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Abstract
We present a crowd model derives from
Common Ground theory to accommodate
high-level socially-aware behavioral real-
ism of characters in crowd simulations.
Our approach provides a means to simulate
purposive coordinating behavior of human
groups, and the resulted character behaviors
that form consequential chain which is inter-
preted as a coherent story by observers. We
demonstrated that our model produces more
believable animations from the viewpoint of hu-
man observers through a series of user studies.

Keywords: group modeling, crowd simu-
lation, common ground theory

1 Introduction

Incorporating the sense of social intelligence for
virtual characters is important to achieve plau-
sible aggregate behavior in crowd simulations.
Crowds are typically made up of multiple social
groups [1, 2], and generating believable group
behaviors within a crowd has been a focus of
many researchers in recent years [3, 4, 5, 6].

A group is a social unit comprising several
members who stand in status and relationships
with one another. Behaviors of individual mem-
bers are regulated in matters of consequence to
the group. In group activities, people perform
actions such as body movements, gestures, and
eye gazes as means of participating with others
in the group. While, crowd simulation applica-
tions that consider group organization typically
focus on overall formations and inter-member
distances, Park et al. showed that communica-
tive behavior within individual groups can im-

pact the distribution of the simulated crowd as a
whole [7, 8]. Applying Herbert Clark’s Com-
mon Ground (CG) theory [9] to model group
behaviors in simulation, they demonstrated the
impact of incorporation of their model on the
dynamic congestion distribution in simulations,
but did not show that the model produced more
correct or believable simulations.

We extend the group communicative behav-
ior model due to Park et al. to accommodate
high-level socially-aware behavioral realism of
characters in a crowd simulation. In narrative
psychology, Bruner advanced an idea that hu-
mans make sense of intentional behaviors by
taking them into narrative structures [10]. We
employ this concept to test our operationaliza-
tion of the CG-based crowd simulation (CGCS)
model by determining whether the model yields
purposive interpretations of the resulting anima-
tion. Through a series of perceptual user evalu-
ation studies, we demonstrated the interpretabil-
ity of the character behaviors is associated with
the believability of the animation by observers.

The remainder of this paper is organized as
follows. In section 2, we discuss related works
and Clark’s common ground theory. Section 3
provides the design of our multi-agent system.
The CGCS model is described in Section 4. Sec-
tion 5 presents the design of our user studies and
the results. We draw conclusions and provide
possible future research directions in Section 6.

2 Related work

There have been extensive research on simulat-
ing crowd behaviors, and we refer the readers
to the surveys [11, 12]. We review some of the
most relevant work to the group modeling, and



Clark’s common ground theory in this section.

2.1 Groups within Crowds

The incorporation of small group dynamics into
a crowd model has been the focus of recent re-
search interest. In some studies, walking pat-
terns and spatial organizations of small groups
are analyzed from collected video recordings [3,
13, 14]. The observed formations are repre-
sented as reference templates in a local coordi-
nate system of a group and used to guide each
group member’s relative position [3]. Numeri-
cal models to include such formation influences
are proposed in [13, 14, 15]. Maintaining the
desired formations while walking is formulated
as a collective optimization problem for group
members in [4]. However, walking in a group is
not just a matter of how to maneuver to reach a
desired position at a low level. People commu-
nicate with other members, and trade off certain
action, path, and location according to the par-
ticular situation of a group. It is hard to mecha-
nistically construct such higher-level behavioral
activity completely from bottom up.

Data-driven (motion capture) methods of sim-
ulating various interactive motion patterns in
groups are presented in [16, 17]. However, these
approaches are expensive techniques because of
the computational complexity to create connect-
ing transitions between data segments, and also
suffer from the lack of flexibility.

A behavioral aspect in group dynamics is
also considered. The effect of actions and ges-
tures, such as interacting distance, orientation,
and synchrony of visual and aural cues of ac-
tions, on the plausibility of conversing groups
have been identified and applied to the simula-
tion of groups of conversing characters in [5, 6].
However, in these approaches, the selection of
stance, movement, and motion is not tightly cou-
pled to the underlying simulation model, and the
sequence of character gestures does not draw
a socially meaningful story. In our work, all
character actions form a consequential chain so
that results in a coherent story. Also, their ap-
proaches focus on generating static conversing
characters, thereby limiting applications. Our
model can handle sub-goals that may be gen-
erated stochastically or through interaction be-
tween agents and the environment, and brings a

variety of group interaction and movement pat-
terns into simulations.

2.2 Common Ground Theory

People engage in a joint activity when they act
in coordination with others to pursue a com-
mon goal. Clark’s CG model views execution
of a joint activity as a continuous negotiation
among participants to maintain coordinated ac-
tion. It considers the mutual knowledge, be-
liefs, and assumptions among collaborating in-
dividuals. The CG concept has seen application
in AI agents [18], joint robot activity [19], and
Computer-Supported Cooperative Work [20].

According to Clark, p is common ground for
members of group G if and only if [9]:

1. members of G know that p;

2. members of G know that members of G
know that p;

3. members of G know that members of G
know that members of G know that p.

