem
may have both a large-dimensional output space and a large-dimensional parameter
space. To resolve this, instead of requiring the error estimate to be accurate, we
require it to be accurate with a high probability. To accomplish this, we use the small
sample statistical method which was originally proposed in [22, 23] and was later
applied to condition estimation in numerical linear algebra [8]. The small sample
statistical method provides us with a methodology for choosing the initial condition
for the adjoint system which is applicable to general ODE systems and is justified by
theory. It confirms as well as justifies Estep’s observation regarding the use of random
initial data.

Finally, we combine local error control with the condition estimate to obtain a
method for global error control. The same approach can also be applied to obtain a
goal-oriented (subspace) error estimate. This method is not based on any particular
class of discretization formula. It can be applied easily to all the known one-step and
multistep methods, such as BDF, Adams, and Runge–Kutta methods. The overall
strategy for global error control is similar to the approaches in [12, 26, 27, 33]. In this
paper we focus mainly on the BDF method, where adjoint sensitivity software [6, 7]
is readily available.

We note that it may be possible to use an approach similar to the one outlined
here, based on adjoint sensitivity analysis in combination with the small sample sta-
tistical method, for global error estimation and control for some time-dependent PDE
systems. However, the computation of the sensitivities presents many challenges [24].

In summary, our new method is the combination of two powerful methods: the
adjoint sensitivity method and software for ODEs and DAEs [6, 7], and the small
sample statistical method for estimation of condition [22, 23]. This paper is organized
as follows. In section 2 the condition number and error estimation method is proposed.
An asymptotic analysis of the perturbation due to the numerical approximation is
given in section 3 for BDF methods. Section 4 describes our strategy for global error
control. Numerical experiments are presented in section 5.

2. A posteriori error estimation for ODEs. Before proceeding, we establish
some notation. In the remainder of this paper we will be using the following norms.
Unless specified otherwise, for the vector norm we will use the 2-norm. Thus we will
omit the subscript,

‖v‖ = ‖v‖2 =
(∑

v2
i

) 1
2

.

For the norm of a function f ∈ C([0, T ]), the L1-norm, L2-norm, and ∞-norm will all
be used:

‖f‖L1 =

∫ T

0

‖f(t)‖dt,

‖f‖L2 =

(∫ T

0

‖f(t)‖2dt

) 1
2

,

‖f‖∞ = max
0≤t≤T

‖f(t)‖.

The error in the solution comes from two sources: the error propagated by the
ODE system and the error introduced by the numerical discretization at each time
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step. We will begin by focusing on the propagation of errors by the ODE system.
Consider the time-varying linear ODE{

ẋ = A(t)x + h(t),
x(0) = x0

(2)

and the corresponding perturbed ODE{
˙̃x = A(t)x̃ + h(t) + r1(t),

x̃(0) = x0 + r2,
(3)

where r1(t) and r2 are the perturbations. The perturbations may arise from roundoff
error, truncation error, error due to termination of the Newton iteration if using an
implicit method, or uncertainty in the model. We will leave the discussion on the
estimation of r1 to section 3.

The main objective of our a posteriori error estimate is to estimate the error
‖x(T )− x̃(T )‖ at the end point T . Without any assumptions about the perturbations,
this estimate is nonsense. Different applications give rise to different assumptions.
For the purpose of estimating the global error in the numerical solution of ODEs, we
assume that the perturbations are bounded as follows:

‖r1‖∞ < ε, ‖r2‖ < ε.

2.1. Error estimation for a scalar derived function. We first consider es-
timating the error of a scalar derived function g = g(x(T )) at the end time T . Let
e = x− x̃, and define δ = ‖e(T )‖. Then we have

∆g = g(x(T )) − g(x̃(T )) = gx(x(T ))(e(T )) + O(δ2).

The error e satisfies {
ė = A(t)e + r1(t),

x(0) = r2.
(4)

Thus

e(t) =

∫ t

0

Φ(t)Φ−1(s)r1(s)ds + Φ(T )r2,

where Φ is the fundamental solution matrix, which satisfies

Φ̇ = A(t)Φ,
Φ(0) = I.

