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Abstract

Morton-Firth and Bray’s stochastic simulator (StochSim) and Gillespie’s stochastic simulation

algorithm (SSA) are two important methods for stochastic modeling and simulation of biochemical

systems. They have been widely applied to different biological problems. A key question is discussed

here: Are these two methods equivalent? This paper compares these two methods using fundamental

probability analysis. Our analysis clearly shows that, when the time step in the StochSim is chosen

very small, the StochSim can be viewed as a first-order approximation to the SSA. Our analysis also

explains why the SSA is usually much more efficient than the StochSim for biochemical systems.

However, when multistate species present in a system, the StochSim clearly shows its advantage. We

use complexity analysis to explain this advantage. The Hybrid SSA (HSSA) is proposed to combine

the advantages of both the StochSim and the SSA. When the populations of the multistate species

are small, the HSSA is very efficient. Numerical experiments are presented to verify the analysis.

1 Introduction

Traditionally models of biochemical systems are formulated using reaction rate equations (RREs)

that are deterministic and continuous. In recent years, more and more attention has been paid

to the stochastic and discrete modeling and simulation methods due to concerns over stochastic

effects resulting from the small numbers of reacting molecules in microscopic systems.1–4

In this paper we are concerned with two fundamental stochastic simulation methods that have

been successfully applied to many biological systems. One is the famous Gillespie’s Stochastic Sim-
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ulation Algorithm (SSA),5,6 an essentially exact simulation method that follows the same distribu-

tion as that rules the chemical master equations5 (CME). Progress7–9 has been made to improve

the implementation of the SSA. Approximation methods, particularly the tau-leaping methods,10

have been proposed to improve the efficiency at a little expense of accuracy. The development of

accurate and efficient approximation algorithms for SSA is still undergoing.

The other stochastic simulation method is the stochastic simulator (StochSim) developed by

Morton-Firth and Bray.11–13 The StochSim has been successfully applied in the stochastic modeling

of the bacterial chemotaxis. An important feature of StochSim is its object-oriented nature. It

treats all reacting molecules as individual objects with their own properties, such as conformation

states, velocity, spatial information, etc. Such a special feature makes the StochSim extendable for

handling special situations such as the multistate variables or spatially inhomogeneous stochastic

simulation. However, the StochSim has exhibited low efficiency in systems containing large number

of molecules.

An important question should be raised naturally: Are these two methods equivalent? This

question was first discussed in Shimizu and Bray,13 which showed an equivalence of the physical

assumptions of the two methods. However, even though both methods are based on equivalent

fundamental physics assumptions, mathematically they may still be different, particularly in their

computational efficiency. Later another comparison14 was published to show efficiency differences

between them. That comparison was mostly based on a particular model. Theoretical comparison

is still in need to understand their differences in accuracy and efficiency. In this paper we present

a detailed comparison, based on fundamental probability analysis, for the two algorithms (with a

little modification made for the StochSim). We limit our analysis under the well-stirred (spatially

homogeneous) assumption. Our analysis reveals that if the time step in the StochSim is selected

very small, the probability used in the StochSim is a first-order approximation to the corresponding

one in the SSA. In other words, they are NOT equivalent but can be very close. According to the

analysis, the SSA is more efficient in general. However, when multistate variables are involved in

a system, the StochSim can be much more efficient. We explain this from complexity analysis and
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numerical experiments. We believe that this detailed comparison will help to better understand

the connection between the StochSim and the SSA and to develop efficient algorithms that can

combine the advantages of them. As an initial attempt, we propose a hybrid strategy for cases

where the populations of the multistate species are low.

The outline of this paper is as follows. In Section 2 we briefly review the SSA and the StochSim.

In Section 3 we present a detailed comparison between the two algorithms. In Section 4 we discuss

the special situation when multistate species are involved in the system. Numerical experiments

are presented in Section 5.

2 Background

2.1 SSA

Suppose the system involves NS molecule species {S1, . . ., SNS
}. The state vector is denoted by

X(t) = (X1(t), . . . , XNS
(t)), where Xi(t) is the number of molecules of species Si at time t. M

reaction channels {R1, . . . , RM} are involved in the system. Assume that the system is well-stirred

and in thermal equilibrium. The dynamics of reaction channel Rj is characterized by the propensity

function aj and by the state change vector νj = (ν1j , . . . , νNS ,j): aj(x)dt gives the probability that

one Rj reaction will occur in the next infinitesimal time interval [t, t+dt), and νij gives the change

in the Si molecule population induced by one Rj reaction.

