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Abstract:  Reactions in real chemical systems often take place on vastly different time 
scales, with “fast” reaction channels firing very much more frequently than “slow” ones.  
These firings will be interdependent if, as is usually the case, the fast and slow reactions 
involve some of the same species.  An exact stochastic simulation of such a system will 
necessarily spend most of its time simulating the more numerous fast reaction events.  
This is a frustratingly inefficient allocation of computational effort when dynamical 
stiffness is present, since in that case a fast reaction event will be of much less 
importance to the system’s evolution than will a slow reaction event.  For such situations, 
this paper develops a systematic approximate theory that allows one to stochastically 
advance the system in time by simulating the firings of only the slow reaction events.  
Developing an effective strategy to implement this theory poses some challenges, but as 
is illustrated here for two simple systems, when those challenges can be overcome, very 
substantial increases in simulation speed can be realized. 
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I.  INTRODUCTION 
 In cellular systems, where the small number of molecules of a few reactant species 
sometimes necessitates a stochastic description of the system’s temporal behavior, 
chemical reactions often take place on vastly different time scales.  When that happens, a 
chronological log of successive reaction events, such as would be obtained from an 
application of the stochastic simulation algorithm (SSA),1 would reveal that the 
overwhelming majority of the reaction events are firings of just a few reaction channels, 
the so-called “fast” reactions.  But it is usually the case that the less frequent “slow” 
reactions will have a greater impact on the behavior of the system.  Since the SSA treats 
all reaction events alike, it will spend the great majority of its time simulating the many 
relatively uninteresting fast reaction events.  The question arises, is there legitimate a way 
to skip over the fast reactions, and explicitly simulate only the slow reactions? 
 If the fast and slow reactions do not involve the same species this is of course very 
easy to do.  In that case we essentially have two dynamically independent systems, and 
even though they evolve in the same physical space they can be numerically simulated 
independently of each other.  Much more common though are situations in which the fast 
and slow reactions share some species.  And when, for instance, the population of a 
species that is a reactant in some slow reaction gets changed by firings of one or more 
fast reactions, then the slow reaction will be dependent on the fast reactions.  In such a 
situation, it is not obvious how, or even if, we can legitimately simulate the slow 
reactions without also simulating the fast ones. 
 Attempts to solve this problem have been made by other investigators.2,3   These 
attempts basically approximate the fast reactions using something akin to the 
deterministic reaction rate equation, and then try to treat the slow reactions stochastically.  
In the main, we agree that this is essentially what should be done.  But subtle differences 
in the procedures advocated thus far underscore the fact that there are unresolved 
fundamental questions about how we should go about untangling the fast and slow parts 
of a system for separate treatment:  Are the descriptors “fast” and “slow” more aptly 
applied to reactions or to species?  Can one actually identify a fast sub-system that is 
physically meaningful, yet also mathematically more tractable than the full system?  
These are just two of the questions with which we shall try to come to terms in this paper. 
 Our aim here will not be to propose an ad hoc simulation recipe whose correctness 
can be assessed only by comparing its predictions with those of the exact SSA for a 
variety of test systems.  Rather, we shall try to logically deduce what an a priori correct 
multi-scale stochastic simulation algorithm ought to do.  We shall then demonstrate for 
two simple systems how such an algorithm might be implemented, although 
implementation strategies for more complicated systems will be left as an open issue. 

II.  FAST AND SLOW REACTION CHANNELS 
 We consider a well-stirred chemical system in which N  molecular species 
{ }1, , NS S�  interact through M  elementary reaction channels { }1, , MR R� .  The state of 

the system is ( )1( ) ( ), , ( )NX t X t X t≡ � , where ( )iX t  is the number of iS  molecules in 

the system at time t .  Reaction channel jR  is characterized by a propensity function 
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( )ja x , where ( )ja x dt  is the probability given ( )X t x=  that one jR  reaction will occur 

in the infinitesimal time interval [ , )t t dt+ , and a state-change vector ( )1 , ,j j N jν ν ν≡ � , 

where i jν  is the change in the iS  population induced by one jR  event. 

 Our interest here will be exclusively with systems in which some “relatively 
unimportant” fast reaction channels are firing much more frequently than all the other 
slow reaction channels.  But the procedure we shall use to identify which reaction 
channels are “fast” and which are “slow” is subtle, and has two stages.  In the first stage, 
we make a provisional partitioning of the reactions based the usual values of their 
propensity functions:  Reactions whose propensity functions are usually much larger than 
the propensity functions of all the other reactions are called “fast”, and all the other 
reactions are called “slow”.  To distinguish between these two classes of reactions, we re-
label them thusly: 
  { }f

f f f
1 , , MR R R≡ � , the set of fast reactions, (1a) 

  { }s

s s s
1 , , MR R R≡ � , the set of slow reactions, (1b) 

with f sM M M+ = . This naturally induces a similar re-labeling of the corresponding 

propensity functions, the fast ones being 
f

f f
1 , , Ma a�  and the slow ones being 

s

s s
1 , , Ma a� . 

 The overall result of this partitioning of the reactions will be that the expected time 
to the occurrence of the next fast reaction will usually be very much smaller than the 
expected time to the occurrence of the next slow reaction.  But this partitioning of the 
reactions on the basis of their propensity function values is tentative and provisional.  As 
will be explained in Sec. V, we may later find it necessary to change some reaction 
assignments in order to satisfy some other more critical conditions.  Securing the 
satisfaction of these latter conditions (stated in Sec. V) will constitute the second and 
final stage of our procedure for partitioning the reactions into fast and slow subsets. 

III. FAST AND SLOW SPECIES 
 Having partitioned and re-labeled the M  reactions, we now make a similar 
partitioning and re-labeling of the N  species:  ( )f s,S S S= , where 

  { }f

f f f
1 , , NS S S≡ � , the set of fast species, (2a) 

  { }s

s s s
1 , , NS S S≡ � , the set of slow species, (2b) 

with f sN N N+ = .  This will of course give rise to a like partitioning of the state vector 

( )f s( ) ( ), ( )X t X t X t= , and also the generic state space variable ( )f s,x x x= , into fast and 

slow parts, and their components will be similarly subscripted.  Our criterion for making 
this species partitioning is simple and sharp:  We define a “fast species” to be any species 
whose population gets changed by some fast reaction, and a “slow species” to be any 
species whose population does not get changed by any fast reaction.  Note the asymmetry 
in this definition:  a slow species cannot get changed by a fast reaction , but a fast species 
can get changed by a slow reaction. 
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 The fast and slow reaction propensity functions will depend in general on both fast 
and slow species: 

  f f f s
f( ) ( , ), 1, ,j ja x a x x j M= = � , (3a) 

  s s f s
s( ) ( , ), 1, ,j ja x a x x j M= = � . (3b) 

The corresponding fast and slow reaction state-change vectors now appear as 

  ( )f

f ff ff
1 f, , , 1, ,j j N j j Mν ν ν =� � � , (4a) 

  ( )f s

s fs fs ss ss
1 1 s, , , , , , 1, ,j j N j j N j j Mν ν ν ν ν =� � � � , (4b) 

where i j
σ ρν  is by definition the change in the number of molecules of species iSσ  

( f, sσ = ) induced by one reaction jRρ  ( f, sρ = ).  Since by definition slow species do not 

get changed by fast reactions, sf 0i jν ≡ ; accordingly, we have dropped those zero 

components from the f
jR  state-change vector f

jν  in Eq. (4a), and we henceforth regard 
f
jν  to be a vector with the same dimensionality ( fN ) as the fast species state vector fX .  

This will be important for our later analysis. 

IV. THE VIRTUAL FAST PROCESS 

 The full system state vector ( )f s( ) ( ), ( )X t X t X t=  evolves as a self-contained, past-

forgetting, and hence Markovian process; accordingly, it obeys the Markovian chemical 
master equation (CME), and it can be simulated by the Markovian stochastic simulation 
algorithm (SSA).  But this will usually not be true for the individual component processes 

f ( )X t  and s( )X t , because they are coupled; e.g., f ( )X t  will be Markovian only if it 

evolves completely independently of s ( )X t , and that will never be the case in situations 
of interest to us.  Since non-Markovian processes are notoriously difficult to work with, 
we now introduce a new virtual fast process fˆ ( )X t , which is Markovian. 

 By definition, fˆ ( )X t  is composed of the same fast species state variables as f ( )X t , 

but it evolves only through the fast reactions fR .  In other words, fˆ ( )X t  is f ( )X t  with 
all the slow reactions turned off.  Switching off the slow reactions gives us a Markov 
process fˆ ( )X t  for two reasons:  First, the fast state variables now get changed only by the 

fast reactions.  And second, any sx  that appears explicitly as an argument (for a catalyst 
species) in a fast reaction propensity function f f s( , )ja x x  will now be a constant 

parameter instead of a dynamical variable.  fˆ ( )X t  thus obeys the virtual fast CME, 
 

 {ff
f f f s f f0 0

0 0 0
1

ˆ( , | , ) ˆ( , ) ( , | , )
M

j j j
j

P x t x t
a x x P x t x t

t
ν ν

=

∂ = − −
∂ �  

  }f f s f
0 0 0

ˆ( , ) ( , | , )ja x x P x t x t− , (5) 
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where 

  { }f f f
0 0 0 0

ˆ ˆ( , | , ) Pr ( ) | ( )P x t x t X t x X t x= =� . (6) 

Equation (5) is an “ordinary” CME, since f
jν  lies in the same space as fx ,  and all 

sources of change in fˆ ( )X t  are accounted for on the right hand side. 

 fˆ ( )X t  will obviously be a more tractable process than ( )X t  since it has fewer 

species and fewer reaction channels.  But fˆ ( )X t  will also be more tractable than f ( )X t ; 

that’s because in practice there is usually no simpler way of solving for f ( )X t  than 

solving for the full process ( )X t .  But fˆ ( )X t , although Markovian, is not a physically 
real process, since in reality we can’t “turn off” the slow reactions.  We shall see shortly 
though that, under certain restrictive conditions which will be approximately realized for 
our purposes here, fˆ ( )X t  can provide an acceptable approximation to f ( )X t . 

V.  STOCHASTIC STIFFNESS 
 The existence of fast and slow reactions and species is quite common in real 
chemical systems, and in the context of a traditional deterministic ODE analysis it often 
gives rise to the problem of stiffness.  Stiffness is technically defined as the presence in 
the system of dynamical modes that evolve on widely different time scales, with the 
fastest mode being stable.  We can translate the latter stability requirement into the 
stochastic context by requiring fˆ ( )X t  to be a “stable process”; technically this means that 
the limit 

  f f
0 0 0

ˆ ˆlim ( , | , ) ( , | )
t

P x t x t P x x
→∞

≡ ∞  (7) 

exists independently of t  and 0t .  Equation (7) does not mean that the state of the system 
eventually stops changing with time, but only that our best estimate of the system’s state 
eventually stops changing with time.  The function f

0
ˆ( , | )P x x∞  gives the probability that 

fˆ ( )X ∞  will equal fx , given the initial value 0x .  In principle, this function can be 
calculated by solving the time-stationary form of the virtual fast CME (5), namely 

  { }f
f f f s f f f f s f

0 0 0 0
1

ˆ ˆ0 ( , ) ( , | ) ( , ) ( , | )
M

j j j j
j

a x x P x x a x x P x xν ν
=

= − − ∞ − ∞� . (8) 

As a set of purely algebraic equations, (8) will be much easier to work with than the set 
differential equations (5); thus, it should always be easier to compute the properties of 

fˆ ( )X ∞  than the properties of fˆ ( )X t  for some finite t .  Of course, this is not to say that 

solving (8) exactly for f
0

ˆ( , | )P x x∞  will always be practicable. 