Let l = gTx (x(T )). Then the error in the derived function g satisfies

∆g = lT e(T ) + O(δ2)

=

∫ T

0

lTΦ(T )Φ−1(s)r1(s)ds + lTΦ(T )r2 + O(δ2).

Solving the adjoint equation {
λ̇ = −AT (t)λ,

λ(T ) = l,
(5)
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we obtain

λT (s) = lTΦ(T )Φ−1(s)

and

λT (0) = lTΦ(T ).

Thus

∆g =

∫ T

0

λT (s)r1(s)ds + λT (0)r2 + O(δ2)(6)

and

|∆g| ≤ ‖λ‖L1‖r1‖∞ + ‖λ(0)‖‖r2‖ + O(δ2)

< (‖λ‖L1
+ ‖λ(0)‖)ε + O(δ2).

(7)

We note that (7) is a rather loose estimate because it takes the norm and ignores
the effects of cancellation of errors. Equation (6) is more general and will be the
formula we use in global error control. Formula (7) provides a simple formula in the
form of error = condition number ∗ perturbation to data. The term (‖λ‖L1 + ‖λ(0)‖)
plays a role which is similar to the role that the matrix condition number plays for
linear systems. ‖λ(0)‖ is the condition number with respect to perturbations in the
initial values, and ‖λ‖L1 is the condition number with respect to perturbations of the
differential equation. We define

K(λ) = ‖λ(t)‖L1 + ‖λ(0)‖.(8)

Ignoring the high-order term, we have ‖∆g‖ < Kε. Further details on this form of the
condition number for ODEs can be found in [26]. Note that λ is a function determined
by the differential equation and the derived function. It can be computed by adjoint
sensitivity software. Details on the computation of λ can be found in [6, 7, 26, 27].

2.2. Error estimation for the solution. Our objective is to estimate ‖∆x(T )‖.
x(T ) is a vector, whereas in the last subsection g was a scalar function. A direct gen-
eralization of the method in section 2.1 would be to define every component of X as
a scalar derived function. But in that way we would have to solve a large adjoint
system. The computational cost would make this method impractical. Alternatively,

if we know ∆x(T ), we may define g(x) = [ ∆x(T )
‖∆x(T )‖ ]Tx. Then ‖∆g(x(T ))‖ = ‖∆x(T )‖.

Unfortunately, however, we do not have ∆x(T ). Thus we cannot directly apply the
method of section 2.1. However, if we allow our estimate to have a moderate rela-
tive error, we can use the small sample statistical method in combination with the
estimate for scalar functions derived in the previous subsection.

The small sample statistical method was originally proposed in [23]. It suits the
requirements of error estimation very well. Here we give the basic idea; details can
be found in [23].

For any vector l ∈ R
n, if z is selected uniformly and randomly from the unit

sphere Sn−1 in n dimensions, the expected value of |lT z| is given by

E(|lT z|) = ‖l‖En,
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where E1 = 1, E2 = 2
π , and for n > 2,

En =
1 · 3 · 5 · · · (n− 2)

2 · 4 · 6 · · · (n− 1)
for n odd,

En =
2

π
· 2 · 4 · 6 · · · (n− 2)

1 · 3 · 5 · · · (n− 1)
for n even.

En can be estimated by
√

2
π(n− 1

2 )
. We use ξ = |lT z|

En
to estimate ‖l‖. The estimate

satisfies

Pr

(
‖l‖
w

≤ ξ ≤ w‖l‖
)

≥ 1 − 2

πw
+ O

(
1

w2

)
,(9)

where Pr() denotes the probability. The bound does not depend on the vector l. The
proof for this result is based on the inner product distributions on Sn−1. Taking an
orthogonal rotation of l and z, we may select a coordinate system in which l is just a
scalar multiple of the vector e(1) = (1, 0, . . . , 0)T . This means that lT z = ‖l‖|z1|, where
z = (z1, . . . , zn)T . Inequality (9) is then obtained by the analysis of the distribution
of |z1| when z is uniformly and randomly distributed over the unit sphere Sn−1 in R

n.
For a more accurate estimate, we can use more orthogonal random vectors. Sup-

pose we have k orthogonal random vectors z1, z2, . . . , zk. Let

ηi = |lT zi|.