The dynamics of the system can be simulated by the SSA method.5,6 With X(t) = x, let

a0(x) =
∑M

j=1 aj(x). On each step, SSA generates two random numbers r1 and r2 in U(0, 1), the

uniform distribution on the interval (0, 1). The time for the next reaction to occur is given by t+τ ,

where τ is given by

τ =
1

a0(x)
log(

1

r1
). (1)

The index j for the next reaction is given by the smallest integer satisfying

j
∑

l=1

al(x) > r2a0(x). (2)
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The system states are updated by X(t + τ) = x + νj. The simulation proceeds to the next

occurring time, until it reaches the final time. For a system with a large M value, we can assume

that the stoichiometric matrix is sparse, which is usually true for a large chemical reacting system.

Then with the best simulation strategy, the time complexity in a single step can be estimated by

O(log(M)).7,8,15–17

2.2 StochSim

The StochSim is an object-oriented algorithm. In initialization, objects for all molecules in the

system are created, along with a number of pseudo-molecule objects. Then a look-up table is

constructed to describe the reaction possibilities for all reaction channels. The rows of the table

list the first reactant, and the columns list the second reactant (if the second reactant is a pseudo-

molecule, it represents a mono-molecule reaction). The corresponding entry in the table shows the

probability for the two molecules to have a reaction. If there are multiple reaction channels between

the two molecules, this entry saves the sum of the probabilities of all involved reaction channels.

The whole simulation time interval is equally divided into discrete time steps. At each time

step, the StochSim proceeds with the following steps.

1. Randomly select the first reactant from all real molecule objects using uniform distribution.

2. Randomly select the second reactant from all real molecule objects, except the one just selected

in step 1 ∗ and pseudo-molecule objects using uniform distribution. With the two objects selected

in steps 1 and 2, a possible reaction is determined.

3. Search in the look-up table for the possible reaction between the two selected objects. If no

corresponding entry is found, StochSim concludes that no reaction occurs in this time step.

Otherwise a uniform random number in (0, 1) is generated and compared with the probability

∗This is a modification of the original StochSim, in which the second step may select the same molecule as in the

first step. Consider a dimerization reaction between two molecules of the same species. It is not possible to have

a reaction with only one molecule selected twice. Thus we believe this situation should be excluded. We have also

changed the probability calculation formula for the look-up table to reflect this change.
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retrieved from the table. If the probability from the table is smaller, StochSim concludes that no

reaction occurs in this time step. Otherwise there is a reaction between these two molecules. If

there is only one possible reaction channel between these two molecules, it is simple. Otherwise,

the code selects one of the reaction channels between the two molecules in a similar way as the

equation (2) in the SSA.

4. Update the system accordingly and proceed the simulation to the next time step.

The numbers of real molecules and pseudo-molecules are fixed, and the timestep ∆t and the

entries in the table are pre-calculated before the simulation. Let N be the number of all real

molecules in the system, N0 be the number of pseudo-molecules, k1j be a mono-molecule rate

constant, k2j be a bi-molecule rate constant, ∆t be a fixed but small time step, NA be the Avogadro

constant, and V be the volume of the system. The probabilities in the look-up table are calculated

with the following formula.

For a mono-molecule reaction,

p1j =
k1jN(N + N0 − 1)∆t

N0
. (3)

For a bi-molecule reaction,

p2j =
k2jN(N + N0 − 1)∆t

2NAV
. (4)

In order to treat mono-molecule reactions similarly as bi-molecule reactions, pseudo-molecules are

introduced with a fixed population N0. N0 is calculated to make the maximum possibilities of

mono-molecule reactions equal to that of the bi-molecule reactions. Let k1max be the maximum

reaction rate of all mono-molecule reactions, k2max be the maximum reaction of all bi-molecule

reactions. The formula of N0 is given by

N0 = Round

(

2NAV ×
k1max

k2max

)

