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Abstract. Many-core architecture has become an emerging and widely
adopted platform for parallel computing. Computer animation researches
can harness this advance in high performance computing with better
understanding of the architecture and careful consideration of several
important parallel algorithm design issues, such as computation-to-core
mapping, load balancing and algorithm design paradigms. In this paper,
we use a set of algorithms in computer animation as the examples to illus-
trate these issues, and provide possible solutions for handling them. We
have shown in our previous research projects that the proposed solutions
can greatly enhance the performance of the parallel algorithms.

1 Introduction

The research of parallel computing has a long history and certainly is not new
to the computer animation community. However, because of restricted access
and lack of tools, computer animation researchers are reluctant to use super-
computers, on which most of parallel computing research focuses in the past few
decades. In recent years, especially after the emergence of multi-core CPUs and
many-core graphics processing units (GPUs), the situation has been changed.
The computational power of a desktop machine is equivalent to the top super-
computers from ten years ago. Provided with these commoditized and easily
accessible desktop supercomputers, all research fields in computer science are
now embracing new opportunities for significant performance increase for their
applications. At the same time, however, we also face a tremendous research
challenge: How to redesign all of our existing sequential algorithms towards a
massive parallel architecture?

Computer animation researchers, as part of the computer graphics community,
may be ahead of some other research fields in terms of experiencing parallel
algorithm design on GPUs, since GPUs were originally developed to enhance
the performance of computer graphics applications. For example, the canonical
smooth skinning algorithm for character animation has a standard GPU im-
plementation using Vertex Shaders, and has been widely used in video games.
However, after the release of the general proposal computing architecture for
GPUs around 2006 (NVIDIA’s GeForce 8 series), shader programming suddenly
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lost advantages for parallel algorithm design for general purpose animation al-
gorithms. People have also realized that the traditional parallel programming
models for shared memory systems should not be directly applied towards this
emerging many-core architecture. Instead, a set of parallel algorithm design is-
sues, such as problem decomposition and load balancing, should be addressed
during the algorithm design process for the computer animation algorithms.

In this paper, I first describe some key features of the current many-core paral-
lel computing architecture, and elaborate on the trend of development for such
architecture in the near future. Some important parallel algorithm design issues
will then be discussed using some well-known animation algorithms as the exam-
ples. I, then, provide a set of solutions as the results of my recent work to address
these design issues. At the end, the paper is concluded with some suggestions on
the new research frontiers for parallel algorithm design in computer animation.

2 Parallel computing on many-core architecture

The idea of parallel computing and concurrent execution appeared during the
50’s of the last century. The parallel computing research, especially on super-
computers, boomed in 70’s and 80’s. Many different parallel architectures were
introduced, parallel algorithm design strategies were explored, and parallel algo-
rithm analysis models were developed. However, many research areas, including
computer animation, did not invest much into the parallel computing and algo-
rithm design research, because the supercomputer resources were limited, and for
their applications, a fast single processor are sufficient in most research cases.
People were satisfied with the rate of the growth in computational power of
CPUs stated in the Moores Law. A nearly doubled performance of the algo-
rithm without any major revision of the code was a comfortable situation of
most of applications.

During an interview in 2005, Gordon Moore stated that the law cannot last
forever. Intel also gave a prediction that end will come soon due to quantum
tunneling, which will flatten the increase rate of the density of transistors on
an IC chip. Since then, there is a sudden change in the strategies for CPU
development: no more clock speed increases, but more processing cores on a
chip. The free lunch of automatic performance increase of an application is over.
For any application, if the performance needs significant improvement, a major
revision of the source code is necessary to transfer the algorithm from sequential
execution to parallel execution.