Then the estimate for ‖l‖ is given by

ξ(k) =
Ek

En

√
η2
1 + · · · + η2

k.(10)

Usually at most two or three random vectors are required in practice. The corre-
sponding probabilities satisfy (see [23])

Pr

(
‖l‖
w

≤ ξ(2) ≤ w‖l‖
)

≈ 1 − π

4w2
,

Pr

(
‖l‖
w

≤ ξ(3) ≤ w‖l‖
)

≈ 1 − 32

3π2w3
.

Table 1 gives the lower bounds on the probability that ξ(k) equals ‖l‖ to within
a factor of w. We comment that usually for the estimation of the error, only the
magnitude is of concern. For example, with w = 10, two random vectors can achieve
99% probability of accuracy to a factor of 10.

To estimate ‖e(T )‖, we first select a random vector z uniformly from the unit
sphere Sn−1. Then define g(x) = zTx. Solving for λz from{

λ̇z = −AT (t)λz,
λz(T ) = z,

(11)

the condition estimate is given by 1
En

K(λz). For the error estimate, we have

‖e(T )‖ ≈ 1

En
|zT e(T )| ≤ 1

En
K(λz)ε,(12)
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Table 1

Lower bounds on the probability that ξ(k) equals ‖l‖ to within a factor of w.

w Lower bound Lower bound Lower bound Lower bound
for ξ(1) for ξ(2) for ξ(3) for ξ(4)

3 0.7736 0.9156 0.9632 0.9831
5 0.8732 0.9691 0.9916 0.9976
10 0.9364 0.9922 0.9989 0.9998
100 0.9936 0.9999 1 − 10−5 1 − 10−7

where ≈ means a high probability for an accuracy to a factor of 10. For two orthogonal
random vectors z1 and z2, we solve the adjoint equation (11) twice to obtain λz1 and

λz2 . Then the condition number is given by E2

En
(K(λz1)

2+K(λz2)
2)

1
2 . Two orthogonal

random vectors yield an error estimate which is correct to within a factor of 10 with
99% probability.

Note that so far we have discussed error estimation only for linear ODE systems.
In this case, the coefficients of the adjoint system do not depend on the solution of
the original system. Thus we can solve the adjoint system separately. This is not true
for nonlinear ODE systems.

2.3. A posteriori error estimation for nonlinear ODEs. When the system
is nonlinear, the adjoint ODE depends on the solution to the original ODE system.
This requires numerically solving the ODE and storing an approximation to the solu-
tion so that it can be used later to determine the adjoint ODE. The reader is referred
to [7, 26] for details on how this can be accomplished efficiently. We note that if the
original ODE is not solved to sufficient accuracy, the adjoint solution and hence the
error estimate cannot be trusted. Hence the entire process may have to be iterated
several times for the bound to be absolutely trustworthy. Then it becomes an adaptive
algorithm [26, 27]. The additional storage is a drawback of this method.

Consider the ODE system {
ẋ = f(x, t),

x(0) = x0
(13)

and the perturbed system {
˙̃x = f(x̃, t) + r1(t),

x(0) = x0 + r2,
(14)

where ‖r1‖∞ < ε and ‖r2‖ < ε. As before, we define e = x− x̃. Then

ė = f(x, t) − f(x̃, t) + r1(t) = J(x̃, t)e + r3(x, x̃, t) + r1(t)(15)

with initial condition e(0) = r2, where J(x̃, t) is the Jacobian of f at x̃, and r3(x, x̃, t) =
f(x, t) − f(x̃, t) − J(x̃, t)(x− x̃). Assuming x̃(t) is close to x(t), we have r3(x, x̃, t) =
O(‖x− x̃‖2). Here we will assume that the stepsizes have been chosen so that the nu-
merical solution is close to the true solution. Then ‖r3(x, x̃, t)‖∞ < ε. The algorithm
of section 2.2 is then applied in the nonlinear case as follows.