 In the preceding sections, we have described a fairly straightforward procedure for 
partitioning the system into fast and slow reactions and fast and slow species, and then 
extracting from those partitionings a virtual fast process fˆ ( )X t .  But in practice, we will 
be motivated to do all this only in circumstances where dynamical stiffness is causing a 
problem, namely, the burying of “important” slow reaction events in a vast multitude of 
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“unimportant” fast reaction events.  In order to focus our analysis on that special 
circumstance – and to exclude circumstances in which the fast reaction events are no less 
important than the slow ones – we now impose two key requirements on our system.  
These requirements may force us to change our initial tentative designations of fast and 
slow reactions based on propensity function values. 

 Our first requirement is that the virtual fast process fˆ ( )X t  must be stable; i.e. 
f

0
ˆ( , | )P x x∞  in Eq. (7) must exist as a well behaved, time-independent probability 

function.  Our second requirement is that the relaxation of fˆ ( )X t  to its stationary 

asymptotic form, f fˆ ˆ( ) ( )X t X→ ∞ , must happen very quickly on the time scale of the slow 
reactions.  A more precise way of stating this second requirement is to say that “the 
relaxation time of the virtual fast process” must be very much less than “the expected 
time to the next slow reaction”; later we shall see how these two times can be 
quantitatively estimated for two specific systems. 
 The two requirements we have just imposed mean the system has to be “stiff” in a 
stochastic context; i.e., it must evolve on widely different time scales, with the fastest 
evolving mode being stable.  We shall often refer to these two conditions as the “stiffness 
conditions”.  If satisfying these conditions can be accomplished only by making some 
changes in the way we originally partitioned the reactions into fast and slow subsets, then 
we make those changes, regardless of the values of propensity functions.  On the other 
hand, if these conditions cannot be satisfied by making such changes, we shall take that 
as a sign that the fast reactions are no less important than the slow ones, so it is not a 
good idea to try skipping over the fast reactions. 

VI. THE SLOW-SCALE PROPENSITY FUNCTIONS 
 Thus far we have simply made some definitions – of fast and slow reactions, fast 
and slow species, and a virtual fast process – all framed in a setting of “dynamical 
stiffness” as described by the two conditions set forth in Sec. V.  We are now ready to 
establish the key result of this paper. 

 Recall that the s
jR  propensity function s f s( , )ja x x  is defined so that, if the system is 

in the state f s( , )x x  at time t , then s f s( , )ja x x dt  gives the probability that one s
jR  

reaction will occur in the next infinitesimal time interval [ , )t t dt+ .  We would like to find 

an “effective” s
jR   propensity function, one whose product with a finite time s∆ , which is 

stipulated to be very small on the time scale of the slow reactions but very large on the 
time scale of the fast reactions, provides an acceptable approximation to the probability 
that one s

jR  reaction will occur in the next finite time interval s[ , )t t ∆+ .  

 The simplest choice for this effective propensity function would of course be the 
propensity function itself; i.e., we could just estimate the probability in question as 

s f s
s( , )ja x x ∆ .  The problem with that doing that is that it ignores the evolution of the fast 

state variable during s[ , )t t ∆+ .  A possible refinement would be to replace fx  in 
s f s

s( , )ja x x ∆  with a sample of the random variable fˆ ( )X ∞ . 



 7 

 Although there will be circumstances in which either of these approximations will 
be satisfactory, there will also be circumstances in which neither will suffice.  We shall 
show that a more carefully reasoned analysis leads to the following result. 

 The Slow-Scale Approximation:  Let the system be in state f s( , )x x  at time t .  And 
let the fast and slow time scales of the system be well separated, in the sense that the 
relaxation time of the (stable) virtual fast process fˆ ( )X t  is very small compared to the 
expected time to the next slow reaction.  Then if s∆  is a time increment that is large 

compared to the former time but small compared to the latter, the probability that one s
jR  

reaction will occur in the time interval s[ , )t t ∆+  can be well approximated by 
s s f

s( ; )ja x x ∆ , where 

  
f

s s f f f s s f sˆ( ; ) ( , | , ) ( , )j j
x

a x x P x x x a x x
′

′ ′∞�� , (9) 

P̂  being the probability density function of fˆ ( )X ∞ . 

 We shall call the function s s f( ; )ja x x  defined in (9) the slow-scale propensity 

function for reaction channel s
jR .  It is evidently the average of the regular s

jR  propensity 
function over the fast variables, treated as though they were distributed according to the 
asymptotic virtual fast process fˆ ( )X ∞ .  Note that s s f( ; )ja x x  depends in general on the 

values of both the fast and slow state variables at the beginning of the interval s[ , )t t ∆+ .  
We shall now give an analytical justification of the fundamental property that the Slow-
Scale Approximation attributes to the function defined in (9).  In the next section, we 
shall see how that property allows us to approximately simulate the evolution of the 
system one slow reaction at a time. 

 Justification:  With the system in state f s( , )x x  at time t , divide the time interval 

s[ , )t t ∆+  into infinitesimally small subintervals, and consider a typical such subinterval, 
[ , )t t dt′ ′ ′+ .  In the interval [ , )t t′  just preceding this infinitesimal subinterval, fast 
reactions may have been firing but slow reactions, to a good approximation, have not; 
because, by hypothesis it is very unlikely for any slow reaction to occur in the entire 
interval s[ , )t t ∆+ .  Since fast reactions do not alter the populations of the slow species, 

we therefore have f s( ) ( ( ), )X t X t x′ ′≈ ; hence, the probability that one s
jR  reaction will 

occur in the infinitesimal subinterval [ , )t t dt′ ′ ′+  is approximately ( )s f s( ),ja X t x dt′ ′ . 

 Since there is a nil probability of more than one slow reaction occurring in the 
interval s[ , )t t ∆+ , we can regard occurrences of an s

jR  reaction in all of the infinitesimal 

subintervals of s[ , )t t ∆+  as mutually exclusive events.  We can then invoke the addition 

law of probability, and compute the probability that an s
jR  reaction will occur in any of 

those infinitesimal subintervals as the sum of the individual probabilities.  Therefore, the 
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probability that one s
jR  reaction will occur in the entire interval s[ , )t t ∆+  is 

(approximately) 

  ( ) ( )s ss f s s f s
s

s

1 ˆ( ), ( ),
t t

j jt t
a X t x dt a X t x dt

∆ ∆
∆

∆
+ +� �′ ′ ′ ′≈ � �

� �
� � . 

The replacement of f ( )X t′  with fˆ ( )X t′  in the last step here is justified because those two 
processes will be the same if the slow reactions are not firing, and to a good 
approximation they are not over the interval s[ , )t t ∆+ . 

 Finally, we invoke the hypothesized fact that s∆ , although very small on the time 

scale of the slow process s( )X t′ , is very large compared to the time it takes the virtual 

fast process fˆ ( )X t′  to relax to its asymptotic form fˆ ( )X ∞ .  In that case, the quantity in 
parentheses on the right approximates the s∆ → ∞  temporal average of the function 

s f sˆ( ( ), )ja X t x′ .  And following a practice that is very common in statistical physics, we 
can estimate this temporal average by the ensemble average with respect to the 
asymptotic virtual fast process, fˆ ( )X ∞ : 4 

  ( ) { }s

f

s f s f f s f s

s

1 ˆ ˆ( ), Pr ( ) ( , )
t

j jt
x

a X t x dt X x a x x
∆

∆
+

′

′ ′′ ′ ≈ ∞ =�� . 

Since { }f f f f sˆ ˆPr ( ) ( , | , )X x P x x x′ ′∞ = = ∞ , the quantity on the right is the function 

defined in (9); therefore, by virtue of the previous equation, we conclude that the 
probability that one s

jR  reaction will occur in the time interval s[ , )t t ∆+  is indeed as 
asserted by the Slow-Scale Approximation. 

VII. THE SLOW-SCALE SSA 
 We are assuming now that our system is such that there exists a “quasi-
infinitesimal” time interval sd t , which is essentially an infinitesimal on the time scale of 
the slow reactions but very large compared to the relaxation time of the virtual fast 
process.  The Slow-Scale Approximation tells us that in this circumstance, given 

f s( ) ( , )X t x x= , the probability that one s
jR  reaction will occur in s[ , )t t d t+  is 

approximately given by s s f
s( ; )ja x x d t , where s s f( ; )ja x x  is defined in (9).  With this 

result, we can now proceed using arguments that parallel those used in deriving the 
standard SSA:1 

 First defining 

  
s

s s f s s f
0

1

( ; ) ( ; )
M

j
j

a x x a x x
=
�� , (10) 
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we can prove that the probability that the next slow reaction will occur in the quasi-
infinitesimal time interval s[ , )t t dτ τ τ+ + +  and will be an s

jR  reaction is 
(approximately) 

  ( )s f s s s f s s f
s 0 s s( , | , , ) exp ( ; ) ( ; ) , 1, ,j jp j x x t d a x x a x x d j Mτ τ τ τ= − × = � . (11) 

From this we can go on to show that, given f s( ) ( , )X t x x= , the time τ  to the next slow 
reaction and the index j  of that reaction can be (approximately) generated by the 
following two formulas, wherein 1r  and 2r  are unit-interval uniform random numbers: 

  s s f
10

1 1
ln

( ; ) ra x x
τ

� �
= � �

� �
, (12a) 

  s s f s s f
2 0

=1

 the smallest integer satisfying ( ; ) ( ; )
j

j
j

j a x x r a x x′
′

= ≥� . (12b) 

 With this ability to estimate the time to and the index of the next slow reaction, we 
can now construct an approximate general procedure for stochastically simulating the 
evolution of the system one slow reaction at a time (explanatory details will follow): 

 The Slow-Scale SSA: 
 Preparation:  Set all parameter values.  Partition the system into fast and slow 

reactions and species.  Identify the virtual fast process, and compute on the basis 

of Eq. (8) its stationary probability function f f sˆ( , | , )P x x x′ ∞ . 

 Initialization:  Given the initial state f s
0 0 0( ) ( , )X t x x= , initialize the time and state 

variables by setting 0t t= , f f
0x x= , and s s

0x x= . 

 1.  With the system in state f s( , )x x  at time t , compute s s f( ; )ja x x  for s1, ,j M= �  
according to Eq. (9). 

 2.  Compute s s f
0 ( ; )a x x  in Eq. (10), and then generate values for τ  and j  according 

to Eqs. (12). 
 3.  Advance the system to the next slow reaction by replacing t t τ← + , and 

 s s ss
s( 1, , )i i i jx x i Nν← + = � , (13a) 

 f f fs
f( 1, , )i i i jx x i Nν← + = � , (13b) 

 f f f sˆsample of  ( , | , )x P x x x′← ∞ . (14) 

 4.  Record f s( ) ( , )X t x x=  as desired.  Then return to Step 1, or else stop. 

 The most difficult part of the above procedure will be computing f f sˆ( , | , )P x x x′ ∞ ; 
indeed, this will usually have to be done approximately, since the stationary virtual CME 
(8) can be solved exactly for only a few very simple systems.  There are two reasons why 
we want this function.  First, it enables the computation in Step 1 of the slow-scale 
propensity functions according to Eq. (9); however, we shall see shortly that this never 
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requires knowing more than just the first two moments of f f sˆ( , | , )P x x x′ ∞ .  The second 

reason why we want f f sˆ( , | , )P x x x′ ∞  is to complete the updating of the fast state 
variables in (14).  But as we shall see later, the operation (14) often can be carried out 

satisfactorily knowing only the first two moments of f f sˆ( , | , )P x x x′ ∞ .  And since the 
operation (14) has no effect on the rest of the algorithm, it could be omitted entirely if a 
read-out of the fast variables is not required. 