The development of GPUs is ahead of such trend in CPUs, because, as a co-
processor for graphics processing, GPUs have already adopted a massive parallel
architecture. However, before the appearance of general purpose GPUs, the ap-
plication areas were very limited because the architecture can only be accessed
by graphics programming libraries and, more importantly, GPUs were strictly
designed for a small set of data-parallel algorithms.
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The renaissance of GPU computing started with the release of NVIDIA’s GeForce
8 series GPUs and general programming framework, CUDA. The researchers out-
side of the computer graphics community soon realized that the commoditized
GPUs can be an significant accelerator for certainly data-parallel algorithms, and
the parallel implementation of these algorithms is trivial when using C-language
based CUDA programming framework. Many data parallel applications, such as
image processing and physics-based simulation, have reported a 50X or more
than 100X of performance speedup on GPUs. On the other hand, researchers
also found that some other non-data-parallel algorithms, such as quick-sort, can-
not achieve a large performance gain with a direct algorithm mapping towards
GPUs. Sometimes, such algorithms will result a slow-down in performance on
GPUs.

In the rest of this section, I first present some key features of the current gen-
eration many-core architectures. Then, I point out several important parallel
algorithm design issues for such architecture.

2.1 Many-core architecture

The concept of many-core is derived from multi-core architecture in CPU hard-
ware design. There is no standard definition for many-core architecture. A com-
monly accepted description of many-core is its comparison against multi-core:
the number of processing cores on the same IC chip is too large that a multi-core
technologies will fail to efficient deliver instructions and data to all the cores.
Therefore, the processing cores of a many-core system are normally designed
as a much simplified version of the cores in multi-core systems. There is no
support for advanced processing controls, such as branch prediction, instruction
pre-fetching, and micro-instruction pipelining.
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Fig. 1: A high-level overview of a many-core parallel architecture.
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To manage a large number of cores in a many-core system, the cores are grouped
together into higher level cluster units (called as stream multiprocessors in
NVIDIA GPUs), as shown in Figure 1, so that the complexity for controlling
these cores can be simplified. The control inside each cluster unit is as simple
as the control of a vector processor: pure data parallel processing. There is nor-
mally only one instruction fetching unit for each cluster unit, and all the cores
inside a cluster unit concurrently execute the same instruction on different data.
For diverged branching instructions between the cores inside a cluster unit (e.g.
core 1 takes one branch, core 2 takes another), the execution will simply be
sequentialized.

The complex management of the parallel execution are not focused on the core
level, but on the cluster unit level, where asynchronized communication and
task-parallel execution are supported. Such high-level control is essential for de-
veloping efficient parallel algorithms, because overlapped computation between
processing cores can be managed.

Many-core system uses a shared memory architecture for communication be-
tween processing cores. A shared data cache inside a cluster unit is used for
the communications between the cores inside a cluster unit. A global accessible
memory, normally a slower DDR memory, is used for communication between
the cores on different cluster units. Since both shared data cache and global
memory can be accessed concurrently, some parallel access designs are normally
applied to the memory hardware. Such memory architecture design normally
favors a large memory bandwidth, but not a short latency.

2.2 Algorithm Design Issues for Many-core Architecture

Due to the architecture design of the many-core architecture, especially the par-
allel memory access hardware, a certain type of algorithms, data parallel algo-
rithms, execute much faster than the others. The common characteristics of a
data-parallel algorithm include SIMD execution, little data dependency, and few
branches. It is often reported that a large performance speedup can be achieved
when porting a data-parallel algorithm from a single-core computing architecture
to a many-core parallel architecture.

In computer animation, we have some algorithms express the features of data-
parallel computation. For example, video-based tracking and image processing
algorithms are widely used character animation. In one of our early projects
[11], as shown in Figure 2, we analyzed a parallel video-based character tracking
algorithm, called Vector Coherence Mapping (VCM), and implemented towards
NVIDIA GPUs using CUDA programming framework. VCM includes three ma-
jor processing steps: interest point extraction, normal correlation map (NCM)
computation, and VCM computation. The operations used in these steps are
mostly data parallel algorithms, such as image convolution, sub-image correla-
tion, and image accumulation. By accelerating these operations on GPUs, we
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Fig. 2: The processing results of the GPU-accelerated motion tracking algorithm,
VCM. Left: Girl dancing with camera zooming in. Right: Hand moving up.

had an over 40 times of performance speedup compared against a CPU imple-
mentation.

