
Slow Scale Tau-leaping Method ∗

Yang Cao † Linda Petzold ‡

Abstract

For chemical systems involving both fast and slow scales, stiffness presents chal-
lenges for efficient stochastic simulation. Two different avenues have been explored
to solve this problem. One is the slow-scale stochastic simulation (ssSSA) based on
the stochastic partial equilibrium assumption. The other is the tau-leaping method.
In this paper we propose a new algorithm, the slow-scale tau-leaping method, which
combines some of the best features of these two methods. Numerical experiments are
presented which illustrate the effectiveness of this approach.

1 Introduction

In recent years, concerns over stochastic effects resulting from the small numbers of certain
reactant molecules in microscopic systems1–4 have called for accurate and efficient stochastic
simulation methods. The fundamental simulation method is Gillespie’s Stochastic Simula-
tion Algorithm (SSA).5,6 Although progress7,8 has been made to improve the efficiency of
implementations of the SSA, as an exact procedure that simulates every reaction, it is nec-
essarily inefficient for most realistic problems. The main reason for the low efficiency of the
SSA is the multiscale nature of the underlying problem.

The multiscale problem in biochemical systems usually has two aspects. The first is the
timescale. Some reactions occur much faster than others. Often the fast reactions quickly
reach a stable state and the dynamics of the system is driven by the slow reactions. The
SSA simulates every reaction and thus puts a great deal of effort into the more frequently
occurring fast reactions, even though they do not contribute much to the dynamics and
stochasticity of the system. This multiscale problem in time is known in the deterministic
regime as stiffness.9 Second, the populations of different species are of widely different
magnitude. Some species are present with a large population while other species have only
very few copies in a cell. Species with a small population should be modeled by a discrete
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stochastic process, whereas species with a large population can be efficiently modeled by a
deterministic ordinary differential equation (ODE). SSA treats all of the species as discrete
stochastic processes.

A number of algorithms have been proposed to solve the multiscale problem in stochastic
simulation of chemical systems. One of the most promising approaches is the tau-leaping
method.10 By using a Poisson approximation, the tau-leaping method can ”leap over” many
reactions and approximate the stochastic behavior of the system very well. The tau-leaping
method makes a natural connection between the SSA in the discrete stochastic regime and the
explicit Euler method applied to the chemical Langevin equation in the continuous stochastic
regime, and to the reaction rate equations (RREs) in the continuous deterministic regime.
In this sense, the tau-leaping method is ideal for multiscale stochastic simulation. However,
the original explicit tau-leaping method is not efficient when stiffness is present. Implicit
tau-leaping methods have been proposed to solve this problem, in particular the implicit
tau-leaping method11 and the trapezoidal tau-leaping method.12 Convergence and stabil-
ity for fixed stepsizes of the explicit and implicit tau-leaping methods have been studied.13

For efficient implementation, algorithms for automatic selection of the stepsize τ has been
proposed.14,15 Moreover, recently an adaptive method15 has been introduced that automat-
ically switches between implicit and explicit tau-leaping methods, based on the comparison
of stepsizes selected for both methods. Nonetheless, tau-leaping methods still have difficulty
in effectively handling the situation when both multiscale features present together, partic-
ularly when a species with a small population is involved in a fast reaction channel. The
latter situation also results in low efficiency for hybrid methods.16,17

A typical system of this type can be illustrate by the following example. Consider the
system composed of fast reversible reaction channels

S1 + S2

c1


c2

S3, (1)

and slow reaction channel
S1 + S4

c3−→ S5 + S1, (2)

where S1 is of a small population but S2 and S3 are of large populations. Both reaction
channels in (1) are much faster than the reaction channel (2). The most extreme case is
when the state of S1 switches between zero and one. This situation actually occurs in the
stochastic simulation of the heat shock response (HSR) model,18,19 in which the sigma factor
σ32, which plays a crucial role in the HSR of E. Coli, has a small population but is involved
in fast reactions. Due to the low population, currently all tau-leaping methods must switch
to SSA to simulate the corresponding reaction channel, which makes the simulation very
slow.

An efficient way to deal with stiffness in the accelerated simulation of discrete stochastic
systems is to make use of a stochastic version of the quasi steady state or partial equilibrium
assumptions.20–22 In the deterministic case, the quasi steady state approximation assumes
that on the time scale of interest, the instantaneous rates of change for some intermediate
species are approximately equal to zero. The partial equilibrium approximation assumes that
some fast reaction channels are always in equilibrium. In many cases these two assumptions
are equivalent. The quasi-steady state approximation focuses on the state variables, while
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the partial equilibrium approximation concentrates on the reaction channels. The quasi
steady state approximation was extended to the stochastic quasi steady state approximation
(SQSSA),23 while the partial equilibrium approximation was extended to the slow-scale SSA
method.24 Both were shown to be very effective in accelerating stochastic simulation. Since
they are very similar, we will focus on the partial equilibrium approximation.