, (5)

where Round(x) represents the positive integer nearest to x. The time step ∆t is calculated before

the simulation. The criteria is that the maximum probability in the look-up table is smaller than a
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probability constant MAXP . The choice of MAXP is important but tricky. As it is not the major

topic of this paper, interested readers may refer to a review article by Chatterjee and Vlachos.17 In

the real implementation of the StochSim,18 MAXP is set as 0.599, and the corresponding formula

is given18 by

∆t =
MAXP

k1maxN + k2maxN(N+N0−1)
2NAV

. (6)

Note that the fixed N limit the application of this algorithm. For example, in a system with a

binding reaction

A + B ↔ C, (7)

the total number of molecules will change after the firing of this reaction. In the real implementa-

tion18 of the StochSim, to solve this problem N is chosen larger than the actual total population

and certain number of dummy species are introduced to compensate the change of total number of

molecules. The reaction (7) can be read as

A + B ↔ C + Dummy. (8)

For the simplification, in the following analysis we will still assume that N is the total population.

3 Comparison of SSA and StochSim

The implementation details of the SSA and the StochSim are quite different. However, it was

stated in Shimizu and Bray13 that these two methods are based on equivalent fundamental physics

assumptions. Pettigrew and Resat14 also showed that these two methods generated similar distri-

bution plots for a particular model. In this paper we analyze the StochSim from a different angle.

Instead of directly comparing it with the SSA, we first compare the SSA with a simple simulation

procedure. Suppose that we equally divide the time interval into many small time slices ∆t. Be-

cause the probability that the Rj reaction channel will fire in the next infinitesimal time interval

[t, t+dt) is given by aj(x)dt, when ∆t is sufficiently small the probability that one Rj reaction will

occur in the time interval [t, t + ∆t) can be approximated by aj(x)∆t. We can then implement the

following simulation procedure.
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Simulation Procedure 3.1 Suppose at time t the system is at X(t) = x and the probability that

one Rj reaction will occur in the time interval [t, t + ∆t) is given by aj(x)∆t. In each ∆t time

slice, a random number r is generated uniformly on interval [0, 1) and compared with a0(x)∆t. If

a0(x)∆t > r, one reaction will fire in this small time slice ∆t and the reaction channel index j

can be selected the same as (2) in the standard SSA procedure. We let the time proceed to t + ∆t

and update the state variable by X(t + ∆t) = x + νj. Otherwise, no reaction will fire in this time

interval. We just let the time proceed to t + ∆t with no state variable update.

One can easily see that this simulation procedure is not exact. If ∆t is chosen larger than 1
a0(x) ,

the probability a0(x)∆t will be greater than 1, and that is not allowed. Will everything be okay if

∆t < 1
a0(x)? No. Note that the simulation procedure 3.1 implies that 1−a0(x)∆t is the probability

that no reaction will occur in the next time interval ∆t. However, one can easily derive that the

probability that no reaction will fire in the next ∆t for any ∆t > 0 is

e−a0(x)∆t = 1 − a0(x)∆t +
1

2
(a0(x)∆t)2 + O((∆t)3). (9)

We can see that 1−a0(x)∆t is the first-order approximation of (9) and the leading term for the error

is given by 1
2 [a0(x)∆t]2. The leading term shows that if a0(x)∆t ≤ 0.1, which gives ∆t ≤ 0.1

a0(x) , the

error of the first-order approximation can be estimated by 0.005. This ∆t may be small enough so

that the first-order approximation is acceptable and the histogram generated from the simulation

procedure 3.1 will be close to that generated by the SSA. However, if ∆t has to be one magnitude

smaller than 1
a0(x) , the chance that no reaction will fire in the next time step [t, t+∆t) is relatively

high. Thus before one reaction really fires in the simulation procedure 3.1, there will be several

(around 10) steps that no reaction fires at all. This situation can be illustrated in Figure 1.

The computational cost of a dynamic simulation algorithm is composed of two parts: the average

computational cost for each time step and the total number of time steps in a simulation. The

computational costs for the SSA and the simulation procedure 3.1 in each step are almost the same.

But there are much more steps in the procedure 3.1. Thus we can conclude that the simulation

procedure 3.1 is an approximation to the SSA with higher computational cost. Obviously it is not
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a good strategy in stochastic simulation.

Next we compare the simulation procedure 3.1 and the StochSim. Let the fixed time steps in

the StochSim and the procedure 3.1 both be ∆t. We have the following theorem.

Theorem 3.1 When ∆t is sufficiently small, the procedure of the StochSim follows the same prob-

ability as the simulation procedure 3.1.