Let the matrix function Φ(t) satisfy

{
Φ̇ = J(x̃, t)Φ,

Φ(0) = I.
(16)
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Then e(T ) =
∫ T

0
Φ(T )Φ−1(s)(r3(x, x̃, s) + r1(t))ds + Φ(T )r2. Thus

lT e(T ) =

∫ T

0

lTΦ(T )Φ−1(s)(r3(x, x̃, s) + r1(t))ds + lTΦ(T )r2.(17)

The adjoint ODE system is given by{
λ̇ = −J(x̃, t)Tλ,

λ(T ) = l.
(18)

The adjoint solution satisfies λT (s) = lTΦ(T )Φ−1(s) and λT (0) = lTΦ(T ). Thus

lT e(T ) =

∫ T

0

λT (s)(r3(x, x̃, s) + r1(s))ds + λT (0)r2,

yielding |lT e(T )| ≤ 2K(λ)ε. To estimate ‖e(T )‖, we use the small sample statistical
method as outlined in the previous subsection.

Remark 2.1. The key assumption here is that ‖r3(x, x̃, t)‖∞ <ε. Such an as-
sumption is necessary. For example, if the perturbed system were unrelated to the
original system, then there would be no way to give a reasonable estimate.

Remark 2.2. As pointed out in [12], an important problem for error estimation
is to choose a proper initial value for the adjoint system. The discussion in [12] leads
to a probabilistic lower bound for the estimate. Our method generates probabilistic
upper and lower bounds. The quality of the error estimation can be improved by
using more random vectors. But the analysis in section 2.2 shows that it is usually
sufficient to use only two or three random vectors. We should point out that for some
special problems, such as reaction-diffusion equations, the error tends to point in the
direction of the lowest few modes. Utilizing that information can lead to a better
error estimation as pointed out in [12].

3. The perturbation due to the numerical approximation. The key as-
sumption in our estimated bound on the global error from section 2 was that ‖r1‖∞,
‖r2‖, and ‖r3‖∞ are bounded by ε.1 Recall that r2 is the error of the initial value, and
r3 is bounded by O(‖x̃−x‖2). These perturbations can be reasonably expected to be
small. Thus our focus will be on the estimate of ‖r1‖∞. r1(t) was called “the pertur-
bation due to the numerical approximation” by C. W. Gear in his famous book [14,
sections 1.3.5 and 4.5.1]. In [14], Gear analyzed the situation of explicit Runge–Kutta
methods. His analysis can be easily generalized to implicit Runge–Kutta methods.
Here we focus our discussion on the analysis of multistep methods. We give an anal-
ysis for the variable-coefficient form of BDF methods in the following. The bound for
other multistep methods can be similarly derived.

Theorem 3.1. Suppose the function f is sufficiently smooth and satisfies the
Lipschitz condition ‖f(x) − f(y)‖ ≤ L‖x − y‖.2 Then the perturbation due to
the k-step BDF method is bounded by R

hmin
+ O(hk), where hmin and h both denote

the stepsize in the case of the fixed stepsize method, or hmin = mini hi, h = maxi hi

in the case of a variable stepsize method, and R is a bound on the roundoff error and
the error due to the Newton iteration.

1We note that a similar analysis is given in [10, 12] for the discontinuous Galerkin method, where
the errors are considered as the residual errors.

2This assumption is very tight. However, for the purpose of keeping the exposition simple, we
will use it here.
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Proof. The numerical solution is given by constructing the polynomial which
interpolates xn−i at the last k values and satisfies the ODE at tn,

p(tn−i) = xn−i, 1 ≤ i ≤ k,

p′(tn) = f(p(tn), tn),
(19)

and setting

xn = p(tn) + δn,

where ‖δn‖ ≤ R. Define a continuous form of the perturbed solution in [tn−1, tn] by
z(t) = p(t) + t−tn−1

tn−tn−1
δn. Then z(t) is differentiable and agrees with the numerical

solution at the mesh points z(tn) = xn. We now estimate the residual r(t) = z′(t) −
f(z(t), t).

Define the local solution which satisfies

u′(t) = f(u(t), t), u(tn−k) = xn−k, t ∈ [tn−k, tn].(20)

From the classical results we have xn−i−u(tn−i) = O(hk+1) for i = 0, . . . , k. Consider
two kth-order polynomials which satisfy

q(tn−i) = xn−i, 1 ≤ i ≤ k,
q(tn) = xn

and

s(tn−i) = u(tn−i), 1 ≤ i ≤ k,
s(tn) = u(tn).