However, data-parallel algorithms only represent a small portion of the algo-
rithms used in computer animation. It has been shown that, without careful
algorithm design and optimization, the many-core implementation of task paral-
lel algorithms, such as quick-sort, does not guaranty a large performance increase
on GPUs [7, 15]. Intel also pointed out that, only applying standard optimization
strategies on GPUs can only get an average of 2.5X speedup compared with the
implementations on a Intel’s CPU [13].

Designing an algorithm towards many-core architecture is not a simple Imple-
mentation and porting work. The process involves the consideration of many
different parallel computing issues. Often, the newly developed parallel algo-
rithm is a complete transformation of its sequential counterpart. For computer
animation research, there are a few important parallel algorithm design issues,
as listed below, need to be considered carefully when a sequential algorithm is
optimized on a many-core architecture.

1. Problem decomposition and resource utilization.

2. Load balancing.

3. Algorithm design paradigm.

In the next three sections, I will discuss these issues in detailed by using some
example algorithms in computer animation.
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Fig. 3: The data dependency graph for an example dynamic programming al-
gorithm. The diagonal lines in orange indicate the sweeping frontier for each
computation step. All the nodes along these sweeping diagonal lines can be ex-
ecuted in parallel.

3 Problem decomposition and resource utilization

The concurrent execution of different tasks among all available computational
resources is the key issue in parallel computing. If the resources, especially the
processing cores, are under-utilized, the performance loss will occur. In parallel
algorithm design, the issue is normally addressed by problem decomposition.
In general, if a processing architecture has N cores, the problem should be
decomposed into more than N (often multiple of N) sub-tasks. Each processing
core is assigned with at least one sub-task, and no core is left idle.

In some scenarios, the size of problem is dynamically changing and unpredictable.
Therefore, a static problem decomposition scheme can not optimize the final
number of sub-tasks for better resource utilization.

For example, as being used in a motion graph algorithm [2, 3], dynamic program-
ming usually features a “slow-start” initial processing phase. In Figure 3, we
illustrate the data dependencies for all the computation of an example dynamic
programming algorithm. Because the dependency, the concurrent computation
can only occur among the sub-tasks among the diagonal lines, starting at the
top-left corner. We can sweep the computation diagonally from top-left to bot-
tom right, each time executing the sub-tasks along a sweeping line in parallel. It
is obvious that, the concurrently executed sub-tasks will increase until reaching
the half-way point of the whole computation, and will decrease after. This is
a typical slow-start and slow-end problem. The question is how to increase the
resource utilization rate at the beginning and the end of the computation, where
only very few sub-tasks are available for N cores to finish.
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The solution to the resource under-utilization problem is to apply a dynamic
problem decomposition scheme based on the problem size. It is also call adaptive
computation-to-core mapping. The main idea is to adjust the granularity of
the problem decomposition in an adaptive fashion: when more processing cores
are available (resource under-utilization), the sub-tasks can be decomposed into
even smaller tasks so that the total number of sub-tasks for parallel execution
is increased and all the cores will be utilized. However, we also do not want to
create too many sub-tasks because of the high management cost.

Some other widely used algorithms in computer animation also expressed a slow-
start or slow-end feature, such as breadth-first graph search and multi-resolution
analysis. Adaptive computation-to-core mapping can be directly used in these
algorithms. In one of our previous work for parallel temporal data mining [6],
we have developed a hybrid solution to incorporate two different computation-
to-core mapping schemes, and got a result of 263% performance increase when
compared with a standard many-core implementation.

4 Load balancing

In some data-parallel algorithms and most task-parallel algorithms, such as ani-
mation or simulation Level Of Detail (LOD), the concurrently executed sub-tasks
have different workload. Some sub-tasks can finish much earlier than the others.
It can cause a significant performance loss because a processing core for execut-
ing a early completed sub-task has to wait until all other cores finish their tasks
before continuing with the next task.

In many-core architecture, load-balancing problem can result in significant per-
formance loss. The main cause of workload imbalance is due to the branching
statements in the algorithm, which many-core architecture can not handle effi-
ciently. If a branching statement causes a diverged execution between two cores
in a core cluster unit, as shown in Figure 1, the execution of all diverged in-
structions has to be sequentialized, because a core cluster unit only has one
instruction dispatch unit. In addition, if one branch takes much long to finish
than another, non-balanced workload will cause further performance loss. For
example, in agent-based crowd simulation algorithms, all agents are simulated
concurrently. But there are some types of agents, such as leader agents, can take
much heavier workload than the others.