 The computation of the slow-scale propensity functions s s f( ; )ja x x  in Step 1 will 

depend on the forms of the (true) s
jR  propensity functions s ( )ja x .  But in terms of the 

moments of the virtual fast state variables, there are actually only five possibilities: 

 -  If s ( )ja x  is independent of fx , then s s f s s( ; ) ( )j ja x x a x= . (15a) 

 -  If s s f( )j j ia x c x= , then s s f s fˆ( ; ) ( )j j ia x x c X= ∞ . (15b) 

 -  If s s f s( )j j i ia x c x x ′= , then s s f s s fˆ( ; ) ( )j j i ia x x c x X′= ∞ . (15c) 

 -  If s s f f1
2( ) ( 1)j j i ia x c x x= − , then ( )s s f s f f1

2
ˆ ˆ( ; ) ( ) ( ) 1j j i ia x x c X X= ∞ ∞ − . (15d) 

 -  If s s f f( )  for j j i ia x c x x i i′ ′= ≠ , then s s f s f fˆ ˆ( ; ) ( ) ( )j j i ia x x c X X ′= ∞ ∞ . (15e) 

Here we have used the averaging notation 

  ( )
f

f f f s fˆ ˆ( ) ( , | , ) ( )
x

f X P x x x f x
′

′ ′∞ ∞�� . (16) 

The four cases (15b-e) refer, respectively, to the s
jR  forms f

iS →� , f s
i iS S ′+ →� , 

f f
i iS S+ →� , and f f

i iS S ′+ →� .  An inspection of the above results shows that in order to 
compute any slow-scale propensity function, we will never need more than the first two 
moments of fˆ ( )X ∞ . 

 In Step 3, the state update is carried out separately for the slow state variables and 
the fast state variables.  The slow state variable update formula (13a) simply increases 
each slow species component s

ix  by ss
i jν , reflecting the fact that one s

jR  reaction has 

occurred in [ , ]t t τ+ .  Of course, many fast reactions have also occurred in that time 
interval, but by construction they have no effect on the slow state variables. 
 The updating of the fast state variables is accomplished in two stages:  In (13b) the 
fast state variables are changed to reflect the occurrence of the one s

jR  reaction.  Then, in 
(14), the fast state variables are all “relaxed” to their stationary values.  Although (14) 
overwrites (13b), that overwrite will be influenced by the outcome of (13b).  The end 
result of this two-step procedure is, however, not the fast variables immediately after the 

s
jR  reaction, but rather the fast variables a “short time” later than that – specifically, a 

time after the s
jR  reaction that is short on the time scale of the slow reactions but long on 

the time scale of the fast reactions.  As will be explained more fully later, this slightly 
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delayed sampling of the fast variables is necessitated by the fact that times in the 
immediate neighborhood of a slow reaction are usually not unbiased sampling times for 
the fast variables. 
 In the following two sections, we shall illustrate the foregoing theory for two very 
simple virtual fast processes.  For each we shall first calculate the asymptotic moments in 
Eqs. (15), so that we will be able to compute the slow-scale propensity function for any 
slow reaction that might accompany these fast reactions.  These asymptotic moment 
calculations can be done exactly for our first fast process, but we shall have to resort to 
approximations for the second.  We shall then couple each of these virtual fast processes 
with one or two simple slow reactions in order to illustrate how the full Slow-Scale SSA 
gets implemented. 

VIII.  EXAMPLE 1: THE FAST REVERSIBLE ISOMERIZATION 
 One of the simplest stable fast processes arises from the reversible isomerization, 

  1

2
1 2

c

c
S S→← . (17) 

Assuming these two reactions are the only “fast” reactions, the virtual fast process fˆ ( )X t  

will then be ( )1 2( ), ( )X t X t  with propensity functions and state-change vectors 

  1 1 1 1

2 2 2 2

( ) ,  ( 1, 1)
( ) , ( 1, 1)

a x c x v

a x c x v

= = − + 	

= = + − �

. (18) 

 What distinguishes this “virtual” fast process fˆ ( )X t  from the “real” fast process 
f ( )X t  is that the virtual process obeys the following conservation relation, which 

expresses the constancy of the total number of isomers: 

  1 2 T
ˆ ˆ( ) ( ) (constant)X t X t x+ = . (19) 

This relation greatly simplifies the analysis of the virtual fast process, because it reduces 
that problem to a single independent state variable.  In contrast, for f ( )X t  the sum in Eq. 
(19) will not generally be constant, owing to the presence of slow channels that can 
change the 1S  or 2S  populations independently. 

 When 2
ˆ ( )X t  is eliminated in favor of 1

ˆ ( )X t  by means of Eq. (19), 1
ˆ ( )X t  takes the 

form of a bounded “birth-death” Markov process (see Appendix A) with “stepping 
functions” 

  1 1 1 1 2 T 1( ) , ( ) ( )W x c x W x c x x− +
′ ′ ′ ′= = − . (20) 

By analytically iterating the recursion formula (A2) (taking * 0x = ), the asymptotic 
probability distribution of this process can be calculated exactly.  In this way, 1

ˆ ( )X ∞  is 

found to be the binomial random variable T( , )q x� , whose probability function is 

  1 T 1T
1 1 2 1 T

1 T 1

!ˆ( , | , ) (1 ) , ( 0,1, , )
! ( )!

x x xx
P x x x q q x x

x x x

′ ′−′ ′∞ = − =
′ ′−

� , (21) 
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where 2

1 2

c
q

c c
≡

+
, (22) 

and  T 1 2x x x= + . (23) 

Note that 1 1 2
ˆ( , | , )P x x x′ ∞  does indeed depend on the fast state vector 1 2( , )x x  at the 

“initial” time t , through the sum of its two components. 
 The mean and variance of the binomial random variable T( , )q x�  can be directly 
evaluated from the definition (A4), and the results are well known to be 

  2 T
1 T

1 2

ˆ ( )
c x

X x q
c c

∞ = =
+

, (24a) 

  { } 1 2 T
1 T 2

1 2

ˆvar ( ) (1 )
( )

c c x
X x q q

c c
∞ = − =

+
. (24b) 

Using Eqs. (24), along with the relation 2 T 1
ˆ ˆ( ) ( )X x X∞ = − ∞ , it is now a simple matter to 

deduce the following results for use in Eqs. (15), which allow us to compute all possible 
slow-scale propensity functions with respect to this virtual fast process: 

  2 T 1 T
1 2

1 2 1 2

ˆ ˆ( ) , ( )
c x c x

X X
c c c c

∞ = ∞ =
+ +

, (25a) 

  ( ) ( )
2
2

1 1 T T2
1 2

ˆ ˆ( ) ( ) 1 1
( )

c
X X x x

c c
∞ ∞ − = −

+
, (25b) 

  ( ) ( )
2
1

2 2 T T2
1 2

ˆ ˆ( ) ( ) 1 1
( )

c
X X x x

c c
∞ ∞ − = −

+
, (25c) 

  ( )1 2
1 2 T T2

1 2

ˆ ˆ( ) ( ) 1
( )

c c
X X x x

c c
∞ ∞ = −

+
. (25d) 

Notice that all of these asymptotic moments of the virtual fast process depend on the 
values 1 2( , )x x  of the fast state variables at the initial time t  through their sum Tx . 

 The stationary means in Eqs. (25a) are exactly what we would get by solving the 
stationary (equilibrium) deterministic reaction rate equation (RRE) for reactions (17), 
namely 1 1 2 2c X c X=  with 1 2 TX X x+ = .  This happens because reactions (17) are linear.  
Although the stationary RRE cannot give us the exact second-order moments in Eqs. 
(25b-d), it turns out that the stationary RRE solution affords excellent approximations to 
those in the common circumstance that T 1x � ; because in that case, the last factor 

T( 1)x −  in each of Eqs. (25b-d) can be well approximated by Tx , and the stationary RRE 
solutions (25a) can then be invoked to obtain 

  
( ) 2

T

1 2 1 2

ˆ ˆ ˆ( ) ( ) 1 ( )    ( 1, 2),
1:

ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) .

i i iX X X i
x

X X X X

� ∞ ∞ − ≈ ∞ =
�
 ∞ ∞ ≈ ∞ ∞
�

�  (26) 
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So we see that, in the common circumstance T 1x � , any slow-scale propensity function 
can be well approximated in terms of the solution of the stationary RRE for reactions 
(17).  Whether the stationary RRE will serve us as well for nonlinear fast processes 
remains to be seen. 
 There are several different time scales associated with this virtual fast process.  
Since in state 1 2( , )x x  the probability that either 1R  or 2R  will fire in the next 

infinitesimal time dt  is ( )1 1 2 2c x c x dt+ , then 

  
1 1 2 2

1
mean time to next fast reaction   

c x c x
=

+
. (27a) 

The asymptotic mean time to the next fast reaction can then be obtained by replacing 1x  

and 2x  here with their stationary means in (25a).  That gives 

  1 2

1 2 1 2

asymptotic mean time to next fast reaction   
2 ( )

c c
c c x x

+=
+

. (27b) 

The other time scale of interest to us is the time scale on which the virtual fast process 
relaxes to its t = ∞  stationary form.  It has been shown elsewhere5 that the mean and 
variance of 1

ˆ ( )X t  and 2
ˆ ( )X t  for reactions (17) exponentially approach their t = ∞  values 

in a time of order 

  
1 2

1
relaxation time  

c c
≈

+
. (28) 

Indeed, since in this linear case the means satisfy the deterministic RRE, we have 

  ( )1
1 1 2 T 1 1 2 1 2 T

ˆ ( )
ˆ ˆ ˆ( ) ( ) ( ) ( )

d X t
c X t c x X t c c X t c x

dt
= − + − = − + + , 

for which the solution is easily shown to be 

  ( ) 1 2( )
1 1 01 1

ˆ ˆ ˆ( ) ( ) ( ) e c c tX t X x X − += ∞ + − ∞ , 

in agreement with Eq. (28). 
 As is clear from the statement of the Slow-Scale Approximation in Sec. VI, the key 
requirement for applying the Slow-Scale SSA is that the relaxation time of the virtual fast 
process must be much smaller than the average time to the next slow reaction.  
Estimating the latter time as the reciprocal of the sum of the slow-scale propensity 
functions, the condition for using the Slow-Scale SSA in this case is thus 

  
s

s
1 2

1

( )
M

j
j

c c a x
=

+ �� . (29) 

 To illustrate the application of the foregoing results, let us suppose that the fast 
reactions (17) are occurring in conjunction with the single slow reaction, 

  3
2 3

cS S→ , (30) 

for which 
  3 3 2 3( ) , (0, 1, 1)a x c x ν= = − + . (31) 
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Thus, the fast reactions are 1R  and 2R , the slow reaction is 3R , the fast species are 1S  

and 2S , and the slow species is 3S .  (Note that the only reactant in the slow reaction is a 
fast species.)  By Eqs. (15b) and (25a), the slow-scale propensity function for this 
reaction is 

  3 1 1 2
3 3 1 2 3 2

1 2

( )ˆ( ; , ) ( )
c c x x

a x x x c X
c c

+= ∞ =
+

. (32) 

According to condition (29), we should be able to invoke this slow-scale propensity 
function whenever 

  3 1 1 2
1 2

1 2

( )c c x x
c c

c c
++

+
� . (33) 

Assuming this condition holds, the Slow-Scale SSA for reactions (17) and (30) then goes 
as follows: 

 Initialize:  Given ( )0 10 20 30( ) , ,X t x x x= , set 0t t←  and 0i ix x←  ( 1, 2,3)i = . 