Proof. In the StochSim, two objects are randomly selected in the first two steps. The proba-

bility that these two could have a reaction is given by (3) or (4) if ∆t is small.

Let us first look at a mono-molecule reaction Rj with a reactant Si. In the assumption of

simulation procedure 3.1, the probability that one Rj reaction will occur in the next time interval

[t, t+∆t) is given by aj(x)∆t, where aj(x) = cjxi. On the other hand, in the StochSim process Rj is

selected when a Si object is selected in the first step and a pseudo molecular object is selected in the

second step. The probability that one Si molecule is selected in the first step is xi
N

. The probability

that one pseudo molecule is selected in the second step is N0
N + N0 − 1. Multiply them with the

equation (3). The probability that an Rj reaction will fire in the next time interval [t, t + ∆t) in

the StochSim is thus given by

xi

N
·

N0

N + N0 − 1
·
k1jN(N + N0 − 1)∆t

N0
= k1jxi∆t. (10)

Note that cj = k1j for a mono-molecule reaction (See Ref5). Thus the StochSim and the procedure

3.1 follow the same probability for a mono-molecule reaction.

For a bi-molecule reaction Rj between reactants Si and Sk, the procedure 3.1 assumes that the

probability that one Rj reaction will fire in the time interval [t, t + ∆t) is given by aj(x)∆t, where

aj(x) = cjxixk. In the StochSim, Rj may fire only if Si and Sk are selected in the first two steps.

The probability that one Si molecule is selected in the first step is xi
N

, while the probability that

one Sk molecule is selected in the second step is xk
N + N0 − 1 . The probability that Sk is selected

in the first step and Si is selected in the second step is the same. Thus the probability that one

Si molecule and one Sk molecule are selected in the first two steps is 2xixk

N(N + N0 − 1)
. Multiply it
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with the equation (4). The probability that an Rj reaction will fire in the next time interval ∆t in

StochSim is given by

2xixk

N(N + N0 − 1)
·
k2jN(N + N0 − 1)∆t

2NAV
=

k2j

NAV
xixk∆t. (11)

Note that cj =
k2j

NAV
for a bi-molecule reaction between two different species (See Ref 5). Again we

see that the StochSim and the procedure 3.1 follow the same probability.

For a bi-molecule reaction Rj between two Si molecules, the procedure 3.1 assumes that the

probability that one Rj reaction will fire in the time interval [t, t + ∆t) is given by aj(x)∆t, where

aj(x) = 1
2cjxi(xi − 1). In the StochSim, Rj may fire only if Si is selected in both steps. The

probability that one Si molecule is selected in the first step is xi
N

, while the probability that a

different Si molecule is selected in the second step is xi − 1
N + N0 − 1 . Similar to the case of bi-molecule

reaction between two different species, these two molecules can be selected with different order.

Thus the probability that two Si molecules are selected in the first two steps is
2xi(xi − 1)

N(N + N0 − 1)
.

Multiply it with the equation (4). The probability that an Rj reaction will fire in the next time

interval ∆t in StochSim is given by

2xi(xi − 1)

N(N + N0 − 1)
·
k2jN(N + N0 − 1)∆t

2NAV
=

k2j

NAV
xi(xi − 1)∆t. (12)

Note that cj =
2k2j

NAV
† for a bi-molecule reaction between the same species (See Ref.5). Again we see

that the StochSim and the procedure 3.1 follow the same probability. Thus we have the theorem.

From this theorem we can see that when ∆t is sufficiently small, the StochSim can also be

viewed as a first-order approximation to the SSA. However, there are some differences between

the procedure 3.1 and the StochSim. Their computational costs are proportional to 1
∆t

. In order

to have a high efficiency, it is preferred to have a large ∆t. However, as demonstrated in the

comparison between the SSA and the procedure 3.1, both the procedure 3.1 and the StochSim are

only accurate when ∆t is selected sufficiently small. Moreover, in the StochSim procedure all p1j ’s

†The relation between cj and k2j in this case is different from the case of bi-molecule reaction between two different

species, as pointed out in Ref.5
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in (3) and p2j’s in (4) must be smaller than 1. They add extra restrictions on ∆t. These extra

restrictions can be very tight.

To see this point, let us consider the following example.