Load balancing problem has been well studied in parallel computing research
before many-core parallel architecture. The common strategies to resolve the
problem, as listed below, can also be applied to many-core architecture.

1. Divide the subtasks into smaller ones to eliminate significant workload dif-
ference.

2. Group subtasks according to the workload, and assign the subtasks with
similar amount of workload to the same core cluster unit.



8 Yong Cao

Mul$-‐GPU	  Array	  

FIFO	  Data	  Queue	  

Vis	  
GPU	  

Vis	  
GPU	  

Sim	  
GPU	  

Sim	  
GPU	  

…	  

……	  

Read	   Write	  

Fig. 4: A distributed task scheduling framework for balancing the workload be-
tween visualization and simulation on a multi-GPU architecture.

3. Apply a distributed task scheduler for each processing core, so that after the
completion of one subtask, it can immediately fetch the next subtask from
a task pool.

The first two solutions are based on the static analysis of the algorithm. The
last one, which is a run-time solution and more general than first two, is a very
challenging solution one for many-core architectures. Distributed task control
is commonly used strategy in supercomputers for task scheduling, where each
processing unit coordinates with a global task pool to schedule its own execution
of tasks. The strategy is an efficient solution for balancing the workload between
core cluster units, and multiple many-core devices. For example, in one of our
previous work [10], as shown in Figure 4, we used a data queue as the central
task pool to schedule and balance the computation on multiple GPUs. A simu-
lation task is assigned to a GPU when there is an empty slot in the queue. A
visualization task reads the data queue and is assigned to a GPU to visualize
the simulation result. The task scheduling criteria is based on the status of the
data queue and performance history.

However, within a core cluster unit, such strategy will results in more divergent
branching instructions, causing the sequentialized execution in the unit. To cir-
cumvent the problem in many-core architecture, the distributed task scheduler
should be combined with subtask grouping methods to reduce divergent branch-
ing and load imbalance inside a core cluster unit. Since task scheduling inside
a core cluster unit does not provide any meaningful performance gain, the sub-
tasks with similar workload and the same instructions are sorted and grouped
together before submitted to the same core cluster unit, as shown in Figure 5.

5 Algorithm design paradigm

It is a creative process to brainstorm new ideas for parallelize existing sequential
algorithms. It is even more challenging to design entirely new parallel algorithms
for certain problems. Such process should be guided by a set of design paradigms
which are used to shape the mind of the design. For example, in traditional
sequential algorithm design, when a search-based problem is presented, we in-
stantly refer to some solution templates, such as divide-and-conquer, depth first
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Fig. 5: A revised distributed task scheduling framework for many-core architec-
tures, where the tasks in the task-pool are sorted first. The tasks with similar
workload are submitted to core cluster unit for parallel execution.

search, and generic algorithms. Such design paradigms greatly simplify the pro-
cess of algorithm design, and also enables the parallel implementation of some
algorithm libraries, including Standard Template Library (STL).

In parallel algorithm design, there are some well-known design paradigms, such
as Map-Reduce [8], which has been widely adopted in many-core algorithm de-
sign [16, 4, 9]. Since many-core system is an emerging architecture, we are ex-
pecting more parallel design paradigms being developed for this architecture.

In one of our previous work [14, 5], we developed a very efficient parallel pro-
cessing paradigm, which can be used in many computer animation algorithms.
The paradigm, called deferred computing, divides the overall copmutation into
several stages. The first several stages are for data preparation or analysis, and
can be significantly accelerated in many-core architecture. The major compu-
tation of the problem is deferred to the last stage. By using the results from
the preparation and analysis stages, the computation of the last stage can be
far more efficient than before. In such deferred computing scheme, the overall
computation for the problem is often larger than the original algorithm. How-
ever, due to the execution time saved at the last stage, the overall performance
is actually increased.