It is easy to see that q(t) = p(t) since they coincide at k + 1 points. The polynomials
q(t) and s(t) are interpolated at the same mesh points but with different values which
satisfy xn−i − u(tn−i) = O(hk+1). Using the Lagrangian form, we have

q(t) − s(t) = O(hk+1), q′(t) − s′(t) = O(hk).(21)

For the residual r(t), we have

r(t) = z′(t) − f(z(t), t) − (u′(t) − f(u(t), t))
= z′(t) − f(z(t), t) − (s′(t) − f(s(t), t))

+ [(s′(t) − f(s(t), t)) − (u′(t) − f(u(t), t))].

Define d1(t) = p(t) − s(t) and d2(t) = s(t) − u(t). Then r(t) is given by

r(t) = d′1(t) + d′2(t) − (f(z(t), t) − f(s(t), t)) + (f(s(t), t) − f(u(t), t)) +
δn
hn

.

By the Lipschitz condition, ‖f(z(t), t)−f(s(t), t)‖ ≤ L‖d1(t)‖, ‖f(s(t), t)−f(u(t), t)‖ ≤
L‖d2(t)‖. Thus we need to estimate d1(t), d

′
1(t), d2(t), and d′2(t). By (21), we have

d1(t) = O(hk+1) and d′1(t) = O(hk). For d2(t) and d′2(t), using the divided difference
notation, u[tl] = u(tl),

u[tl, . . . , tl+i] =
u[tl+1, . . . , tl+i] − u[tl, . . . , tl+i−1]

tl+i − tl
,



368 YANG CAO AND LINDA PETZOLD

and Newton’s form of the interpolating polynomial,

s(t) = u[tn] + u[tn, tn−1](t− tn) + · · · + u[tn, . . . , tn−k]

k∏
i=0

(t− tn−i),

the interpolation error is given by

s(t) − u(t) = u[t, tn, . . . , tn−k]

k∏
i=0

(t− tn−i).

It is easy to show that x[t, tn, . . . , tn−k]≤C maxτ∈[tn−k,tn] ‖x(k+1)(τ)‖ and
d(x[t,tn,...,tn−k])

dt = C maxτ∈[tn−k,tn] ‖x(k+2)(τ)‖, where C is a constant and x(i)(t) =
dix(t)
dti . Thus we have

‖d2(t)‖ = O(hk+1), ‖d′2(t)‖ = O(hk).(22)

The magnitude of the residual r(t) = z′(t) − f(z(t), t) is then estimated by

‖r(t)‖ ≤ ‖d′1(t)‖ + ‖d′2(t)‖ + L(‖d1(t)‖ + ‖d2(t)‖) + R/hmin

= R/hmin + O(hk).

Remark 3.1. Assuming that in each step the errors due to roundoff and the
Newton iteration are small, we can neglect R. The global error is then given by

‖e(T )‖ = K(λ(t))‖r1(t)‖∞ ≤ CK(λ(t))hk.(23)

This is another formula for the famous result convergence = stability + consistency
and has been given in [12] for the discontinuous Galerkin method. Traditionally, the
stability constant is formulated in terms of eLT , where L is the Lipschitz constant for
f , and is well known to be too pessimistic. K(λ(t)) gives a more realistic estimate of
the condition of the system and thus makes global error control practically possible.

Remark 3.2. The leading term in O(hk) is an important concern for error control.
We need a computable number instead of the big O. From the above proof, we can see
that the leading term arises from d′1(t) and d′2(t). For d′1(t), the leading term arises
from the difference of p(t) and s(t) at the mesh points. For a constant stepsize method,
the classical local error estimate yields d1(tn−i) = [I−hβ0J ]−1Ck+1x

(k+1)hk+1, where
β0 is the coefficient of fn in the BDF method. In most practical implementations,
[I − hβ0J ]−1 is neglected, and x(k+1) is estimated during the computation. Let C0 =
Ck+1x