Example 1: Suppose there are three species S1, S2 and S3 but only one reaction channel R1

between S1 and S2.

S1 + S2
c

−→ S3 + S2. (13)

Let X1 = M0, X2 = 1 and X3 = 0, where M0 >> 1. Let c = 1. Thus the propensity function for

R1 is a1(x) = x1x2. According to the SSA, the mean time for the next R1 reaction to fire is given

by

τSSA =
1

a1(x)
=

1

M0
. (14)

In the simulation procedure 3.1, the corresponding simulation time step ∆t can be given by

∆t <
0.1

a1(x)
=

1

10M0
. (15)

For the StochSim, as shown in (4)

p2 =
k2N(N + N0)∆t

2NAV
< 1.

Here we already know that c = k2

NAV
= 1. Thus the StochSim should satisfy the restriction

N(N + N0)∆t

2
< 1, (16)

which gives

∆t <
2

N(N + N0)
. (17)

Here N is the total number of molecules. N = M0 +1. N0 is the total number of pseudo-molecules.

Since there is no mono-molecule reaction, N0 = 0. Then ∆t < 2
(M0+1)2

. When M0 is large, this

restriction on ∆t is much tighter than (15). This example demonstrates a situation where the

StochSim is much less efficient than the procedure 3.1 although Theorem 3.1 states that they both

follow the same probability when ∆t is sufficiently small.
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Let M0 = 104, equations (14) and (17) imply that for this example the number of steps the

StochSim needs is about 5, 000 times as what the SSA needs. The efficiency is very low. Of course

this example is an extreme case. The low efficiency of the StochSim often arises in situations where

the reaction rates related to the species with large populations are relatively small, or there are

reactions between species with small populations and species with large populations. In that case,

from equation (6) the time step in the StochSim will be much smaller than the mean time step in

the SSA.

According to the above analysis, if the computational costs in a single step are comparable for

the SSA, the procedure 3.1 and the Stochsim, we can conclude that the StochSim is less or equally

efficient than the procedure 3.1, which is about one magnitude slower than the SSA. For multiscale

cases such as Example 1, the efficiency of the StochSim can be much lower than that of the SSA.

4 The Multi-State Situation

4.1 Multistate Species

Although for a multiscale system the efficiency of the StochSim is much lower than that of the SSA,

the StochSim could have advantages for some systems if its computational cost in a single step is

much lower than that of the SSA. A typical situation is when multi-state species are involved. Multi-

state species often appear in biological systems where one molecule may change its characteristics

depending on changes on its many binding sites, such as phosphorylation or methylation. If a

molecule has 10 binding sites, depending on the states of all these binding sites, one molecule may

exhibit 210 = 1024 different states. When it has 20 binding sites, the number of possible states rises

to a million. If multistate species can combine in many different ways, the combinatorial complexity

may lead to a very large system size.19–21 In the structure of the traditional SSA simulation, each

possible state should be assigned with an independent state variable. If each of them may react with

other species in the system, NS , the number of species, and M, the number of reaction channels,

may become dramatically large. Note that the lowest computational cost of the SSA in a single
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step is O(log(M)).7,8,15–17 If a multistate species is involved with many reaction channels, we have

at least M = O(NM ), where NM denotes the number of possible states for the multistate species.

NM can be very large, which results in a large M . The computational cost of the SSA could be

very high in this case. However, since the StochSim treats molecules as individual objects, it need

not introduce a large number of species and reaction channels. Its computational cost for a single

step does not change with NM . Thus when NM is large, the computational cost in each step of

the StochSim can be much smaller than that of the SSA, which may compensate the extra cost in

the total number of steps as analyzed in the previous section. In that case, the StochSim shows

advantages over the SSA.

Example 2: Consider a system with three types of species X, Y and E, where E is an enzyme

with 1, 000 different states (10 binding sites). Each state has different characteristics for its enzyme

ability. And the population of E is small. Three types of reactions are considered.

X
En−→ Y, (18)

En −→ En+1, (19)

En+1 −→ En, (20)

where En represents E in state n. For the SSA to simulate this system, because each state of

E is formulated as an individual species and each of the three reaction types (18-20) will be

correspondingly extended to around 1,000 reaction channels, we have NS = 1, 002 and M ≈ 3, 000.