 Step 1.  In state ( )1 2 3, ,x x x  at time t , compute 

  3 1 1 2
3 3 1 2

1 2

( )
( ; , )

c c x x
a x x x

c c
+=

+
. 

 Step 2.  Draw a unit-interval uniform random number r , and compute 

  
3 3 1 2

1 1
ln

( ; , )a x x x r
τ � �= � �

� �
. 

 Step 3.  Advance to the next 3R  reaction by replacing t t τ← +  and 

 3 3 1x x← + , 

 2 2 1x x← − , 

 ( )2

1 2

T 1 2

1 T

2 T 1

With  ,

 sample of  ,

.

c
c c

x x x

x x

x x x

+

= +�
 ←�


← −�

� , 

 Step 4.  Record 1 2 3( , , , )t x x x  if desired.  Then return to Step 1, or else stop. 

 In Step 3, the 3x  update implements (13a), the first 2x  update implements (13b), 

and the bracketed procedure implements (14).  Note that the first 2x  update affects the 
subsequent 1x  and 2x  updates in brackets through the variable Tx .  An examination of 
the full algorithm will reveal that the entire bracketed procedure in Step 3 can be omitted 
if a readout of the two fast species populations is not required.  Making that omission will 
not affect the simulation of the slow species population, which in many cases will be the 
only one of practical interest. 
 Figure 1 shows the results of two simulation runs of reactions (17) and (30) for the 
following set of parameter values: 
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  5
1 2 3 10 20 301, 2, 5 10 ; 1200, 600, 0c c c x x x−= = = × = = = . (34) 

Figure 1a was obtained using the exact SSA, and Fig. 1b was obtained using the 
approximate Slow-Scale SSA.  Both figures plot the populations of all three species at the 
time of each 3R  event.  But successive dots in Fig. 1a are separated by an average of 
about 76,000 simulated reactions, whereas the dots in Fig. 1b show all of the simulated 
reactions.  On the scale of these figures, the two plots appear to be statistically 
indistinguishable.  The accuracy of the Slow-Scale SSA run in Fig. 1b should hinge on 
how well condition (33) is satisfied.  For the parameter values in (34), we find that the 
left side of (33) is initially two orders of magnitude larger than the right side, and that 
imbalance gradually improves as the simulation progresses (since 1 2x x+  decreases by 1 
with each 3R  reaction).  The gain in computational efficiency of the Slow-Scale SSA 
over the exact SSA in this case is striking:  The exact SSA run of Fig. 1a simulated over 
40 million reactions, whereas the Slow-Scale SSA run in Fig. 1b simulated only 521 
reactions (all 3R ).  The SSA simulation took over 20 minutes to execute, while the Slow-
Scale SSA took only a fraction of a second. 
 Figures 2 and 3 show two more simulation runs of reactions (17) and (30), but now 
for the parameter values 

  4
1 2 3 10 20 3010, 4 10 , 2; 2000, 0c c c x x x= = × = = = = . (35) 

These parameter values have the interesting consequence that the average population of 
the fast species 2S , as computed from Eq. (25a), is initially 0.5, and it decreases as the 
simulation progresses (since T 1 2x x x= +  decreases).  The physical implication of this can 
be seen in the exact SSA run of Fig. 2a, where the populations of all three species are 
plotted out immediately after each 3R  reaction.  Most of the time the 2S  population is 0, 
sometimes it is 1, occasionally it is 2, and only rarely is it anything more.  An 2S  
molecule here has a very short lifetime (on average 2 31 ( ) 0.5c c+ ≈ ), usually turning into 

an 1S  molecule but occasionally (on average a fraction 5
3 2 3( ) 10c c c −+ ≈  of the time) 

turning into an 3S  molecule. 

 In Fig. 2b we show a re-plotting of the 2X  trajectory for this SSA run, with the 2S  
population now being sampled immediately before each 3R  reaction; it is of course the 
trajectory in Fig. 2a increased by exactly 1.  In Fig. 2c we show yet another re-plotting of 
the 2X  trajectory, with the samplings now taken at equally spaced time intervals.  The 
differences in the three 2X  trajectories in Fig. 2, which again are all taken from the same 
SSA run, illustrate an important point:  The occurrence times of the slow reactions will 
not be statistically independent of the fast species populations.  In this case, an 2S  
population of n  will be n  times more likely to experience an 3R  reaction than an 2S  
population of 1.  (This effect is also present in the 1X  trajectory, but it is not noticeable 
because that population is so large.)  Although all three 2S  population plots in Fig. 2 are 
“correct”, the equal-time plot in Fig. 2c would seem to be the most “typical.” 
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 For the parameter values (35), condition (33) is satisfied by 4 orders of magnitude 
initially, and even more as the simulation progresses; therefore, the Slow-Scale SSA 
should be applicable.  Figure 3 shows the results of a Slow-Scale SSA simulation.  We 
observe that the trajectories for the 1S  and 3S  populations match those in the exact SSA 
run of Fig. 2 extremely well.  But whereas the SSA run had to simulate over 23 million 
reactions, the Slow-Scale SSA run simulated only 587, with commensurate differences in 
the run times.  The 2S  population trajectory in Fig. 3 evidently matches the equal-time 
SSA trajectory in Fig. 2c very well, and much better than either of the trajectories in Figs. 
2a or 2b.  This agreement with the “typical” 2S  trajectory in Fig. 2c justifies our two-
stage updating scheme (13b) and (14) for the fast variables in the general Slow-Scale 
SSA, which “relaxes” those fast variables after each slow reaction before sampling them.  
There does not seem to be a feasible way for the Slow-Scale SSA to accurately reproduce 
the fast state variables immediately after a slow reaction, but that should never pose a 
practical problem since those values are atypical anyway. 
 
 

IX.  EXAMPLE 2: THE FAST REVERSIBLE DIMERIZATION 
 Suppose the fast reactions are the reversible dimerization, 

  1

2
1 1 2

c

c
S S S+ �������� . (36) 

Assuming these two reactions are the only fast reactions, the virtual fast process fˆ ( )X t  

will be ( )1 2
ˆ ˆ( ), ( )X t X t , with propensity functions and state-change vectors 

  
1

1 1 1 1 12

2 2 2 2

( ) ( 1), ( 2, 1)
( ) ,              ( 2, 1)

a x c x x v

a x c x v

	= − = − +

= = + − �

. (37) 

This virtual fast process obeys the conservation relation 

  1 2 T
ˆ ˆ( ) 2 ( ) (a constant)X t X t x+ = , (38) 

which simply asserts the constancy of the total number of monomeric 1( )S  units. 

 When 1
ˆ ( )X t  is eliminated in favor of 2

ˆ ( )X t  by means of Eq. (38), 2
ˆ ( )X t  takes the 

form of a birth-death Markov process (see Appendix A) with stepping functions 
  1

2 2 2 2 1 T 2 T 22( ) , ( ) ( 2 )( 2 1)W x c x W x c x x x x− += = − − − . (39) 

It follows from Eq. (38) that this birth-death process is bounded above by 
  [ ]2Max T 2x x= , (40) 

where [ ]�  denotes “the greatest integer in”. 
 When Eqs. (39) and (40) are substituted into Eq. (A2), the resulting recursion 
relation for the probability density function of 2

ˆ ( )X ∞  unfortunately does not yield a 
tractable analytic expression, as it did for the example in the preceding section.  Nor do 
Eqs. (A4) yield tractable formulas for the mean and variance of 2

ˆ ( )X ∞ .  But a 
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knowledge of 2
ˆ ( )X ∞  and { }2

ˆvar ( )X ∞  is all that is needed in order to evaluate any 

slow-scale propensity functions that might accompany the fast reactions (36).  For, since 
Eq. (38) implies that 1 T 2

ˆ ˆ( ) 2 ( )X x X∞ = − ∞ , then knowing 2
ˆ ( )X ∞  and { }2

ˆvar ( )X ∞  we 

can compute in succession the asymptotic moments 

   1 T 2
ˆ ˆ( ) 2 ( )X x X∞ = − ∞ , (41a) 

   { } { }1 2
ˆ ˆvar ( ) 4 var ( )X X∞ = ∞ , (41b) 

  { } 22ˆ ˆ ˆ( ) var ( ) ( ) ( 1, 2)i i iX X X i∞ = ∞ + ∞ = , (41c) 

  ( ) 2ˆ ˆ ˆ ˆ( ) ( ) 1 ( ) ( ) ( 1,2)i i i iX X X X i∞ ∞ − = ∞ − ∞ = , (41d) 

  2
1 2 T 2 2

ˆ ˆ ˆ ˆ( ) ( ) ( ) 2 ( )X X x X X∞ ∞ = ∞ − ∞ . (41e) 

On account of Eqs. (15), these are all we need to evaluate any slow-scale propensity 
function.  But how can we obtain estimates of 2

ˆ ( )X ∞  and { }2
ˆvar ( )X ∞ ?  It turns out 

that there are several approximate ways of doing that, as we shall now elaborate. 

 The simplest way would be to assume that 2
ˆ ( )X t  is a deterministic process 

governed by the reaction rate equation (RRE).  In that case, 2
ˆ ( )X ∞  would coincide 

with the stationary or equilibrium solution of the RRE, and { }2
ˆvar ( )X ∞  would be zero.  

The stationary RRE for reactions (36) reads 21
1 1 2 22 c X c X= , where we have invoked the 

usual RRE assumption that the population numbers involved are 1� .  With the 
conservation relation (38), the stationary RRE becomes 

  ( )21
1 T 2 2 22 2c x X c X− = . (42) 

The only root of this quadratic equation satisfying 2 T 2X x≤ , as required by Eq. (38), is 

  
2

22 2
2 T T T

1 1

1
2 2 4

4
RRE c c

X x x x
c c

� 	
� � � � = + − + −� 
� � � �
� � � � � �

. (43) 

We might therefore try approximating RRE
2 2

ˆ ( )X X∞ ≈ .  But the RRE also implies that 

{ }2
ˆvar ( ) 0X ∞ = , and that might be too inaccurate in some circumstances. 