To give an example, let us consider a problem to eliminate none-qualified pat-
terns from a large array of candidate patterns [5]. Since the qualifying process
for each pattern is the same for all candidate patterns, we can simply parallelize
the processing of each pattern on each core. However, the qualifying process is
very complex. The execution of the process on each core is not very efficient, due
to some memory accessing constraints and the branching instructions in the pro-
cess. We divide the qualifying processing into two passes, as shown in Figure 6.
The first pass uses simplified constrains to process the patterns in parallel, where
most of the memory constraints and branching instructions are removed in this
pass. We found that the first pass can eliminate more than 90% of none-qualified
patterns with its less constrained process, and can be executed much efficiently
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Fig. 6: An example of deferred computing: Pattern Elimination. In the first pass,
most of the none-qualified patterns are eliminated by a less constrained and
simple process. In the second pass, much less patterns needs to be processed by
a complex elimination step.

on many-core architectures. The second pass operates on the undetermined pat-
terns from the first pass using a normal qualifying process. Since the left-over
patterns for the second pass is very few and the first pass is very efficient, the
overall performance of the two-pass elimination approach can be more than two
times faster than the original one-pass algorithm.

6 Future Development Directions

Many-core architecture is currently in a rapid development era. Many vendors are
proposing and releasing new many-core based products. GPU venders, including
NVIDIA and ATI, are aiming at more processing cores and complex control
logic to enable task-parallel processing. For example, NVIDIA’s recent GPU
architecture, code name “Fermi”, starts to support up to 16 different kernel
functions in a GPU simultaneously. Such feature allows the programmers to
parallelize different instructions among the core cluster units.

Another important advance in many-core architecture has been proposed by
CPU venders, including both Intel and AMD. In their recent release, Intel’s
Sandy Bridge CPUs [12] and AMD’s Fusion APUs [1] both focus on a tightly
integrated heterogeneous system, where a multi-core CPU, a many-core GPU
and the memory controls (or L1 cache) are put on the same IC chip. Such
design significantly reduces the communication overhead between the CPU and
GPU, which was a large performance bottleneck for the most GPU-based parallel
computing applications.

The advance also casts a spotlight on a already popular research direction for
high performance computing, hybrid computing, where computational tasks are
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co-scheduled among a heterogeneous computing architecture. In hybrid com-
puting, problems are analyzed and decomposed into sub-tasks based on their
computational profiles. The sub-tasks suitable for data parallel processing are
assigned to the GPU, and the sub-tasks suitable for task parallel processing are
assigned to the CPU. Some central and distributed control is applied to synchro-
nize the processing among these sub-tasks and computational resources. With a
much improved architecture for inter-communication between CPUs and GPUs,
hybrid computing research is embracing a booming period.

In computer animation researches, it is often that we have a very complex sys-
tem including a variety of algorithms, which express totally different computa-
tional profiles. Therefore, the ability of concurrently executing these algorithms
on their desired devices in a heterogeneous architecture will bring a significant
performance gain. However, in my opinion, we are still in the stone-age for hy-
brid computing for computer animation applications. We need to focus on the
algorithm design issues towards many-core architecture and hybrid computing.

7 Conclusion

Computer animation, like the other application areas in computer science, is
facing the new era of parallel computing. With the rapid development of many-
core architectures, such as GPUs, the research in parallel algorithm design for
computer animation has already fallen behind. Given that almost every com-
puter has adopted a parallel processing architecture, there is no coming back
to the world of sequential algorithm design. In this paper, we have discussed
several important parallel computing design issues for many-core architectures,
including resource utilization, load balancing and algorithm design paradigms.
In my previous research, I have shown that careful consideration of these issues
can greatly enhance the performance of the parallel algorithms.

Parallel algorithm design is not only for the scholars in the area of computing
theory or high performance computing. It is also important for computer anima-
tion community to evaluate the algorithms in our applications, to analyze the
time complexity of a proposed algorithm, and to discuss the scalability issues for
a parallel implementation. We need to develop a set of software frameworks to
facilitate the parallel implementation of computer animation applications based
on such effort. We will be able to handle much larger scale problems and signif-
icantly increase the performance of the computer animation applications.
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