(k+1). Classical local error control chooses h so that C0h
k+1 < TOL. We can

use C0 to construct a leading term estimate for d′1(t). Rewriting the Lagrangian form
from which (21) was derived,

d1(t) =
∑
i

∏
j �=i

t− tn−j

tn−i − tn−j
d1(tn−i),

where d1(tn−i) is estimated by C0h
k+1. Thus the leading term of d′1(t) is estimated

by

d′1(t) ≈ C0

∑
i

∑
j �=i

∏
m�=i,j

t− tn−m

tn−i − tn−m

hk+1

tn−i − tn−j
.(24)



A POSTERIORI ERROR ESTIMATION FOR ODEs 369

For d′2(t), the leading term arises from the interpolation error. Using the Newton
form of the interpolation polynomial, we can write d′2(t) as

d′2(t) = u[t, tn, . . . , tn−k]
d

dt

k∏
i=0

(t− tn−i) + O(hk+1)

= u[t, tn, . . . , tn−k]
∑
i

∏
j �=i

(t− tn−i) + O(hk+1),

(25)

where u[t, tn, . . . , tn−k] is estimated by x(k+1)(τ)
(k+1)! . Thus the leading term of d′2(t) can

be estimated by

d′2(t) ≈
k∑

i=0

1

i + 1
x(k+1)(t)hk,(26)

where x(k+1)(t) is estimated during the computation. In the next section, we denote
the coefficient of the leading term by C.

4. Control of the global error. Global error control is expensive, but some-
times it is necessary. Traditionally, ODE solvers such as DASSL and DASPK [4],
VODE [5], DIFSUB [14], and RADAU5 [17] have controlled the local error. Because
of the expense, few codes have made an attempt to estimate or control the global
error. From the analysis in sections 2 and 3, we know that the condition number tells
us the stability of the ODE system. If the condition number is moderate, we will end
up with a small global error if we control the local error well. But if the condition
number is large, we could still have a large global error even if we control the local
error within a reasonable tolerance. A natural way to deal with this is to tighten the
local error tolerance to obtain a better solution. But we have no idea what the new
local error tolerance should be. The condition number provides a way to estimate
that.

Once we have obtained the adjoint solution λ(t), we can control the global error
by varying the local error tolerance. The simplest approach is to take K = K(λ(t))
and use the estimate

GTOL ≤ K · LTOL,(27)

where GTOL is the global error tolerance and LTOL is the tolerance which bounds
r1(t). For BDF methods, according to the previous section, we have the estimate
r1(tn) ≈ Chk

n+1. Thus if we are given GTOL, we can let LTOL = GTOL
K . To control

the global error, we choose the stepsize so that Chk
n+1 ≤ LTOL. Thus we choose

hn+1 ≤
(
GTOL

KC

) 1
k

.(28)

We should comment on the difference between this global error control and the original
local error control. Denote ltol as the tolerance for the local error control. Local
error control in a BDF code like DASSL [4] chooses hn+1 such that C0h

k+1
n+1 ≤ ltol.

Neglecting the difference between C0 and C, we may conclude that global error control
is similar to taking local error control with a local tolerance ltol = LTOL∗hn+1. This
criterion is not totally new. It was called “the criterion of error per unit step” in [30,
p. 97]. In the code ODE [30] which uses the Adams method, this criterion was used.



370 YANG CAO AND LINDA PETZOLD

This simple strategy does not use all the information we have already obtained.
If λ(t) varies with time, it would be more efficient to choose a larger LTOL when λ(t)
is smaller. It can be seen from the error estimate (6),

∆g =

∫ T

0

λ(s)r1(s)ds + λ(0)r2,

that when λ(s) is smaller, r1(s) can be larger. In this situation the final result is
not very sensitive to the local error at time s; thus we can loosen the error tolerance
locally. Supposing that r1(tn + τ) = Chk

n+1,
3 we choose the next stepsize to satisfy

∫ hn+1

0

λ(tn + τ)r1(tn + τ)dτ ≤ GTOL

T
hn+1.(29)

Taking λ(tn + τ) ≈ λ(tn), we have

λ(tn)Chk+1
n+1 ≤ GTOL

T
hn+1.

Thus the stepsize hn+1 is determined by

hn+1 ≤
(

GTOL

Tλ(tn)C

) 1
k

.(30)

As we have mentioned, this condition is similar to the local error control with ltol =
GTOL
Tλ(tn)hn+1. If λ(t) is a constant, this is the same as the strategy (28).