In the case of a system with (1) and (2), tau-leaping methods are not efficient but slow-
scale SSA can be very efficient.24 On the other hand, tau-leaping methods are advantageous
over SSA in some other situations: they can more easily handle problems involving a mul-
tiplicity of different time scales. It would be ideal to combine the best features of both
methods to form a slow-scale tau-leaping method. An important step has to be taken before
we can do that. For either the slow-scale SSA or slow-scale tau-leaping method, we must
design an algorithm to automatically detect the ”fast but stable” reaction channels. Here we
present a novel idea based on partitioning of the reaction channels into reversible reaction
groups. Note that this strategy is designed for automatic partitioning. If one can pre-select
a fast subsystem based on preknowledge of the system, the slow-scale tau-leaping method
can be applied even more efficiently.

The outline of this paper is as follows. In Section 2 we briefly review the SSA, tau-leaping
methods and the slow-scale SSA method. In Section 3 we introduce a general partitioning
strategy. In Section 4 the methods for detecting equilibrium and estimating relaxation time
are discussed for reversible reaction channels. The slow-scale tau-leaping method is described
in Section 5, and numerical experiments are presented in Section 6.

2 Background: Stochastic Simulation Algorithms for

Chemical Kinetics

2.1 SSA and Tau-leaping Methods

Suppose the system involves N molecular species {S1, . . ., SN}. The state vector is denoted
by X(t) = (X1(t), . . . , XN(t)), where Xi(t) is the number of molecules of species Si at time
t. M reaction channels {R1, . . . , RM} are involved in the system. Assume that the system is
well-stirred and in thermal equilibrium. The dynamics of reaction channel Rj is characterized
by the propensity function aj and by the state change vector νj = (ν1j , . . . , νNj): aj(x)dt ia
the probability that one Rj reaction will occur in the next infinitesimal time interval [t, t+dt),
and νij denotes the change in the Si molecular population induced by one Rj reaction.

The dynamics of the system can be simulated by the SSA method.5,6 With X(t) = x, let
a0(x) =

∑M

j=1 aj(x). On each step, SSA generates two random numbers r1 and r2 in U(0, 1),
the uniform distribution on the interval (0, 1). The time for the next reaction to occur is
given by t + τ , where τ is given by

τ =
1

a0(x)
log(

1

r1

). (3)

The index j for the next reaction is given by the smallest integer satisfying

j
∑

l=1

al(x) > r2a0(x). (4)
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The system states are updated by X(t + τ) = x + νj. The simulation proceeds to the next
occurring time, until it reaches the final time.

Because it must proceed one reaction at a time, the SSA can be very slow for many
practical problems. Gillespie10 proposed a scheme called tau-leaping to accelerate the SSA.
The basic idea of the tau-leaping method is to ask the question: How many times does each
reaction channel fire in each subinterval? In each step, the tau-leaping method can proceed
with many reactions. This is achieved at the cost of some accuracy. Define

Kj(τ ; x, t) = the number of times, given X(t) = x, that reaction channel Rj

will fire in the time interval [t, t + τ) (j = 1, . . . , M).
(5)

Tau-leaping assumes the Leap Condition: For the current state x, require τ to be small
enough that the change in the state during [t, t+τ) will be so small that no propensity function
will suffer an appreciable change in its value. Kj(τ ; x, t) is then well approximated by the
Poisson random variable with mean and variance aj(x)τ ,

Kj(τ ; x, t) = P (aj(x)τ) (j = 1, . . . , M). (6)

The basic tau-leaping method proceeds as follows: Choose a value for τ that satisfies the
Leap Condition. Generate for each j = 1, . . . , M a sample value kj of the Poisson random
variable P (aj(x)τ), and update the state by

X(t + τ) = x +

M
∑

j=1

kjνj. (7)

If the populations of all reactant species are sufficiently large, the Poisson random variable
P (aj(x)τ) can be approximated by its mean aj(x)τ , and the basic (explicit) tau-leaping
formula limits to the explicit Euler formula for the deterministic reaction rate equation.

2.2 Nonnegative Poisson Tau-Leaping and Tau Selection Formulas

It has been found that when some consumed reactant species are present in small numbers,
the original explicit tau-leaping method may drive some reactant populations negative. Sev-
eral strategies have been proposed to circumvent this problem. Tian and Burrage,25 and
independently Chatterjee et al.,26 proposed to replace the unbounded Poisson random num-
bers Kj with bounded binomial random numbers. It turns out that it is usually not the
unboundedness of the Poisson kj’s that produces negative populations, but rather the lack
of coordination in tau-leaping between different reaction channels that separately decrease
the population of a common species. An improvement27 to the binomial tau-leaping has
been proposed to use multinomial random numbers to generate Kj values. Using the origi-
nal Poisson tau-leaping, Cao et al.28 have also proposed a different approach that resolves
this difficulty and establishes a smooth connection with the SSA.