However, the StochSim can group all these reaction channels into just three channels (18-20) by

treating the 1,000 reaction channels as one. When an E molecule is picked in the first two steps of

the StochSim, it must have been in a particular state. When one reaction fires and this molecule

changes its state, the StochSim procedure only needs to change the corresponding state for this

molecule.
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4.2 The Hybrid SSA

For many biological systems, the populations of species are of multiscale. Most species are present

with large or moderate populations and do not have the multistate problem as discussed in Section

4.1. There are a few species with multistate characteristics. If the multistate species present with

small populations, it is more efficient to treat each multi-state molecule as an independent object.

We call this strategy the hybrid SSA (HSSA). The simulation procedure of the HSSA is very similar

to that of the standard SSA. The difference lies in the classification of species and reaction channels.

A system contains two types of species: normal species and multistate species. In the HSSA, normal

species remain the same as in the standard SSA while each molecule of the multistate species is

stored as an indexed object. Then this system contains three types of indexed reactions.

1. Reactions among normal species. This type remains the same as in the standard SSA.

2. Reactions involved with only one multistate object. They include mono-molecule reactions of

a multistate object and bi-molecule reactions between a multistate object and a non-multistate

species.

3. Reactions between two multistate objects.

In the simulation, the total propensity function a0(x) is the sum of all reactions. The time step

τ and the reaction index j are calculated using (1) and (2). If the index j points to the first

type, the system is updated as in the standard SSA. Otherwise, the firing of a reaction will cause

a state change of one or two multistate objects. Each involved object changes its corresponding

state and updates its rate constants. When a new multistate molecule is produced, a new object is

created into the system. When an existing multistate molecule degrades, the corresponding object

is eliminated from the system. Thus the numbers of species and reaction channels vary. For certain

systems, the dynamical changes of the numbers of species and reaction channels may be very large.

Such examples can be found in Lok and Brent22 where the chemical network is updated dynamically

and the standard SSA is applied to the dynamically varying chemical network. If the multistate
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species are generated and eliminated with small populations, the HSSA strategy will show good

efficiency.

Let us consider Example 2 again. Assume that the total population of E is ET . As discussed

before, the standard SSA will have 1002 species and about 3000 reaction channels. However, if we

apply the HSSA method, each E molecule is treated as a multistate object. For each E object the

three reaction channels (18-20) have local copies. Thus NS = 2 + ET and M = 3ET . When ET

is small, the efficiency gain is great. When ET increases, the efficiency gain decreases. When ET

reaches around 1, 000, it will be less efficient than the standard SSA.

5 Numerical Experiments

In this section we present numerical experiments for the comparison of the SSA and the StochSim.

5.1 Bacteria Chemotaxis Model

The first example we use is the bacteria chemotaxis model on which the StochSim has been ap-

plied successfully. This model contains 10 reaction channels (see the supplementary material)

with the assumption that some fast reaction channels always remain in equilibrium. The enzyme

(TTWWAA) plays an important role in this model. It has multiple states and can participate in

various types of reactions such as phosphorylation, methylation, and binding with other chemicals.

The StochSim models each molecule of the enzyme TTWWAA as an object with many different

states. To implement the SSA, we have to transform different states of the enzyme TTWWAA into

different species. Each species corresponds to one state of the enzyme. By doing so, we increase the

number of reactants and reactions in the system. The resulted model (see the supplement material)

contains 28 reaction channels.

We listed the means and variances of the total population of the active TTWWAA in Table

1. The corresponding histograms are shown in Figure 2. We can see that the results from the

StochSim and the SSA are very close. But the average tau value of SSA is 217 times larger than
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the ∆t for StochSim, while the simulation time of SSA is 31 times faster than that of StochSim.

Note that here for the fair comparison, the StochSim has been rewritten in C language to improve

the efficiency. For the original StochSim package, 10, 000 simulations took 219, 280 seconds CPU

time, which is 5.6 times slower than our simple implementation in C language.

Mean Variance Simulation time Average Stepsize

StochSim 210.82 202.83 39,202s 3.6× 10−5

SSA 210.12 207.82 1,268s 7.9× 10−3

Table 1: Comparison of the means, variances, simulation times and average stepsizes by SSA and StochSim

on Chemotaxis for 10,000 runs.