 A different way of estimating 2
ˆ ( )X ∞  and { }2

ˆvar ( )X ∞  would be to make use of  

the birth-death process formulas (A5)-(A8).  As discussed in Appendix A, any relative 
maximum of the probability density function of 2

ˆ ( )X ∞  can be computed as the greatest 
integer in a down-going root of the function 

  
( )

2 2 2

2 1
1 2 1 T 2 2 1 T T2

( ) ( 1) ( ),

2 (2 3) ( 2)( 1).

x W x W x

c x c x c x c x x

α + −− −

= − + + + + +

�
 (44) 
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Since α  here is a concave-up parabola, it can have at most one down-going root, which 
will necessarily be the smaller one.  Using the quadratic formula, we find that root to be 

  
2

dgr 2 2
2 T T T T

1 1

1
2 3 2 3 4( 2)( 1)

4
c c

x x x x x
c c

� 	
� � � � = + + − + + − + +� 
� � � �
� � � � � �

. (45a) 

Therefore, the probability density function of 2
ˆ ( )X ∞  has a single relative maximum at 

  dgr
2 2x̂ x� �= � �. (45b) 

which, by definition, is the stable state of the birth-death process 2
ˆ ( )X t .  A related useful 

result is that the Gaussian variance of any stable state, which is defined as the variance of 
the “best Gaussian fit” to the corresponding peak in the probability density function of 

2
ˆ ( )X ∞ , is given by formula (A7).  Using Eqs. (39) and (44), that formula is 

  ( )
2 2 2
G 2

1 2 1 T 2

ˆ
ˆ( )

ˆ4 2 3
c x

x
c x c x c

σ =
− + + +

. (46) 

Since there is only one stable state, we could reasonably approximate 

  dgr
2 2

ˆ ( )X x∞ ≈ , (47a) 

  { } 2
2 G 2ˆvar ( ) ( )X xσ∞ ≈ . (47b) 

The error in Eq. (47a) arises from the fact that it identifies the mean of 2
ˆ ( )X ∞  with the 

most likely value of 2
ˆ ( )X ∞ ; however, in many cases that error will be quite small.  A 

comparison of Eqs. (45a) and (43) shows that those two estimates of 2
ˆ ( )X ∞  should be 

very close to each other in the common case that T 1x � .  But surely, the variance 
estimate (47b) should be better than the estimate of zero that is predicted by the RRE. 
 A bonus of this “alpha-function approach” is that it gives us, through Eq. (A8), the 
following estimate of the time required for 2

ˆ ( )X t  to relax to 2
ˆ ( )X ∞ : 

  ( )1 2 1 T 2

1ˆ
ˆ4 2 3

t
c x c x c

=
− + + +

. (48) 

Any application of the Slow-Scale SSA will require that this time be small on the time 
scales of all slow reactions that accompany the fast reactions (36). 

 A third way to estimate 2
ˆ ( )X ∞  and { }2

ˆvar ( )X ∞  is to make use of the stationary 

moment equations (B4) and (B5), which are derived in Appendix B.  Equation (B4) for 
2i =  reads 

  ( )( )
21 1 22 2

1
1 1 1 2 22

0 ,

ˆ ˆ ˆ( 1) ( ) ( ) 1 ( 1) ( ) .

a a

c X X c X

ν ν= +

= + ∞ ∞ − + − ∞
 

Substituting 1 T 2
ˆ ˆ( ) 2 ( )X x X∞ = − ∞  from the conservation relation (38) and then 

simplifying, we get 
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  2 2 1
2 T 2 T T2

1

ˆ ˆ0 2 ( ) 2 1 ( ) ( 1)
c

X x X x x
c

� �
= ∞ − − + ∞ + −� �

� �
. (49a) 

And Eq. (B5) for 2i i′= =  reads 

  ( )
( )

2 2
21 2 1 22 2 2 21 1 22 2

1
2 1 1 1 2 2 22

2 21
1 1 1 2 22

ˆ ˆ0 2 ( ) ( ) ,

ˆ ˆ ˆ ˆ ˆ2 ( 1) ( ) ( ) ( ) 1 ( 1) ( ) ( )

ˆ ˆ ˆ( 1) ( ) ( ) 1 ( 1) ( ) .

X a X a a a

X c X X X c X

c X X c X

ν ν ν ν� �= ∞ + ∞ + +
� �

� �= + ∞ ∞ ∞ − + − ∞ ∞
� �

+ + ∞ ∞ − + − ∞

 

Again substituting 1 T 2
ˆ ˆ( ) 2 ( )X x X∞ = − ∞  and simplifying, we get 

  

( )

3 22
2 T 2

1

2 2
T T 2 T T

1

ˆ ˆ0 4 ( ) 2 2 2 ( )

1ˆ3 1 ( ) 1 .
2

c
X x X

c

c
x x X x x

c

� �
= ∞ − − + ∞� �

� �

� �
+ − + + ∞ + −� �
� �

 (49b) 

Although Eqs. (49) are exact, they evidently constitute two equations in three unknowns, 

2
ˆ ( )X ∞ , 2

2
ˆ ( )X ∞ , and 3

2
ˆ ( )X ∞ .  We could continue to develop higher order moment 

equations, but there would always be one more unknown than equation.  To break this 
open ended chain, we will have to make some sort of approximation.  For example, we 
could treat 2

ˆ ( )X ∞  as a normal random variable with some mean 2m  and some variance 
2
2σ :  2

2 2 2
ˆ ( ) ( , )X m σ∞ = � .  Under that assumption, the first three moments of 2

ˆ ( )X ∞  
will be given in terms of the mean and variance by Eqs. (B9).  When those formulas are 
substituted into Eqs. (49), we get the following two equations in the two unknowns, 2m  

and 2
2σ : 

  ( )2 2 2 1
2 2 T 2 T T2

1

0 2 2 1 ( 1)
c

m x m x x
c

σ
� �

= + − − + + −� �
� �

, (50a) 

  
( ) ( )

( )

2 2 2 22
2 2 2 T 2 2

1

2 2
T T 2 T T

1

0 4 3 2 2 2

1
3 1 1 .

2

c
m m x m

c

c
x x m x x

c

σ σ
� �

= + − − + +� �
� �

� �
+ − + + + −� �
� �

 (50b) 

Since Eqs. (50) are nonlinear in the unknowns, a numerical solution method is indicated; 
however, once the solutions are in hand, we simply take 

  2 2
ˆ ( )X m∞ ≈ , (51a) 

  { } 2
2 2

ˆvar ( )X σ∞ ≈ . (51b) 

We may expect that the approximations (51) will be reasonably close to the alpha-
function approximations (47), since both involve normal approximations. 
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 Finally, we can combine features of the above approaches to obtain a couple of 
“hybrid” estimation methods:  If we simply assume that the RRE estimate of the mean in 
Eq. (43) is sufficiently accurate, we could use it in place of 2x̂  in  Eq. (46), or in place of 

2m  in Eq. (49a), to deduce the variance.  Thus, combining Eqs. (43) and (46), we have 
the estimates 

  RRE
2 2

ˆ ( )X X∞ ≈ , (52a) 

  { } ( )
RRE

2 2
2 RRE

1 2 1 T 2

ˆvar ( )
4 2 3

c X
X

c X c x c
∞ ≈

− + + +
. (52b) 

 
And combining Eqs. (43) and (50a), we have the estimates 

  RRE
2 2

ˆ ( )X X∞ ≈ , (53a) 

  { } ( )2RRE RRE2 1
2 2 T 2 T T4

1

1ˆvar ( ) 2 1 ( 1)
2

c
X X x X x x

c
� �

∞ ≈ − + − + − −� �
� �

. (53b) 

 We thus have four different ways of approximately estimating 2
ˆ ( )X ∞  and 

{ }2
ˆvar ( )X ∞ .  To test these, we have made some numerical calculations for the case 

  1 2 T1, 200, 2000c c x= = = . (54) 

Figure 4 shows, as the curve with open circles, the exact probability density function 

2 T
ˆ( , | )P x x∞  of 2

ˆ ( )X ∞ , as computed numerically from the recursion relation (A2).  This 
function is really defined on the entire interval 20 1000x≤ ≤ , but its value is exceedingly 
small outside the 2x  interval shown.  A parallel exact evaluation of the first two moments 

of 2
ˆ ( )X ∞  according to formula (A4) yielded the mean and variance values shown in the 

first row of Table 1.  In Fig. 4, a normal density function with that mean and variance is 
shown as the solid curve, and it evidently fits the exact curve quite well; the fit is 
evidently much better than that provided by the binomial curve, shown dotted, which has 
the same mean and upper limit 1000.  This suggests that the normal approximations that 
were made in the several estimation strategies discussed above should be reasonable. 

 The second row in Table 1 shows the estimates of the mean and variance of 2
ˆ ( )X ∞  

given by the alpha-function formulas (47), along with the estimate of the relaxation time 
t̂  provided by formula (48).  The third row in Table 1 shows the estimates of 2

ˆ ( )X ∞  

and { }2
ˆvar ( )X ∞  given by the normally approximated stationary moment equations (50)-

(51).  The fourth row in Table 1 shows the estimates given by the hybrid formulas (52), 
and the last row shows the estimates given by the hybrid formulas (53). 
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2

ˆ ( )X ∞  { }2
ˆvar ( )X ∞  t̂  

exact values 729.811 113.996  
Eqs. (47), (48) 730.477 113.796 7.8×10−5 
Eqs. (50)-(51) 729.811 114.055  

Eqs. (52) 729.844 113.716  
Eqs. (53) 729.844 135.078  

  Table 1.  For the fast reactions (36) with parameter values (54). 
 
 The results in Table 1 imply that, at least for these parameter values, the first three 
approximation methods, namely the alpha function method, the normally approximated 
stationary moment equation method, and the hybrid alpha function / RRE method, all 
give excellent approximations to 2

ˆ ( )X ∞  and { }2
ˆvar ( )X ∞ .  The slight but tolerable 

error in the alpha function method mean (in the second row of figures in Table 1) is 
undoubtedly due to that estimate being the most likely value of 2

ˆ ( )X ∞  instead of the 

mean.   The surprisingly large error in the estimate of { }2
ˆvar ( )X ∞  in the second hybrid 

method (in last row in Table 1) suggests that we should not use that method.  An 
investigation of the source of this error revealed that the normally approximated second 
stationary moment equation (53b) is extremely sensitive to the value of RRE

2X ; thus, 
comparing the figures in rows 3 and 5 of Table 1, we see that changing the value of 

RRE
2X  in Eq. (53b) from 729.811 to 729.844, a change of only 0.005%, induces an 18% 

change in the value of { }2
ˆvar ( )X ∞ , from 114.005 to 135.078.  In contrast, the alpha 

function formula (52b), is not nearly so sensitive to the value of RRE
2X :  For formula 

(52b), a 0.9% change in the value of RRE
2X  induces only a 0.07% change in the computed 

value of { }2
ˆvar ( )X ∞ . 