The Nonnegative Poisson tau-leaping algorithm28 is based on the fact that negative pop-
ulations typically arise from multiple firings of reactions that are only a few firings away from
consuming all the molecules of one of their reactants. To focus on those reaction channels,
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the modified tau-leaping algorithm introduces a second control parameter nc, a positive in-
teger that is usually set somewhere between 5 and 20. Any reaction channel with a positive
propensity function that is currently within nc firings of exhausting one of its reactants is
then classified as a critical reaction. The modified algorithm chooses τ in such a way that no
more than one firing of all the critical reactions can occur during the leap. Essentially, the
algorithm simulates the critical reactions using an adapted (and thus not quite exact) version
of the SSA, and the remaining non-critical reactions using the previously described Poisson
tau-leaping method. Since no more than one firing of a critical reaction can occur during
a leap, the probability of producing a negative population is reduced to nearly zero. On
those rare occasions when a negative population does arise (from firings of some non-critical
reaction), the leap can simply be rejected and repeated with τ reduced by half, or else the
simulation can be started over using a larger value for nc. The details can be found in Cao
et al.28

In order to implement the tau-leaping method efficiently, we need to have a procedure
to quickly determine the largest value of τ that is compatible with the Leap Condition.
Gillespie10 first formulated the Leap Condition. Later Gillespie and Petzold29 improved the
formula. In a more recent work, Cao et al.14 proposed an improvement of the tau selection
formula. The new tau-selection formula is given by

τ = min
i∈Irs

{

max{εxi/gi, 1}

|µi(x)|
,
max{εxi/gi, 1}

2

σ2
i (x)

}

, (8)

where Irs is the set of indices of all reactant species, gi is given by a formula which guarantees
that bounding the relative change of states is sufficient for bounding the relative change of
propensity functions, and µi, σi are given by

µi(x) ,
∑

j∈Jncr

νijaj(x), ∀i ∈ Irs, (9a)

σ2
i (x) ,

∑

j∈Jncr

ν2
ijaj(x), ∀i ∈ Irs, (9b)

where Jncr is the set of indices of all non-critical reactions.

2.3 Slow-Scale SSA

An efficient approach to stochastic simulation of stiff chemical systems is the slow-scale
SSA24 (ssSSA). The ssSSA was inspired by the well-known Michaelis-Menten approximation
in deterministic chemical kinetics. The algorithm proceeds in a series of steps, the first of
which is to make a provisional partitioning of the reaction channels R = {R1, . . . , RM} into
fast and slow subsets, Rf and Rs. Assigned to Rf are those reactions whose propensity
functions tend to have the largest values. All the other reactions are assigned to Rs. The
second step is to partition the species S = {S1, . . . , SN} into fast and slow subsets, Sf and Ss,
according to the following rule: Any species whose population gets changed by a fast reaction
is classified as a fast species; all other species (if there are any) are classified as slow. Note
the subtle but important asymmetry that a fast species can get changed by a slow reaction,
but a slow species cannot get changed by a fast reaction. The third step defines the virtual

5



fast process X̂f(t) as the fast species populations evolving under only the fast reactions
Rf ; i.e., X̂f(t) is Xf(t) with all the slow reactions switched off. The virtual fast process
X̂f(t) is a Markov process, whereas the real fast process Xf(t) is generally non-Markovian,
and hence practically intractable. Next we require that two stochastic stiffness conditions
be satisfied: First, X̂f(t) must be stable, in that it approaches as t −→ ∞ a well-defined
time-independent random variable X̂f(∞). Second, the limit X̂f (t) −→ X̂f(∞) must be
effectively accomplished in a time that is small compared with the expected time to the next
slow reaction. This is a more precise specification of the degree of separation that must exist
between the timescales of the fast and slow reactions. If these two stiffness conditions are
satisfied, then our original classification of the fast reactions is deemed acceptable;

With the stochastic stiffness conditions satisfied, we now invoke the slow-scale approxima-
tion. The slow-scale approximation states, in essence, that we can ignore the fast reactions
and simulate the system one slow reaction at a time, provided we replace the propensity
function of each slow reaction by its average with respect to the asymptotic virtual fast
process X̂f(∞). More precisely, if P̂ (yf ,∞|xf , xs) is the probability that X̂f (∞) = yf given
that X(t) = (xf , xs), then the propensity function as

j(x
f , xs) of each slow reaction Rs

j at time
t can be approximated on the timescale of the slow reactions by

ās
j(x

f , xs) =
∑

yf

P̂ (yf ,∞|xf , xs)as
j(y

f , xs). (10)

The ssSSA thus proceeds by simulating, in the manner of the SSA, the slow reactions using
the propensity functions (10) and ignoring the fast reactions. A number of different ap-
proaches have been proposed to implement ssSSA (how the averages (10) are computed and
how the fast-species populations are generated). The ssSSA has been successfully applied to
a number of simple stiff systems, as well to the prototypical Michaelis-Menten system that
is so ubiquitous in enzymatic reactions. These applications showed increases in simulation
speed over the exact SSA of two to three orders of magnitude, with no perceptible loss of
simulation accuracy.