5.2 Efficiency Comparison on a Simple Example

We implemented the StochSim, the SSA and the HSSA methods on a modified version of Example

2. The reactions are listed below

En + X
k1−→ En + Y

Y
k2−→ X

En
k3−→ En+1

En
k4−→ En−1

(21)

where En represents the state n in species E and 1 ≤ n ≤ 1, 000. The reaction rate k1 = 5 × 103n

‡, where n is the index of the corresponding state of E. k2 = 1 and k3 = k4 = 0.1. First we fix the

initial population of X = 100 and Y = 0 and increase ET , the population of E, from 1 to 10, 000.

The CPU time for different methods are listed in Table 2. For this simple example, when the

population of E is small, the HSSA is the most efficient, and the StochSim is a little more efficient

than the SSA. As ET increases by a factor of 10, the CPU time for the SSA increases with a

factor between 6 and 10. For the StochSim, when ET < 100, the CPU time increased little. After

ET > 100, the CPU time shows superlinear increase. The CPU time of the HSSA shows even more

‡
k1 is much larger than other reaction rates because it is a bi-molecule reaction rate.
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obvious superlinear increase trend. As ET becomes large, the HSSA becomes the slowest method.

Population of E 1 10 100 1,000 10,000

SSA 0.81 6.93 58.29 324 2,013

StochSim 0.31 0.34 0.90 11.42 666

HSSA 0.013 0.11 6.64 425 22,122

Table 2: The CPU time comparison among the SSA, the StochSim, and the HSSA for 1,000 runs of the

model (21)

The simulation results can be explained with complexity analysis. The CPU time is decided by

the computational cost in a single step multiplied by the total number of steps. For SSA, as ET

increases, the propensity values aj(x) = O(ET ) except the second reaction channel in (21). The

computational cost in a single step of the SSA does not change with ET . The number of steps

is of order O( 1
τ
). Because the τ value is of order O( 1

a0
), the number of total simulation steps is

then of order O(a0). But for this example, a0(x) =
∑

j aj(x) is of order O(ET ). Thus the CPU

time is of order O(ET ). For the StochSim, when ET increases, the computational cost in a single

step does not change much. The CPU time is proportional to 1
∆t

. From (17) we know that the

CPU time is of order O(N 2), where N is the total population in the system. In this example,

N = 100 + ET . When ET < 100, N does not change much as ET increases. Thus the CPU time

does not increase much. But when ET > 100, N increases linearly with ET . Thus the CPU time

increases quadratically with ET . For the HSSA, since it is still the SSA method, the number of

steps should be the same as the situation in the standard SSA. Thus the number of the steps for

the HSSA is of order O(ET ). However, its computational cost in a single step is O(M). When ET

is small, M is small. This cost is small. When ET increases, each new object will have its own

copy of reaction channels. We have M = O(ET ). Thus the computational cost in a single step

is O(ET ). Multiplying the computational cost in a single step and the total number of steps, we

know that the CPU time for the HSSA is of order O(E2
T ).

From this example we can see that the HSSA works well when ET is small. When the total
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population increases, the efficiency of the StochSim drops quadratically. But with a large ET , the

StochSim still shows advantages for systems involved with multistate species. Further improvement

of HSSA is in need to combine the advantages of the StochSim and the SSA.

6 Conclusion

In this paper we analyze the theoretical foundation of the StochSim and compare the SSA and the

StochSim. We have demonstrated that when ∆t is very small, the StochSim can be viewed as a

first-order approximation of the SSA. In general the SSA is more efficient than StochSim, especially

when dealing with systems with a large N (total population). The StochSim has advantages when

multistate species are involved in the system. We have proposed the HSSA method to improve the

efficiency of the SSA in the multistate case. When the number of multistate molecules is small,

the HSSA shows a high efficiency. When the number of multistate molecules increases, the large

numbers of species and reaction channels still present a challenge for SSA type of methods. A

good solution in this situation is still under research. The recent progress20,21 on the simulation

methods for the rule-based modeling has pointed to a good direction. We believe that the analysis

presented here will help to derive an improved algorithm that can combine the advantages of both

the StochSim and the SSA.
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Supplement Material

Chemotaxis Model

The bacteria chemotaxis model we used in this paper is based on the activity of TTWWAA, a

complex protein composed of two molecules of each of Tar, CheW and CheA. The complex has

active or inactive states and its activity is determined by its methyl and aspartate binding sites.