 In view of the comparable accuracy of the first three methods, computational 
simplicity would dictate using the third one, namely Eqs. (52), to compute 2

ˆ ( )X ∞  and 

{ }2
ˆvar ( )X ∞  in a slow-scale simulation.  Once those values are substituted into Eqs. (41), 

we will have all we need to evaluate any slow-scale propensity function associated with 
the fast reactions (36). 
 Now let us suppose that the two fast reactions (36) are occurring in conjunction 
with the two slow reactions 

  3
1

cS →∅ ,    4
2 3

cS S→ , (55) 

for which  

  3 3 1 3

4 4 2 4

( ) , ( 1,0,0)
( ) ,    (0, 1,1)

a x c x v

a x c x v

= = − 	

= = − �

. (56) 
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In words, a molecule of the monomer species 1S  can spontaneously decay, and a 

molecule of the unstable dimer species 2S  can spontaneously convert to a stable form 3S .  
The four reactions (36) and (55) have been considered in earlier works as the “dimer-
decay” model,5,6 although the reaction channels were indexed differently.  In the present 
context, the fast reactions are 1R  and 2R , the slow reactions are 3R  and 4R , the fast 
species are 1S  and 2S , and the slow species is 3S .  Note that all the reactants for the slow 
reactions happen to be fast species. 
 From Eqs. (15b), (52a), and (41a), we compute the slow-scale propensity functions 
for reactions (55) as 

  ( )3 3 1 2 3 1 3 T 2
ˆ( ; , ) ( ) 2 RREa x x x c X c x X= ∞ ≈ − , (57a) 

  4 3 1 2 4 2 4 2
ˆ( ; , ) ( ) RREa x x x c X c X= ∞ ≈ . (57b) 

Here, T 1 22x x x= + , and 2
RREX  is given by Eq. (43).  We are assuming here that the 

stationary solution of the RRE for the virtual fast process provides an acceptable 
approximation to the means of the fast variables, an assumption that the results in Table 1 
support. 
 The key requirement for being able to apply the Slow-Scale SSA is that the 
relaxation time for the virtual fast process should be much smaller than the average time 
to the next slow reaction.  We can estimate the relaxation time t̂  of the virtual fast 
process by Eq. (48), replacing 2x̂  therein with 2

RREX .  The mean time to the next slow-
scale reaction can be estimated as the reciprocal of the sum of the propensity functions of 

the slow reactions, ( ) 1
3 1 4 2c x c x −+ , with 1x  and 2x  replaced by their respective relaxed 

values T 22 RREx X−  and 2
RREX .  The condition that this latter time be much larger than t̂  

then becomes 

  ( ) ( )1 2 1 T 2 3 T 2 4 24 2 3 2RRE RRE RREc X c x c c x X c X− + + + − +� . (58) 

 Assuming condition (58) holds, the Slow-Scale SSA for reactions (36) and (55) is 
as follows: 

 Initialize:  Given 0 10 20 30( ) ( , , )X t x x x= , set 0t t←  and 0i ix x←   ( 1, 2,3)i = . 

  Compute T 1 22x x x= + , and then compute 2
RREX  from Eq. (43). 

 Step 1.  In state 1 2 3( , , )x x x  at time t , compute 

  ( )3 3 1 2 3 T 2 4 3 1 2 4 2( ; , ) 2 , ( ; , )RRE RREa x x x c x X a x x x c X= − = . 

 Step 2.  Compute 0 3 1 2 3 3 1 2 4 3 1 2( ; , ) ( ; , ) ( ; , )a x x x a x x x a x x x= + .  Then, with 1r  and 2r  
  independent unit-interval uniform random numbers, compute 

  
0 3 1 2 1

1 1
ln

( ; , )a x x x r
τ

� �
= � �

� �
, 
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   3 3 1 2 2 0 3 1 23,   if  ( ; , ) ( ; , ),
4,     otherwise.                                 

a x x x r a x x x
j

≥�
= �
�

 

 Step 3.  Advance to the next slow reaction by replacing t t τ← +  and 
  ( 1, 2,3)i i i jx x iν← + = , 

  T 1 22x x x← + , 

  RRE
2  Eq. (43)X ← , 

   

{ }
{ }( ){ } [ ]

2

RRE
2 2 2 T

1 T 2

ˆcompute var ( )  from Eq. (52b),                                   

ˆ round sample , var ( )  in 0,[ 2] ,

2 .                                                                        

X

x X X x

x x x

� ∞

 ← ∞�


← −
�

�



 

 Step 4.  Record 1 2 3( , , , )t x x x  if desired.  Then return to Step 1, or else stop. 

 Some clarifying comments are in order regarding the procedures in Step 3:  The ix  
update implements (13a) and (13b).  As a consequence of those updates for 1i =  and 2 
(the fast species), the recalculation of Tx  results in Tx  getting reduced by 1 if 3j = , or 2 

if 4j = , and this necessitates the re-evaluation of RRE
2X .  The bracketed procedure 

implements (16), under the assumption that 2
ˆ ( )X ∞  can be decently approximated as a 

normal random variable with mean (52a) and variance (52b) – an assumption that is 
supported by the results in Fig. 4.  But to keep 1x  and 2x  nonnegative integers, we round 
the normal sample value for 2x  to the nearest integer and then force it to be not less than 
0 and not greater than the greatest integer in T 2x . 

 Notice that the evolution of 3x  depends on 1x  and 2x  only through the quantity Tx , 
a quantity that does not get changed by the bracketed procedure.  Therefore, the entire 
bracketed procedure can be omitted if a readout of the two fast species populations is not 
required.  In that case, the coding can be slightly simplified by deleting all references to 
the variables 1x  and 2x , and treating Tx  as a state variable that gets reduced by 1 
whenever 3R  fires or 2 whenever 4R  fires. 

 To test the foregoing simulation algorithm, we choose the reaction constant values 
  1 2 3 41, 200, 0.02, 0.004,c c c c= = = =  (59a) 

along with the initial values 
  10 20 30540, 730, 0x x x= = = . (59b) 

These initial values for the 1S  and 2S  population give T 2000x = , and they 
approximately satisfy the RRE for the virtual fast process; thus, we initially have 

RRE
2 730X ≈ .  The LHS of (58) then evaluates to 1283≈ , and the RHS of (58) evaluates 

to 13≈ .  Condition (58) is therefore reasonably well satisfied, at least initially, so the 
Slow-Scale SSA should be applicable. 
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 We first show, in Fig. 5a, the results of an exact SSA run for this system.  The 
populations of the three species are plotted out immediately after each occurrence of a 
slow reaction ( 3R  or 4R ).  During the time interval shown in the figure, there were 
2.483×107 reactions in all, and 1,742 of those were slow reactions; thus, successive slow 
reactions are separated by, on average, 1.4×104 fast reactions. 
 Figure 5b shows the results of a simulation made using the Slow-Scale SSA as 
detailed above.  The populations here are plotted out after every simulated reaction.  The 
trajectories in Figs. 5a and 5b are, for all practical purposes, statistically 
indistinguishable.  But whereas the exact SSA simulation in Fig. 5a took 17 minutes to 
simulate 2.483×107 reactions, the Slow-Scale SSA in Fig. 5b took a fraction of a second 
to simulate 1,741 reactions.  

X.  SUMMARY AND CONCLUSIONS 
 Our focus in this paper has been exclusively on chemical systems that exhibit a 
wide range of dynamical modes, the fastest of which is stable.  The operational meanings 
of these terms are spelled out in Secs. II – V.  We provisionally identify the fast reactions 
as those whose propensity functions have much larger values, at least most of the time, 
than the propensity functions of all the other slow reactions.  We next identify the fast 
and slow species by declaring a fast species to be any whose population gets changed by 
at least one fast reaction; all the other species are called slow.  Several subtleties attend 
these definitions of fast and slow reactions and species:  A slow species cannot get 
changed by a fast reaction but a fast species can get changed by a slow reaction; the 
propensity functions of both fast and slow reactions can depend on both fast and slow 
species; and the population of a fast species need not be “large”. 
 Our next step is to define the virtual fast system (or virtual fast process) to be the 
imaginary system composed of all the fast species and only the fast reactions; i.e., the 
virtual fast system is the real fast system with all the slow reactions switched off.  Unlike 
the real fast process, the virtual fast process is Markovian, and hence potentially tractable.  
But for the systems of interest to us, this virtual fast process must satisfy two critical 
conditions:  First, it must be stable; i.e., its t → ∞  probability distribution must exist and 
be independent of t .  And second, in the current state, the relaxation time of the virtual 
fast process must be very much less than the expected time to the next slow reaction.  If 
satisfying these conditions requires modifying our initial provisional roster of fast and 
slow reactions, then we do that (regardless of propensity function values).  But we expect 
that these two conditions can be satisfied by any system whose deterministic reaction rate 
equations exhibit pronounced stiffness, and we know from experience that many 
important real world systems fall into that category. 
 In the context of the foregoing definitions and conditions, the key result of our work 
here is the Slow-Scale Approximation in Sec. VI.  It asserts that for each slow reaction 
we can define a “slow-scale propensity function” (9) – as the average of the regular 
propensity function with respect to the asymptotic virtual fast process – which 
approximately replaces the regular propensity function on the time scale of the slow 
reactions.  In Sec. VII we showed how these slow-scale propensity functions can be used 
to simulate the evolution of the system one slow reaction at a time, a simulation 
procedure that we dubbed the Slow-Scale SSA.  This algorithm offers the potential for 
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substantial gains in computational speed over the exact SSA whenever the time scales of 
the fast and slow reactions are widely separated. 
 In Secs. VIII and IX we illustrated the use of the Slow-Scale SSA on two simple 
systems.  The virtual fast processes for these two systems were, respectively, the 
reversible isomerization reactions and the reversible dimerization reactions.  The 
asymptotic properties of the reversible isomerization were calculated exactly, but the 
asymptotic properties of the reversible dimerization could only be calculated 
approximately.  For the latter effort, we proposed four different approximation 
procedures, three of which were found to be very accurate for the numerical example 
being considered.  Coupling these two fast reactions with some simple slow reactions, we 
showed that for system parameter values that satisfy the hypothesis of the Slow-Scale 
Approximation, simulations carried out using the Slow-Scale SSA produced results that 
were practically indistinguishable from the results of the exact SSA, but did so roughly a 
thousand times faster (see Figs. 1, 2, 3, and 5). 
 Our two example fast processes were of course chosen for their simplicity, so that 
we could show how the Slow-Scale SSA works when the asymptotic properties of the 
virtual fast process can be estimated analytically.  But fast reversible isomerizations and 
dimerizations are actually rather common in real cellular systems.  For example, in the 
lambda-phage model of Arkin, et al.,7 two particular fast reversible dimerizations 
sometimes account for over 95% of the reaction activity.  So it is worth emphasizing that 
the formulas we have derived here for the first two moments of fast reversible 
isomerization and dimerization reactions, such as Eqs. (24)-(25) for the isomerization 
reactions, allow evaluation of any slow-scale propensity function relative to those fast 
processes.  In a separate paper now nearing completion, the present authors will show 
how the formulas obtained here for the fast reversible dimerization can be used to speed 
up the lambda-phage model simulation.  That paper will also describe an alternative 
simulation-based procedure for generating random samples of the stationary virtual fast 
process for use in operation (14) of the Slow-Scale SSA. 
 Our work here has many parallels with the path-breaking papers of Haseltine and 
Rawlings,2 and Rao and Arkin;3  for instance, our provisional grouping of the reactions 
into fast and slow categories on the basis of propensity function values follows directly in 
the footsteps of Haseltine and Rawlings.2  But our virtual fast system is defined 
differently, and we think more simply, than the fast system used by both Haseltine and 
Rawlings2 and Rao and Arkin,3  which was the real fast system conditioned on the slow 
system.  The non-Markovian nature of that process makes a reliable analysis 
problematic.8  In contrast, our virtual fast system, being Markovian, is much easier to 
analyze.  And our Slow-Scale Approximation shows precisely how to make use of the 
stationary (asymptotic) properties of that virtual fast system to construct a reliable Slow-
Scale SSA. 
 In some cases, our Slow-Scale SSA will be practically the same as the simulation 
strategies that emerge from References 2 and 3, after all the approximations invoked by 
those two approaches have been made.  In these cases of commonality, the fast species 
populations effectively get replaced by the solution of the deterministic reaction rate 
equation for a system that is essentially our virtual fast system.  Indeed, in the simulations 
reported in the preceding two sections, this is pretty much all that was done insofar as the 
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evolution of the slow species is concerned.  But we believe that our derivation of the 
Slow-Scale Approximation makes the theory underlying that replacement much more 
transparent.  It provides a rational basis for deciding beforehand whether or not such a 
replacement is warranted, and it tells us what we should do when it is not.  For instance, 
it enabled us to treat with confidence the system of Figs. 2 and 3, in which the critical fast 
species 2S  has an average population that is less than one.  By contrast, treating the fast 
reactions in that circumstance using the chemical Langevin equation or the reaction rate 
equation, along the lines suggested by Haseltine and Rawlings,2 would have seemed 
questionable since those equations usually require the species populations to be large. 
 On the subject of population sizes, the simulation results in Figs 1 and 5 illustrate 
an often unappreciated point:  The size of the fluctuations in a species population is not 
tied in any simple way to the size of the mean population of that species.  Although it is 
true that larger populations tend to exhibit smaller relative fluctuations, the trajectories in 
Figs. 1 and 5 show that fluctuation ranges of individual species depend strongly on the 
details of the specific reactions involved, and there is no “universal critical population 
level” above which fluctuations can always be ignored and below which they cannot. 
 Another interesting feature of the simulation results in Figs. 1 and 5 is the way in 
which the population of the slow species 3S  remains relatively smooth in spite of the 
large fluctuations in the population of the fast species 2S  that gives rise to 3S .  A similar 