3 Partitioning of Reaction Channels

Important questions still remain open for the slow-scale SSA. According to the analysis,
the success of the slow-scale SSA depends on the partial equilibrium assumption and well
separated reaction scales, which can be characterized by the relaxation time. A natural
strategy to find the ”fast and stable” reaction channel is to take two steps: First, check
if some reaction channels are in equilibrium; second, check if the relaxation time for these
reaction channels are much smaller than the reaction time for other reaction channels. Thus
two fundamental questions arise

1. How should we determine whether or not a reaction group is in equilibrium?

2. How should we calculate the relaxation time if the reaction group is in equilibrium?

These two questions could be very complicated in general. But note that in many biochemical
systems, partial equilibrium is reached in reversible reaction pairs based on the detailed
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balance assumption. In this paper we will focus our analysis on reversible reaction channels
and propose a simulation strategy based on that. Note that partial equilibrium could be
reached in realistic problems even the detailed balance assumption is not satisfied. Then the
method introduced here is not directly applicable.

Before working on the details for the reversible reaction channels, we partition all the
reaction channels into groups. Each pair of reversible reaction channels is an individual
reaction group. Irreversible reaction channels are put into another big reaction group. Thus
in most cases each group consists of only a pair of reversible reaction channels. Note that this
partitioning strategy allows automatic detection of the equilibrium state. In some special
cases, one may put more than two reaction channels into a reaction group. In this paper we
will discuss only the group with only a pair of reversible reaction channels. In the following
we will use the notations below.

Let Gj denote the reaction group j and Mj denote the number of reaction channels in
group Gj. Let ajl denote the corresponding propensity function of the reaction channel l in
Gj and aj be the sum of all the propensities in group Gj. Thus

aj =

Mj
∑

l=1

ajl. (11)

For a reaction group Gj composed of only a pair of reversible reaction channels, Mj = 2.
Since there are only two reaction channels in this group, we can simplify the notation. We
will denote the forward propensity function as aj+(x) and the backward propensity function
as aj−(x). Thus

aj(x) = aj+(x) + aj−(x). (12)

For the two reaction directions, the state change vectors are νj and −νj , where νj is the state
change vector for the forward reaction channel.

Why group reversible reaction channels together? Consider the reversible reaction chan-
nels (1). Suppose that S1 presents with a very small population between 0 and 1, but S2 and
S3 present with large populations. It is natural to use the propensities of the two reaction
channels to measure the fast or slow scale. However, it will be very confusing if we consider
the reversible reaction channels separately. Suppose we use a threshold of the propensities
to decide whether or not they are fast. When X1 = 0, a+ = 0, the forward reaction will be
taken as a slow reaction channel. But when X1 = 1, a+ is large. It will then be taken as a
fast reaction channel. As this pair of fast reversible reactions fire frequently, the correspond-
ing partitioning will keep changing. This problem can be easily solved if we consider the
reversible reaction channels together. This group is considered fast if its propensity aj(x) is
large.

The scales of a system are then determined by the magnitude of the aj’s. Focusing on
the fast reaction groups, the following situations are possible:

1. The reaction group is not in equilibrium and all the involved species present with large
population. In this case, reactions in this group will be simulated by the tau-leaping
method, which allows to leap with a relatively large τ .
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2. The reaction group is not in equilibrium and at least one of the involved species presents
with a small population. Then reactions in this group should be simulated by SSA.
But since this reaction channel is fast, this subgroup will quickly reach equilibrium.

3. The reaction group is in the equilibrium state. Then we should estimate the relaxation
time and compare it with the possible τ value allowed by the non-equilibrium reaction
groups to decide if we can apply the partial equilibrium assumption for this group. If
that is the case, we can apply the slow scale tau-leaping/SSA to simulate the other
reaction groups.

In the last case, we need to derive the algorithms to detect the equilibrium state and
measure the relaxation time.

4 Reversible Reaction Channels

4.1 Partial Equilibrium

To detect equilibrium for a general reaction group can be very complicated. However for a
group consisting of only a pair of reversible reaction channels, it is much easier.