In general, the more methyl groups are bound to it, the more active the complex is. On the other

hand, when aspartate is bound to the receptor Tar, the activation level of the complex is repressed.

Activated TTWWAAs can be autophosphorylated and the phosphate complexes can react with

proteins CheY and CheB, producing CheYp (phosphate CheY ) and CheBp (phosphate CheB).

CheYp can bind to the motor complex of the cell flagella, increase the probability that the motor

switches from counter clock-wise (CCW) rotation to clock-wise (CW) rotation, and finally decide

the swimming pattern of the bacteria. CheBp and CheR act as regulators on the methylation level

of the complex. Both of them can bind to TTWWAA and assist removing from or adding methyl

groups onto the complex in relatively slow rates. The change of methylation level helps to maintain

the activity level of the complex.

The chemotaxis model we consider here is a simplified version.12 The StochSim treats TTWWAA

as a multistate species with five properties listed below:

1. Whether or not it is bound with CheR (R or NR)

2. Whether or not it is bound with CheBp (B or NB)

3. Level of methylation (from 0 to 4)

4. Active or inactive (A or I)

5. Whether or not it is bound to aspartate (asp or Nasp)

The above five properties determine the state of a TTWWAA molecule. For example, property

NRB2I? means that the complex is not bound to CheR but bound to CheBp, with a methylation

level 2, in an inactive state, and may or my not be bound with aspartate.
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Because the activation of TTWWAA and the binding of aspartate are much faster than other

reactions, these two processes are treated as fast reactions and assumed to reach partial equilibrium

all the time. For all the other reactions, Table 3 provides a detailed list.

Description Reaction Multistate Reactant Properties Effects

CheBp Binding Bp + TTWWAA ↔ TTWWAA NRNB?A? NRB?A?

Demethylation TTWWAA → TTWWAA + Bp NRB1?? NRNB0??

TTWWAA → TTWWAA + Bp NRB2?? NRNB1??

TTWWAA → TTWWAA + Bp NRB3?? NRNB2??

TTWWAA → TTWWAA + Bp NRB4?? NRNB3??

CheR Binding R + TTWWAA ↔ TTWWAA NRNB?A? Replace RNB?A?

Methylation TTWWAA → TTWWAA + R RNB0?? NRNB1??

TTWWAA → TTWWAA + R RNB1?? NRNB2??

TTWWAA → TTWWAA + R RNB2?? NRNB3??

TTWWAA → TTWWAA + R RNB3?? NRNB4??

Table 3:

The above is the model implemented in the StochSim. We translated it into the corresponding

representation for SSA, with the same partial equilibrium for the fast reactions. We treat every

state of TTWWAA as one species. Table 4 provides a list of all the other converted reactions. In

the list, the subscripts of a TTWWAA complex refers to its methylation level. Note that complexes

with different subscripts belong to different species.
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Description Reaction

CheBp Binding Bp + TTWWAA0 ↔ TTWWAA0B

Bp + TTWWAA1 ↔ TTWWAA1B

Bp + TTWWAA2 ↔ TTWWAA2B

Bp + TTWWAA3 ↔ TTWWAA3B

Bp + TTWWAA4 ↔ TTWWAA4B

Demethylation TTWWAA1B → TTWWAA0 + Bp

TTWWAA2B → TTWWAA1 + Bp

TTWWAA3B → TTWWAA2 + Bp

TTWWAA4B → TTWWAA3 + Bp

CheR Binding R + TTWWAA0 ↔ TTWWAA0R

R + TTWWAA1 ↔ TTWWAA1R

R + TTWWAA2 ↔ TTWWAA2R

R + TTWWAA3 ↔ TTWWAA3R

R + TTWWAA4 ↔ TTWWAA4R

Methylation TTWWAA0R → TTWWAA1 + R

TTWWAA1R → TTWWAA2 + R

TTWWAA2R → TTWWAA3 + R

TTWWAA3R → TTWWAA4 + R

Table 4:
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Figure 1: The time step comparison between the SSA and the simulation procedure 3.1. To ensure the

accuracy, for each reaction corresponding to one step τ in the SSA, there must be several (around 10) steps

that in the time interval ∆t there is no reaction firing in the simulation procedure 3.1.
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Figure 2: The histograms of the active TTWWAA simulated by the SSA(blue) and the StochSim(red).
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