phenomenon was observed some time ago by Kurata, et al.9 in their studies of the heat 
shock response mechanism in E. coli, and it was pointed out10 that that system seemed to 
be subjecting the fluctuations of one sparsely populated but critical fast species to a kind 
of “low pass filter”.  We believe the reason for this filtering effect can be discerned from 
our proof in Sec. VI of the Slow-Scale Approximation:  It shows that the ensemble 
average of the slow reaction propensity function in Eq. (9) actually represents a time 
integral over that propensity function (which in turn arose by invoking the addition law 
of probability), and as is well known, temporal integration tends to filter out high 
frequency fluctuations.  The integral is smoother than the integrand.  So while it is true 
that slow-scale propensity functions depend on the fast variables, that dependence is 
through a time integral over the fast variables, which smoothes out their high frequency 
fluctuations. 
 The relation of the Slow-Scale SSA to leaping methods5,6 remains to be fully 
explored, but one thing in that regard is already clear:  For stiff systems, the Slow-Scale 
SSA is far superior to explicit leaping methods.6  By way of illustration, we found that an 
explicit tau-leaping simulation of the reactions in Fig. 5, made with the accuracy control 
parameter chosen large enough to admit noticeable differences from an exact SSA 
simulation, gave initial leaps that spanned less than 100 reactions, as compared to leaps 
spanning over 104 reactions in the more accurate Slow-Scale SSA run of Fig. 5b.  This is 
not surprising since it is now recognized5 that explicit leaping methods perform poorly on 
stiff systems – and the parameter values (59a) make reactions (36) and (55) very stiff.  
Explicit leaps are limited by stability considerations to the time scale of the fastest mode 
in the system.  Implicit tau-leaping, however, is another matter, since it is expressly 
designed to accommodate stiff systems.5  Our future work will explore the connection 
between implicit tau-leaping and the Slow-Scale SSA. 
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 Another topic for future work will be to explore how the several methods described 
in Sec. IX for computing the asymptotic properties of a virtual fast process can be 
extended to more complicated processes, such as processes with more than one 
independent state variable.  Success in this effort will be critical to making the Slow-
Scale SSA a broadly applicable methodology. 
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APPENDIX A:  STATIONARY PROPERTIES OF UNIVARIATE 
BIRTH-DEATH MARKOV PROCESSES 

 A univariate birth-death Markov process ( )X t  is by definition a scalar jump 
Markov process that is confined to the non-negative integers and changes state only in 
steps of 1± .11  The dynamics of such a process are governed by two “stepping functions” 
W± .  They are defined so that, if ( )X t x= , then ( )W x dt±  gives the probability that 

( )X t dt+  will equal 1x ±  for any infinitesimal 0dt > .  The stationary form of the master 
equation for such a process reads 
  [ ]0 ( 1) ( 1, ) ( ) ( , )W x P x W x P x− −= + + ∞ − ∞  

  [ ]( 1) ( 1, ) ( ) ( , )W x P x W x P x+ ++ − − ∞ − ∞ . 

By rearranging the terms in this equation we can deduce that 
  ( ) ( , ) ( 1) ( 1, ) constantW x P x W x P x− +∞ − − − ∞ = , 

and a consideration of the case 0x =  shows that the constant must be zero; thus, the 
stationary solution of the master equation, when it exists, satisfies 
  ( ) ( , ) ( 1) ( 1, )W x P x W x P x− +∞ = − − ∞ . (A1) 

 Equation (A1) is called the detailed balance relation.  It is evidently a recursion 
relation, since it allows us to calculate the values of ( , )P x ∞  for all x  in terms of its 
value at any arbitrarily chosen *x x=  by 

  

( 1)
( 1, ),   for  * 1, ,0,

( )
( , )

( 1)
( 1, ),   for  * 1, , .

( )

W x
P x x x

W x
P x

W x
P x x x L

W x

−

+

+

−

+� + ∞ = −
∞ = � − − ∞ = +
�

�

�

 (A2) 

This expresses every ( , )P x ∞  as some x -dependent factor times ( *, )P x ∞ , and the value 
of the latter can then determined by imposing the normalization condition, 

  
0

( , ) 1
L

x

P x
=

∞ =� . (A3) 

To avoid computational underflow in numerically iterating the recursion (A2), one should 
choose *x  to be at or near a relative maximum of P  and initially take ( *, ) 0.1P x ∞ = .  
The upper limit L  assumed in Eqs. (A2) and (A3) could, from a strictly mathematical 
point of view, be ∞ ; however, in the practical chemical problems with which we shall be 
concerned, where x  represents the number of molecules of some species, L  will always 
be finite.  The moments of ( )X ∞  can be calculated from ( , )P x ∞  as 

  
0

( ) ( , ) ( 1, 2, )
L

n n

x

X x P x n
=

∞ ≡ ∞ =� � . (A4) 

 Sometimes Eq. (A2) can be iterated analytically, as in Example 1 of the text.  Other 
times, the upper x -limit L  may be small enough that the iteration can be accomplished 
numerically.  More often than not, though, the iteration gives results that are too 
complicated to be of practical use.  But it is possible to extract from Eq. (A2) some 
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relatively simple formulas that give the locations and widths of the relative maximums of 
( , )P x ∞ , and in the case of unimodal distributions these often provide acceptable 

estimates of the mean and variance of ( )X ∞ . 

 A relative maximum of ( , )P x ∞  is called a stable state of ( )X t .  It can be proved 
from Eq. (A1) that a relative maximum of ( , )P x ∞  can always be computed as the 
greatest integer in a down-going root of the function11 

  ( ) ( 1) ( )x W x W xα + −− −� ; (A5) 

i.e., x̂  (a non-negative integer) will a stable state of ( )X t  if and only if, for some 
[0,1)δ ∈ ,  

  ˆ( ) 0xα δ+ =    and   ˆ( ) 0xα δ′ + < . (A6) 

These defining conditions for a stable state x̂  can usually be approximated to ˆ( ) 0xα =  

and ˆ( ) 0xα ′ < .  And if ( )X t  has only one stable state, we can usually put ˆ( )X x∞ ≈ . 

 It can also be shown from Eq. (A2) that the Gaussian variance of stable state x̂ , 
which is defined as the variance of the Gaussian function ( )G x  that satisfies 

ˆ ˆ( ) ( , )G x P x= ∞ , ˆ ˆ( ) ( , ) 0G x P x′ ′= ∞ = , and ˆ ˆ( ) ( , )G x P x′′ ′′= ∞ , is given by11 

  2
G

ˆ( )ˆ( )
ˆ( )

W x
x

x
σ

α
−=
′−

. (A7) 

In words, 2
G ˆ( )xσ  is the variance of the “best Gaussian fit” to the peak in ( , )P x ∞  at 

ˆx x= .  If ( )X t  has only one stable state x̂ , we can usually put { } 2
G ˆvar ( ) ( )X xσ∞ ≈ . 

 It is also useful to have some idea of how large 0t t−  needs to be in order for 

0 0( , | , )P x t x t  to be well approximated by ( , )P x ∞ , or equivalently, how long it takes 

0( )X t  to relax to ( )X ∞ .  In cases where there is more than one stable state this 
relaxation time will be roughly the average time it takes the process to visit all of its 
stable states at least once, and that time (which may be quite long) will be difficult to 
compute in general.  But if there is only one stable state, which is the case for the simple 
examples that we are considering here, the relaxation time will be of the order of the time 
it takes ( )X t  to relax to ( )X ∞ .  We can estimate that time by reasoning as follows: 

 The time-evolution equation for the mean of a birth-death Markov process ( )X t  
reads11 

  ( ) ( ) ( )( )
( ) ( ) ( )

d X t
W X t W X t X t

dt
α+ −= − ≈ , 

where the last step has invoked the definition (A4) together with the assumption that the 
values of ( )X t  are typically large compared to 1 (which is usually the case).  Expanding 

( )xα  in a Taylor series about the stable state value x̂ , and assuming that we can confine 
our attention to a region around x̂  that is small enough that α  can be linearly 
approximated there, we get 
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  ( ) ( )( )
ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )

d X t
x x X t x x X t x

dt
α α α′ ′≈ + − = − . 

Putting ˆ( ) ( )u t X t x≡ − , we thus see that ˆ( ) ( ) ( )du t dt x u tα′≈ .  The solution of this 

differential equation is ( )ˆ( ) (0) exp ( )u t u x tα′≈ ; therefore, 

  ( ) ( )ˆ ˆ ˆ( ) (0) exp ( )X t x X x x tα′≈ + − . 

Recalling that ˆ( ) 0xα ′ < , we thus conclude that ( )X t  relaxes to ˆ( )X x∞ ≈  in a time 
of order 

  
1ˆ

ˆ( )
t

xα
≈

′−
. (A8) 

If there is only one stable state x̂ , this can usually be taken as a reasonable estimate of 
the time it takes for a birth-death process ( )X t  to relax to its stationary form ( )X ∞ . 
 To test the usefulness of formulas (A6)-(A8), let’s see how closely they reproduce 
the exact results found in Sec. VIII.A for the reversible isomerization (17).  Substituting 
Eqs. (20) into the definition (A4), we find that the birth-death process 1

ˆ ( )X t  has 

  ( )1 2 T 1 1 1 2 T 1 1 2( ) ( 1) ( 1) ( )x c x x c x c x x c cα = − − − = + − + . (A9) 

This linear function evidently has a single down-going root at 1 2 T 1 2( 1) ( )x c x c c= + + , so 

by Eq. (A6) the stable state of 1( )X t  is 

  2 T
1

1 2

( 1)ˆ
( )

c x
x

c c
� �+= � �+� �

, (A10) 

where the brackets signify “greatest integer in”.  In the usual case that T 1x � , this value 

for 1̂x  evidently provides an excellent approximation to 1
ˆ ( )X ∞  in Eq. (24a).  From Eq. 