A straightforward method follows the equilibrium condition in the deterministic regime.
If aj+(x) ≈ aj−(x), then this pair can be considered in equilibrium. This can be formulated
as

|aj+(x) − aj−(x)| < εaj(x), (13)

where ε is a small positive real number. However, the situation in the stochastic regime can
be more complicated. Since the state variables take only integer values, in some equilibrium
states, (13) will never be satisfied.

Here we propose to add a simple mechanism upon the failure of (13) to detect equilibrium
by keeping track of the expected reaction direction (ERD). There are two possible reaction
directions for a pair of reversible reactions: the forward direction (+) and the backward
direction (-). We can determine the ERD by comparing the propensities of the forward
and backward reactions. For example, for a reaction group Gj with a pair of reversible
reaction channels, let the corresponding propensity functions be given by aj+(x) and aj−(x).
If aj+(x(t)) > aj−(x(t)), the propensities are in favor of the forward direction. The ERD is
then forward (+). Otherwise it is backward (-). Now consider only the firing of this pair of
reaction channels. Suppose the reactions fired in the expected direction. If after one step
(in the SSA this would correspond to firing one reaction; in tau-leaping, many reactions can
occur during one tau-leaping step) the ERD changes, then this pair of reversible reactions
should also be considered in dynamic equilibrium. If aj+(x(t)) > aj−(x(t)), the condition
can be formulated as

aj+(x(t + τ)) < aj−(x(t + τ)). (14)

Note that condition (14) is similar to the condition (6-4-22) in Ref.30 (page 438). If a species
with small population is involved and thus SSA is required for this group, the condition (14)
can be simply written as

aj+(x + νj) < aj−(x + νj). (15)
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Equation (15) presents a practical condition for dynamic equilibrium in the discrete
regime. However, this condition can be too strict when all involved species are present with
a relatively large population. As long as the population of any species does not suffer a
substantial change, multiple SSA steps (one tau-leaping step) should be allowed. If the
ERD changes after one tau-leaping step, the subgroup should still be considered in dynamic
equilibrium. To formulate this condition, the first step is to select the length sj of one tau-
leaping step for this pair Gj of reversible reactions. Note that sj is not a τ value we use
to run the simulation, but an estimate of the time interval that, if the reversible reaction
channels in group Gj fire by the expected values, the populations of all species in group Gj

will not suffer a substantial change. For a pair of reversible reactions, if one of the reactions
is critical, we allow only one SSA step in the expected reaction direction and use (15) to
determine if it is in dynamic equilibrium. Otherwise, both reactions are not critical reactions.
Following a similar analysis in Cao et al.,14 sj can be given by

sj = min
i∈Irs,j

max{εxi, 1}

|(aj+(x) − aj−(x))νj,i|
, (16)

where Irs,j is the set of indices of all reactant species and νj,i is the i-th component of the
state change vector νj in group Gj.

After sj is determined by (16), x(t + sj) can be estimated by taking the expected values
for the numbers of firings for both reaction directions. Then we have

n̂j = max (1, [(aj+(x) − aj−(x))sj]) , (17)

where [y] represents the largest integer that is smaller than y. n̂j thus estimates the average
effect of the reversible reaction channels during the next time interval of sj. The condition
(14) becomes

aj+(x + n̂jνj) < aj−(x + n̂jνj). (18)

A similar formula can be given if aj+(x(t)) < aj−(x(t)). This is a straightforward way
to detect the equilibrium in the discrete stochastic regime, but more expensive than (13) in
the continuous deterministic regime. For efficiency considerations, we check condition (13)
first. If it is satisfied, the group is deemed to be in equilibrium. If it fails, we then check
condition (14).

4.2 Relaxation Time

If some reaction channels are in equilibrium, according to the analysis of slow-scale SSA24

an important criteria to decide whether or not we can neglect the stochasticity of these
reaction channels is to see if they are fast enough so that, after a small fluctuation, they
are able to resume equilibrium before any slow reaction fires. To verify that condition, we
should compare the relaxation time of these fast reaction channels with the τ value given
by the other non-equilibrium reaction channels using the tau-leaping method or the SSA
method. In order to do that, we need to be able to efficiently calculate the relaxation
time. In general this is a hard task. For example, studies about mean relaxation time31 for a
general stochastic system can lead to equations whose solution could be even more expensive
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(we have to solve it for every slow-scale step) than directly simulating the system by tau-
leaping/SSA. A simple algorithm is needed for practical purposes. When the equilibrium is
between a pair of reversible reaction channels, we propose the following.