Here is the global error stepsize control algorithm with two orthogonal random
vectors.

Initialization. The user chooses an initial error tolerance GTOL for the inte-
gration time interval [0, T ]. Generate two orthogonal random vectors z1 and z2 on
Sn−1. Define g1 = zT1 x and g2 = ZT

2 x.
Step I. Solve the ODE (by DASPK) with a loose error tolerance. Store the solu-

tion. (The details of this part of the implementation can be found in the description
of the adjoint sensitivity analysis method and software DASPKADJOINT [7].)

Step II. Solve the adjoint equation (5) with initial value λ1(T ) = z1 and λ2(T ) =
z2. Store λ(t) = E2

En

√
λ2

1(t) + λ2
2(t) (at discrete points).

Step III. Solve the ODE with stepsize control (30).
Remark. If the requirement is to estimate and control the error of g(X(T )),

where g is of dimension m < n, when m is very small such as 1 or 2, the small sample
statistical method is not necessary. This situation has been discussed in [26, 27]. In
this case, one can just let λ(T ) = gTx and use the norm of λ(t). When m is also large,
in the initialization z is taken from Sm−1 and the functions g1 and g2 are defined as
g1 = zT1 g(x) and g2 = zT2 g(x). In Step II, the initial values for the adjoint equations
are taken as λ1(T ) = gTx z1 and λ2(T ) = gTx z2. En is also replaced by Em. With these
modifications, this method can provide error estimation and control of the global error
of a multidimensional derived function g.

3This is the “constant stepsize assumption” that is used in variable-stepsize multistep codes (see
[4, 5, 29]) when choosing the next stepsize. It is not strictly valid, but it leads to a simple formula
for choosing the next stepsize that has worked well for local error control.
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Table 2

Comparison of errors and steps for Example 1 with and without the global error control (30).
a = 1, y(0) = 10−4, T = 10, condition number K = 26217, y(T ) = 2.2.

Tol 10−1 10−2 10−3 10−4 10−5 10−6

Original error 2.2 6.7 10 1.35 0.2 0.045
DASPK steps 10 33 44 54 43 73

Global error error 0.01 4 × 10−4 1.6 × 10−4 2.3 × 10−6 2 × 10−7 2 × 10−7

control steps 49 81 98 146 196 355

Table 3

Comparison of errors and steps for Example 1 with and without the global error control (30).
a = −1, y(0) = 1, T = 1, condition number K = 0.6, y(T ) = 0.42.

Tol 10−1 10−2 10−3 10−4 10−5 10−6

Original error 0.05 0.01 2 × 10−4 9 × 10−6 6.3 × 10−6 8 × 10−7

DASPK steps 11 12 17 27 34 40

Global error error 0.03 4.8 × 10−4 2 × 10−4 1.8 × 10−6 2.5 × 10−7 3.4 × 10−8

control steps 12 17 24 32 42 52

Table 4

Comparison of errors and steps for Example 1 with and without the global error control (30).
a = −20, y(0) = 1, T = 1, condition number K = 0.05, y(T ) = 2.06 × 10−9.

Tol 10−9 10−10 10−11 10−12

Original error 6.3 × 10−11 3.2 × 10−11 3.7 × 10−12 5.8 × 10−13

DASPK steps 288 588 557 776

Global error error 1.1 × 10−10 1.8 × 10−12 8.3 × 10−13 7.7 × 10−14

control steps 134 225 263 416

5. Numerical results. The examples in this section were mostly chosen from
[10]. The software used for the experiments was DASPK3.0 [4] and its adjoint sensi-
tivity analysis tool DASPKADJOINT [7]. For each example we computed the con-
dition number, and compared the final error for the original DASPK code with our
modified DASPK code after applying global error control (30), for several different
error tolerances. Here the tolerance for the original DASPK is the local tolerance,
and the tolerance for the modified DASPK code is the global tolerance. In both codes
the tolerances are the absolute tolerance.