(A7) we compute 

  2 1 1 1 2 T
G

1 2 1 2 1 2

ˆ ( 1)ˆ( )
( )

c x c c x
x

c c c c c c
σ

� �+= = � �+ + +� �
, (A11) 

where the last step invokes Eq. (A10).  In the case that T 1x � , this value for 2
G ˆ( )xσ  

evidently provides an excellent approximation to { }1
ˆvar ( )X ∞  in Eq. (24b).  And finally, 

substituting Eq. (A9) into Eq. (A8) gives 

  
1 2

1
t̂

c c
≈

+
, (A12) 

which agrees exactly with the relaxation time estimate (28). 
 So if we had not been able to analytically solve the recursion relation (A2) to get 
the results (21)-(24), and the dynamical equations for 1

ˆ ( )X t  and { }1
ˆvar ( )X t  to get the 

result (28), we could have obtained very good approximations to all those results by 
using the much simpler formulas (A6)-(A8). 
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  APPENDIX B:  THE STATIONARY MOMENT EQUATIONS 
 The generic N -species, M -reaction stationary chemical master equation reads 

  { }
1

0 ( ) ( , ) ( ) ( , )
M

j j j j
j

a x P x a x P xν ν
=

= − − ∞ − ∞� , (B1) 

where 1( , , )Nx x x≡ �  and 1( , , )j j N jν ν ν≡ � .  The stationary average of any function of 

state f  is 

  ( )( ) ( ) ( , )
x

f X f x P x∞ ≡ ∞� , (B2) 

where the summation extends over all values of all components of x .  If we multiply Eq. 
(B1) by ( )f x  and then sum over x  we get 

  
1 1

0 ( ) ( ) ( , ) ( ) ( ) ( , )
M M

j j j j
j x j x

f x a x P x f x a x P x tν ν
= =

= − − ∞ −�� �� . 

But since 
  ( ) ( ) ( , ) ( ) ( ) ( , )j j j j j

x x

f x a x P x f x a x P xν ν ν− − ∞ = + ∞� � , 

this is 

  
1

0 ( ) ( ) ( ) ( , )
M

j j
j x

f x f x a x P xν
=

� �= + − ∞� ��� , 

or, using Eq. (B2), 

  ( ) ( ) ( )
1

0 ( ) ( ) ( )
M

j j
j

f X f X a Xν
=

� �= ∞ + − ∞ ∞� �� . (B3) 

 Putting ( ) if x x=  in Eq. (B3) gives 

  ( ) ( )
1

0 ( ) ( ) ( )
M

i i j i j
j

X X a Xν
=

� �= ∞ + − ∞ ∞� �� , 

whence 

  ( )
1

0 ( ) ( 1, , )
M

i j j
j

a X i Nν
=

= ∞ =� � . (B4) 

And putting ( ) i if x x x ′=  in Eq. (B3) gives 

  ( )( ) ( )
1

0 ( ) ( ) ( ) ( ) ( )
M

i i j i i j i i j
j

X X X X a Xν ν′ ′ ′
=

� �= ∞ + ∞ + − ∞ ∞ ∞� �� , 

whence 

  ( ) ( )
1 1

0 ( ) ( ) ( ) ( )
M M

i j i j i j i j
j j

X a X X a Xν ν′ ′
= =

= ∞ ∞ + ∞ ∞� �  

  ( )
1

( ) ( 1, , ; , , )
M

i j i j j
j

a X i N i i Nν ν ′
=

′+ ∞ = =� � � . (B5) 
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 If all the propensity functions are no more than linear in the state variables, meaning 
that none of the jR  reactions involves more than one reactant molecule, then the N  

equations (B4) can be solved for the N  stationary first moments ( )iX ∞ , and the 
1
2 ( 1)N N +  equations (B5) can be solved for the 1

2 ( 1)N N +  stationary second moments 

( ) ( )i iX X ′∞ ∞ .  An example is provided by the reversible isomerization reaction defined 
in Eqs. (17) and (18):  Equation (B4) gives, using the conservation relation (19), 

  

( ) ( )
( )

11 1 21 2

1 1 2 T 1

2 T 1 2 1

0 ( ) ( ) ,

( 1) ( ) ( 1) ( ) ,

0 ( ) ( ) .

a X a X

c X c x X

c x c c X

ν ν= ∞ + ∞

= − ∞ + + − ∞

= − + ∞

 

This gives the exact result (24a) for 1( )X ∞ .  And Eq. (B5) gives for 1i i′= = , 

  
( )11 1 1 12 1 2

11 11 1 12 12 2

0 2 ( ) ( ( )) ( ) ( ( ))

( ( )) ( ( )) ,

X a X X a X

a X a X

ν ν

ν ν ν ν

= ∞ ∞ + ∞ ∞

+ ∞ + ∞
 

  
( )( )

( )
1 1 1 1 2 T 1

2 2
1 1 2 T 1

2 ( 1) ( ) ( ) ( 1) ( ) ( )

( 1) ( ) ( 1) ( ) ,

X c X X c x X

c X c x X

= − ∞ ∞ + + ∞ − ∞

+ − ∞ + + − ∞
 

  ( )2
1 2 1 2 T 1 2 1 2 T0 2( ) ( ) 2 ( )c c X c x c c X c x= − + ∞ + + − ∞ + . 

Using the previously obtained result for 1( )X ∞  this last equation can be reduced to 

  22 1 2 T
1 1 2

1 2

( ) ( )
( )

c c x
X X

c c
∞ = ∞ +

+
, 

which gives the exact result (24b) for { }1var ( )X ∞ . 

 More often, though, at least one reaction will be bimolecular, so its propensity 
function will be quadratic in the components of X .  In that case, Eqs. (B4) will contain at 
least one second-order moment ( ) ( )i iX X ′∞ ∞ , and Eqs. (B5) will contain at least one 

third-order moment ( ) ( ) ( )i i iX X X′ ′′∞ ∞ ∞ , and so on.  The set of stationary moment 
equations will then be infinitely open-ended, and hence not solvable.  Usually, the best 
we can do in such a situation is to make some sort of approximating assumption that 
closes the moment equations (B4) and (B5). 
 The crudest closure approximation is the deterministic approximation: 

  22 ( ) ( ) ,i iX X i∞ = ∞ ∀ . (B6) 

This implies that { }var ( ) 0iX ∞ =  for all i , and hence that ( )iX ∞  is a sure variable, with 

no fluctuations.  The fact that { }cov ( ), ( )i iX X ′∞ ∞  is bounded in absolute value by the 

product of { }var ( )iX ∞  and { }var ( )iX ′ ∞  means that, under the deterministic  
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approximation (B6), all the covariances vanish as well; thus, ( ) ( )i iX X ′∞ ∞  

( ) ( )i iX X ′= ∞ ∞ .  Equation (B4) thus simplifies to 

  ( )
1

0 ( ) ( 1, , )
M

i j j
j

a X i Nν
=

= ∞ =� � . (B7) 

This says that the ( )iX ∞  are just the solutions of the standard stationary reaction rate 
equation.  There is no need for Eqs. (B5) in this approximation, since (B6) has the effect 
of approximating all higher order moments as simple products of the first-order moments. 
 As crude as the deterministic approximation is, there are many circumstances in 
which it will be adequate.  Usually this will happen if all the species populations are large 
compared to 1, which is not an uncommon situation in chemical kinetics.  But 
circumstances can also arise in which the deterministic approximation will not be 
adequate, and in those cases a more sophisticated approximation strategy for closing the 
stationary moment equations must be used. 
 In the special case that ( )X ∞  is a scalar random variable whose probability density 
function has a single peak, which is to say a single stable stationary state, it is sometimes 
possible to approximate ( )X ∞  as a normal random variable, 

  2( ) ( , )X m σ∞ = � . (B8) 

The mean m  and variance 2σ  are to be chosen to satisfy the first two moment equations 
(B4) and (B5).  This is possible since, even though those two equations typically involve 
moments of ( )X ∞  higher than the second, for the normal random variable all moments 

are given explicitly in terms of the two parameters m  and 2σ .  In particular, 
  ( )X m∞ = , (B9a) 

  2 2 2( )X m σ∞ = + , (B9b) 

  ( )3 2 2( ) 3X m m σ∞ = + . (B9c) 

The strategy, then, is to substitute Eqs. (B9) into Eqs. (B4) and (B5), solve those two 
equations simultaneously for the two parameters m  and 2σ , and finally evaluate the first 
two moments from Eqs. (B9a) and (B9b).  Since the resulting two equations are nonlinear 
in the unknowns, a numerical solution procedure will usually be required.  For obvious 
physical reasons we can accept only solutions with both m  and 2σ  non-negative; indeed, 
the entire approximation will be suspect if it is not also true that 0m σ− > . 
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  FIGURE CAPTIONS 

Fig. 1.  Results of simulating reactions (17) and (30) for the parameter values (34), made 
using (a) the exact SSA, and (b) the approximate Slow-Scale SSA.  In both runs, points 
were plotted immediately after each firing of the slow reaction (30).  The exact run in (a) 
had to simulate over 40 million reaction events, whereas the approximate run in (b) 
simulated only 521 reaction events. 

Fig. 2.  An exact SSA simulation of reactions (17) and (30) for parameter values (35), 
which values give an initial average 2S  population of only 0.5.  In (a), samplings of all 
three populations are plotted immediately after each firing of the slow reaction (30).  
More than 23 million reactions in all were simulated here.  In (b) the 2S  population for 
the same run is sampled immediately before each slow reaction, and in (c) the 2S  
population for the same run is sampled at equal time intervals of 1.167t∆ = .  The 
differences in the three 2X  trajectories highlight the fact that 3R  firing times are highly 
dependent on the 2S  population.  The equal-time-sampling trajectory (c) should be the 
most “typical.” 

Fig. 3.  A simulation of reactions (17) and (30) for parameter values (35) made using the 
approximate Slow-Scale SSA.  The points are plotted out just after each firing of the slow 
reaction (30), except that the 1X  and 2X  trajectories have been “relaxed” to a very short 
time after that.  For reasons explained in the text, the 2X  trajectory here matches the 
“typical” SSA 2X  trajectory in Fig. 2c better than the either of the 2X  trajectories in 
Figs. 2a or 2b. 

Fig. 4.  Plots of 2 T( , | )P x x∞ -versus- 2x  for the reversible dimerization reactions (36), 
using the parameter values (54).  The open circles show the exact function, as computed 
numerically from the recursion relation (A2).  The solid curve is the normal distribution 
with the same mean and variance as the exact curve.  The dashed curve is the binomial 
distribution with the same mean and upper limit T[ 2]x  as the exact curve.  The 
distribution is actually defined on the interval [0,1000], but all three curves are very close 
to zero outside the peak area; however, a semi-log plot would reveal substantial 
differences among the three curves outside the peak in just how close to zero they are. 

Fig. 5.  Results of simulating reactions (36) and (55) for the parameter values (59), made 
using (a) the exact SSA, and (b) the approximate Slow-Scale SSA.  In both runs, points 
were plotted immediately after the firing of either of the slow reactions (55).  The exact 
run in (a) simulated 2.483×107 reaction events in about 17 minutes, whereas the 
approximate run in (b) simulated 1,741 reaction events in a fraction of a second. 
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