We can measure the relaxation time by estimating how fast the mean values change back
to the equilibrium state after a small perturbation. This can be done through deterministic
analysis. Suppose a group with a pair of reversible reaction channels is close to equilibrium.
We formulate the reaction rate equations only for this pair of reaction channels and get

ẋ(t) = (aj+(x) − aj−(x))νj. (19)

Suppose x∗
j(t) is the local equilibrium state for the group Gj. Linearizing (19), we obtain

ėj(t) = νj[
∂aj+(x)

∂x
−

∂aj−(x)

∂x
]T e(t), (20)

where ej(t) = x(t) − x∗
j(t), The relaxation rate is determined by the eigenvalues of the

matrix J = νj[
∂aj+(x)

∂x
−

∂aj−(x)

∂x
]T . It is easy to show that the eigenvalues of J are either 0

or λj(x) = [
∂aj+(x)

∂x
−

∂aj−(x)

∂x
]T νj. Note that λj(x) is always less than 0. (The state change

vector νj takes 0 or a negative value for reactants and a positive value for products for any
reaction.) Thus e(t) will damp to 0 with a relaxation rate given by |λj(x)|. The relaxation
time is then characterized by τj,relax = 1

|λj(x)|
.

Example 1: The Fast Reversible Isomerization

One of the simplest stable fast processes arises from the reversible isomerization,

S1

c1


c2

S2. (21)

We have
a+(x) = c1x1, a−(x) = c2x2,

and ν = (−1 1)T . Thus we obtain the eigenvalue of J as

λ = [
∂a+(x)

∂x
−

∂a−(x)

∂x
]T ν = −(c1 + c2). (22)

The relaxation rate is then given by |λ| = (c1 + c2), and the relaxation time can be charac-
terized by 1

c1+c2
. This result matches with the analysis in Cao et al.24

Example 2: The Enzyme-Substrate System

The reversible reaction pair in (1) often appears in the enzyme-substrate system. We
have

a+(x) = c1x1x2, a−(x) = c2x3,

and ν = (−1 − 1 1)T . We can calculate the eigenvalue

λ = −(c1(x1 + x2) + c2), (23)

and obtain the relaxation rate as |λ| = c1(x1 + x2) + c2. The relaxation time is then
characterized by 1

c1(x1+x2)+c2
. This result is very close to the previous analysis32 as well.

If we have a hybrid system with many reversible reaction channels, how should we cal-
culate the relaxation time? We can prove that the relaxation time of such a hybrid system
can be estimated by the longest relaxation time of all subsystems.
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Theorem 4.1 The relaxation time of a hybrid system is bounded by the largest relaxation
time of all subsystems.

The proof is given in the Appendix. Thus if we have a virtual fast process that consists of
many subgroups, we can calculate the relaxation time for each subgroup and then take the
maximum as the relaxation time for the virtual fast process.

5 The Slow-Scale Tau-Leaping Algorithm

With the mechanisms to partition the reaction groups, detect the equilibrium and measure
the relaxation time, we have an automatic method to implement the slow-scale SSA. Now
we are ready to implement the adaptive slow-scale tau-leaping algorithm. Suppose we have
partitioned the reaction channels into subgroups, G1, . . . , Gm, where each Gj is composed of
only a pair of reversible reaction channels, except possibly for a few user-defined subgroups.
Preknowledge of the system is certainly helpful for the partitioning process. Note that too
many subgroups can reduce the efficiency. We always would like to construct subgroups
for fast reversible reactions. For slow reactions, we can simply put them together with the
irreversible reactions into a big subgroup whose reactions are not checked for equilibrium.
The algorithm proceeds as follows.

The slow-scale tau-leaping algorithm:

1. Calculate ajl for each reaction channel l in each subgroup Gj.

2. For each subgroup, determine whether it is in the partial equilibrium state using con-
ditions (13) and (14).

3. For all subgroups Gj that are not in partial equilibrium, calculate the corresponding
tau-leaping stepsize τ using the tau-selection procedure introduced in Cao et al.14

4. For each subgroup Gj that is in partial equilibrium, calculate τj,relax. Then compare
τj,relax with τ . If τj,relax << τ , this subgroup will be sorted into the set of fast processes.
Otherwise we sort this subgroup into the set of slow processes. Recalculate the τ
value for the newly updated slow processes. When this process is done, we have
τrelax = max

{j in virtual fast process}{τj,relax} and still τrelax << τ .

5. Simulate this step. First, we relax the system so that all the fast and equilibrium
reaction channels quickly reach the partial equilibrium state. The procedure to force
the relaxation is to use a stiff formula such as the implicit Euler method to simulate the
RREs given by only the virtual fast process. The time for the implicit Euler method
is τrelax. Then we recalculate the propensities of the slow-scale reaction channels and
run the adaptive tau-leaping/SSA method14,28 for them.

Note that in mass action kinetics, a pair of reversible reactions can occur in a small
number of different structures. The most common structure is the subsystem (1). Then
there are other subsystems like (21) or (26) that we will see in the numerical example. We
can formulate the algebra of the equilibrium and relaxation time for each type following the
analysis in Section 4. That makes the implementation much faster.
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6 Numerical Experiments

We tested the slow-scale tau-leaping method on two example problems. All of the numerical
experiments were implemented with a modified version of the StochKit33 software package
on a .