Example 1 (scalar, linear ODE). Consider the ODE ẏ = ay. We give the results
for a = 1 (unstable), a = −1 (stable), and a = −20 (stiff). For the example when
a = 1, we took the initial condition to be y(0) = 10−4 and the final time T = 10. The
numerical results are listed in Table 2. For the example when a = −1 and a = −20,
we took the initial condition to be y(0) = 1 and the final time T = 1. The numerical
results are listed in Tables 3 and 4.

Example 2 (nonlinear with changing stability). Consider ẏ+(0.25+sinπt)y2 = 0,
y(0) = 1, with solution y(t) = π/(π + 1 + 0.25πt− cosπt), and final time T = 1. The
numerical results are listed in Table 5.

Example 3 (unstable system). Consider

⎧⎪⎪⎨
⎪⎪⎩

ẏ1 − 1
2(1 + t)

y1 + 2ty2 = 0, t > 0,

ẏ2 − 1
2(1 + t)

y2 − 2ty1 = 0, t > 0,

y1(0) = 1, y2(0) = 0.
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Table 5

Comparison of errors and steps for Example 2 with and without the global error control (30).
y(0) = 1, T = 1, condition number K = 0.6, y(T ) = 0.53.

Tol 10−1 10−2 10−3 10−4 10−5 10−6

Original error 0.1 0.012 0.001 1 × 10−4 6 × 10−5 3 × 10−7

DASPK steps 11 15 22 29 43 56

Global error error 0.04 4 × 10−4 2 × 10−4 3 × 10−6 3 × 10−6 2 × 10−7

control steps 12 20 29 42 63 81

Table 6

Comparison of errors and steps for Example 4 with and without the global error control (30).
T = 10, condition number K = 19.36, y(T ) = (2.86,−1.68).

Tol 10−1 10−2 10−3 10−4 10−5 10−6

Original error(y1) 2.8 0.02 0.25 8 × 10−3 1 × 10−3 5.7 × 10−5

DASPK error(y2) 1.6 0.8 0.09 0.03 0.005 1.3 × 10−3

steps 333 294 422 568 683 940

Global error(y1) 0.04 3 × 10−3 3 × 10−4 9 × 10−6 3.7 × 10−6 6 × 10−7

error error(y2) 0.03 5 × 10−3 1 × 10−3 1.5 × 10−4 1.5 × 10−5 1.5 × 10−6

control steps 529 767 1002 1472 2275 3613

Table 7

Comparison of errors and steps for Example 5 with and without the global error control (30).
T = 10, condition number K = 12553, y(T ) = (2.2,−2.2).

Tol 10−1 10−2 10−3 10−4 10−5 10−6

Original error(y1) 2.2 6.8 10 1.3 0.2 0.05

DASPK error(y2) 2.2 6.8 10 1.3 0.2 0.05
steps 10 33 44 54 48 73

Global error(y1) 0.08 3 × 10−3 1 × 10−3 1 × 10−5 3 × 10−6 3.5 × 10−7

error error(y2) 0.08 3 × 10−3 1 × 10−3 1 × 10−5 3 × 10−6 3.5 × 10−7

control steps 36 53 85 155 192 291

The solution is {
y1(t) = (1 + t)

1
2 cos(t2),

y2(t) = (1 + t)
1
2 sin(t2).

We took the final time to be T = 10. The numerical results are listed in Table 6.
Example 4 (mixed system with unstable mode). Consider ẏ + ( 0 −1

−1 0 )y = 0,

y(0) = ( 2 × 10−4

0 ), with solution y1(t) = 10−4(et + e−t), y2(t) = 10−4(e−t − et), and

final time T = 10. The numerical results are listed in Table 7.
From the above examples, we can see that the global error control nearly always

generates errors below the tolerances. When the system has an unstable mode (for
example, in Example 1 with a = 1 and Examples 3 and 4), global error control yields
a much more accurate solution than the original DASPK. When the system is mildly
stable (for example, in Example 1 with a = −1), the original DASPK has already done
a good job; thus the global error control does not give much improvement. For stiff
systems (for example, in Example 1 with a = −20), the global error control produces
an acceptable solution with fewer time steps than the original DASPK by recognizing
that the condition number is small. One might argue that even in the unstable cases,
we can simply tighten the error tolerances to improve the final result. We can always
do that, but we do not know how much we should change the tolerance. The global
error control does that automatically.
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