Example 1: Simple Reactions

This is the example system with reaction channels (1) and (2). We rewrite them as

S1 + S2

c1


c2

S3,

S1 + S4
c3−→ S5 + S1,

(24)

where parameters c1 = 104, c2 = 103, c3 = 1.
We simulated the system using the original SSA, slow-scale SSA and slow-scale tau-

leaping method with ε = 0.03 from t0 = 0 to Tf = 1 under the initial condition x1 = 0,
x2 = x3 = 103, x4 = 103 and x5 = 0. The ensembles generated by both the slow-scale SSA
and slow-scale tau-leaping give very accurate distribution compared to the ensemble given
by the full SSA (not shown as this is a very simple example.) For an ensemble of 10, 000
simulations, it took 9, 750 seconds CPU time for the the original SSA, 0.628 second CPU time
for the the slow-scale SSA, and 0.715 second CPU time for the slow-scale tau-leaping method.
Both the slow-scale SSA and slow-scale tau-leaping method show great advantage over the
original SSA. For this simple system it seems that slow-scale tau-leaping is comparable with
the slow-scale SSA. However, if the population increases further, the slow-scale tau-leaping
method will show efficiency advantage.

To verify that, we simulated the above system using the three methods again from t0 = 0
to Tf = 1 under a different initial condition. The only change we made was to increase the
initial population of S4 from 103 to 105. The accuracy of all three methods still match very
well. For the CPU time, an ensemble of 10, 000 simulations took 10, 715 seconds CPU time
for the original SSA, 54.94 seconds CPU time for the slow-scale SSA, and 7.16 seconds CPU
time for the slow-scale tau-leaping method. We can see that the CPU time for the slow-scale
SSA increased nearly 100-fold while the CPU time for the slow-scale tau-leaping method
increased only about 10-fold. This example demonstrates the advantage of the slow-scale
tau-leaping method over the slow-scale SSA.

Example 2: Stiff Decaying Dimerization Process

The stiff decaying dimerization model was originally proposed in Gillepsie10 and modified
in Rathinam et al.11 The model consists of three species S1, S2 and S3 and four reaction
channels:

S1
c1→ 0

S1 + S1

c3


c2

S2

S2
c4→ S3.

(25)

Following Rathinam et al.,11 the reaction rates were chosen as c1 = 1, c2 = 10, c3 =
1000, c4 = 0.1.
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This model has a pair of reversible reactions

S1 + S1

c3


c2

S2. (26)

First we set the initial condition as x1(0) = 400, x2(0) = 798 and x3(0) = 0 so that
initially the reversible reaction pair (26) is in equilibrium. We simulated the system using the
original SSA, slow-scale SSA, slow-scale tau-leaping method and adaptive explicit-implicit
tau-leaping method with ε = 0.03 from t0 = 0 to Tf = 0.2. For an ensemble of 10, 000
simulations, it took 1, 527 seconds CPU time for the the original SSA, 2.72 seconds CPU
time for the the slow-scale SSA, 4.41 (without the down-shifting11,15 technique) and 17.88
(with the down-shifting) seconds CPU time for the adaptive explicit-implicit tau-leaping
method, and 2.23 seconds CPU time for the slow-scale tau-leaping method. Note that for
this example, in every slow-scale tau-leaping step, a normal random number was generated,
as described in Cao et al.,24 to give the population of the fast variables X1 and X2. Thus no
down-shifting is necessary for the slow-scale SSA or slow-scale tau-leaping implementation.
The mean and standard deviation of the ensembles by different methods are given in Table
1.

Method Mean Standard Deviation
x1 x2 x3 x1 x2 x3

SSA 386.95 749.79 15.42 18.43 10.44 3.88
ssSSA 387.15 749.76 15.50 18.74 10.71 3.93

ss tau-leaping 387.00 749.76 15.46 18.69 10.61 3.90
adaptive explicit-implicit tau 386.82 749.77 15.45 15.98 9.50 3.90

without downshifting

Adaptive explicit-implicit tau 386.91 749.67 15.42 19.13 10.88 3.89
with down-shifting

Table 1: Accuracy comparison for different methods under initial condition 1 for the decaying
dimerization problem. All the data are based on ensembles of 10, 000 simulations.

Second we set the initial condition as x1(0) = 10, 000, x2(0) = 0 and x3(0) = 0 so that
initially the reversible reaction pair (26) is not in equilibrium. We simulated the system
using the original SSA, slow-scale SSA and slow-scale tau-leaping method and adaptive
explicit-implicit tau-leaping method with ε = 0.03 from t0 = 0 to Tf = 10. For an ensemble
of 10, 000 simulations, it took 209 seconds CPU time for the slow-scale SSA, 139 (without
the down-shifting technique) and 166 (with the down-shifting) seconds CPU time for the
adaptive explicit-implicit tau-leaping method, and 35.9 seconds CPU time for the slow-scale
tau-leaping method, while one single simulation with the original SSA took 17.49 seconds
CPU time. The mean and standard deviation of the ensembles by different methods are
given in Table 2.

From this example we can see that the three methods designed for stiff stochastic sim-
ulation all perform very well compared with the original SSA method. The slow-scale tau-
leaping method showed an advantage in this model for the second set of initial conditions.
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Method Mean Standard Deviation
x1 x2 x3 x1 x2 x3

SSA 238.3 284.2 1789 15.67 17.88 30.47
ssSSA 240.2 288.5 1789 15.57 18.21 30.53

ss tau-leaping 238.1 284.1 1789 15.63 18.15 30.59
adaptive explicit-implicit tau 238.4 285.1 1789 14.52 18.06 30.70

without downshifting

Adaptive explicit-implicit tau 238.2 284.5 1794 15.57 18.28 30.88
with down-shifting

Table 2: Accuracy comparison for different methods under initial condition 2 for the decaying
dimerization problem. All the data are based on ensembles of 10, 000 simulations.

7 Conclusion and Discussion

In this paper we have proposed an algorithm to handle multiscale stochastic simulation us-
ing a combination of the slow-scale SSA and the adaptive tau-leaping method, based on the
analysis of reversible reactions. The main contributions rest on the tests for partial equi-
librium and the efficient algorithm for computing the relaxation time for reversible reaction
channels. The new method combines the best features of tau-leaping method and of ssSSA:
like tau-leaping it can efficiently handle species with moderate populations, and the combi-
nation with ssSSA enables in practice the efficient treatment of stiff systems where a species
with a small population is involved in fast reversible reactions.

It is possible to improve the mechanism introduced in this paper. An interesting question
is: Do we really need to check the equilibrium condition? If the relaxation time is short
enough, the fast processes will reach partial equilibrium state in almost an instant time.
If we can just use implicit Euler method to relax the virtual fast process, even when the
initial condition of the virtual fast process is not in equilibrium, the slow-scale SSA or
tau-leaping may still be valid. In that case, we do not have to use the full-scale SSA or tau-
leaping to simulate when the system is in the transient state. That will make the algorithm
more efficient. Theory and implementation details of the further improvement is still under
research.
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Appendix

Proof of Theorem 4.1 The mean values of the state changes of the hybrid system can
be written as

ẋ =

K
∑

k=1

fk(x), (27)

where fk represents the state change for each subsystem. For example, for a pair of reversible
reactions, fj(x) = (aj+(x) − aj−(x))νj. Suppose x∗(t) is the local equilibrium state of the
hybrid system. Linearizing (27) we obtain

ė(t) ≈

K
∑

k=1

Ak(x
∗)e(t), (28)

where e(t) = x(t)− x∗(t), Ak(x
∗) is the corresponding Jacobian of fk at x∗. In the following

by default Ak represents Ak(x
∗). The relaxation rate is determined by the real part of the

eigenvalues of the matrix
∑K

k=1 Ak, Define

λ(A) = max{Re(λ)|det(λI − A) = 0}. (29)

The relaxation time for each subsystem is given by 1
−λ(Ak)

. Here we assume for each k that

Ak is a real matrix and λ(Ak) < 0, 1 As we can see in Section 4, this assumption is true for
reversible reaction channels. Now we need only show that

λ(

K
∑

k=1

Ak) ≤ max
1≤k≤K

{λ(Ak)}. (30)

This can be stated as

Lemma .1 Suppose A and B are real matrices that satisfy λ(A) < 0 and λ(B) < 0. Then
λ(A + B) ≤ max{λ(A), λ(B)}.

Proof of Lemma .1 If both A and B are symmetric, this result follows immediately from
Corollary 8.1.3 in Ref.34 Thus we need only show that for a real matrix A, λ(A) = λ(A+AT

2
).

For a real matrix A, there exists a matrix U such that U ∗U = I and U∗AU = diag{λ1, . . . , λr,

A1, . . . , As, 0, . . . , 0}. where λi are real eigenvalues of A, and Ai has the form

(

a −b
b a

)

,

where a ± bi are eigenvalues of A. Thus

U∗

(

AT + A

2

)

U = diag{λ1, . . . , λr, a1, . . . , as, 0, . . . , 0}. (31)

The result λ(A) = λ(A+AT

2
) follows directly from (31) .

1Otherwise there is a subsystem that will not reach its equilibrium. The hybrid system will not reach its
equilibrium either.
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