Suppose that A and B walk in an airport ter-
minal. As they pass a schedule board, A thinks
that they should check the departure flight infor-
mation, and informs B of her plan to go to the
board and to return to their current location, x.
We denote the plan to divide and reunite at x as
P . For the plan to succeed,A needs to know that
B knows the plan P , and vice versa. This, how-
ever, is insufficient for coordination. B needs to
know that A knows that he is privy to P , oth-
erwise he might not be convinced that A will
return to x. Furthermore, if the agreement ends
here, A may not know that B knows that she
knows the plan, and may, therefore not be con-
fident to execute the plan. Hence, A needs to
know that B knows that she knows the plan.

The CG may be arrived at verbally, or may be
enacted through action. E.g., A may signal her
intention by pointing toward the schedule board
and pointing to their current location x. This re-
quires that B be within the range of sight and be
looking at A. A needs to see that B is looking
at her, and has signaled agreement (e.g., by nod-
ding). B needs to see that A sees his nodding.
Finally A needs to see that B sees that she has
seen and acknowledged the plan.



3 Multi-Agent System

We operationalize our CGCS model for multi
agent systems using agent-based modeling ap-
proach. Agents are capable of perceiving and
responding to their immediate surroundings,
and are organized into groups or ‘co-travellers’.
Group members maintain group cohesiveness
by communicating and adapting their behaviors
to each other. In the course of interaction, an
agent may present gestures or other behavioral
cues according to its communicative purpose.
To accomplish this, our model maintains the
communicative purpose of agents consistently
from simulation through animations. We believe
that this will produce more realism both in the
overall simulation and individual animations of
the agents.

3.1 Group Model

Our model assumes that the group member-
ships and eventual goal of groups are known in
advance and not subject to change throughout
the simulation. Members of groups are collo-
cated at start, and have the same final goal lo-
cation. Goals are specific and definable geo-
graphic points in a given virtual environment. A
global path that is used for collision-free naviga-
tion around static obstacles toward a final goal
is precomputed for each group. The set of all
members of group k is denoted Gk. We han-
dle individuals in our simulation by permitting
groups with a single member.

3.2 Agent Model

An agent with its personal identifier i is denoted
as Ai. At the initial status of simulation, a group
membership is assigned to each agent. A group
may deviate from an original travel plan with
goal interrupts to members of the group. For ex-
ample, a member of a group may be triggered
to visit the restroom (stochastically generated
sub-goal) or to check a nearby schedule board
for the flight information in an airport scenario
(sub-goal generated through interaction with the
environment), then the agent proposes a plan to
satisfy the sub-goal to the group.

As an available environmentally driven goal,
each agent maintains a list of interests Ii,α, α =

1, . . . ,K and corresponding propensity-to-visit
values ranging from 0 to 1.0. When encounter-
ing some points of interest, an agent compares
its propensity-to-visit value to the attraction in-
tensity of the place, and selects potential sub-
goals.

In order to interact with group members, an
agent should be able to understand status and
intentional signals of the members and adapt its
behaviors. We model an agent as having sen-
sory capabilities for speech, vision, and touch.
Figure 1 shows an agent’s sensory model with
a perception geometry. Touch can be sensed
within range of agent radius r, hearing is omni-
directional with range limitation dh, and vision
is directional and is effective up to a range, dv,
along its gaze direction (for simplicity, body ori-
entation is synonymous to gaze direction in our
simulation) and within a field of view defined by
an angle, α.

! dV
dh
r

Figure 1: Agent perception geometry

4 Model of Social Group
Behaviors

At each time step, a group travels toward a fi-
nal goal by following a preplanned global path.
A group walks in a clustered way by minimiz-
ing the distance between members while avoid-
ing collisions to each other. When a sub-goal is
triggered, the group evokes a set of coordination
behaviors.

Figure 2 illustrates the behavior decomposi-
tion in our model into: 1) macro-coordination,
2) micro-coordination, and 3) atomic action
units. Macro-coordination relates to the over-
all high-level activity determining the spatial
movements of group members over time to ac-
complish a navigation goal and sub-goals of
a group. The plan of divide and wait in the
airport scenario in Section 2.2 is an example
of a macro-coordination behavior. The micro-
coordination plan simulates the negotiation of
CG among group members to decide on a
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macro-coordination plan given a new sub-goal.
A micro-coordination plan may be further de-
composed into a set of ‘purposive’ action blocks
of reciprocal actions among the groups (hence
Reciprocating Action Block, or RAB). RAB
may specify that an agent needs to gain the at-
tention of its group members, indicate the loca-
tion of a sub-goal, or specify a meeting point
for the group after the sub-goal is completed.
Atomic actions are behavior pieces that may be
animated, and can be used to build the RAB
or the actions needed to accomplish a macro-
coordination plan.

4.1 Macro-Coordination

When a sub-goal is triggered, a group may se-
lect a macro-coordination plan from a prede-
fined set of possible plans. This set of plans are
designed to satisfy the needs of particular simu-
lation/animation requirements.

For instance, in an emergency scenario, a set
of macro-behaviors may be to abandon an orig-
inal goal and find the nearest exit, to follow an
authority figure, or to find a missing member,
and a military simulation may specify doctrine-
specific coordination plans. The plan selec-
tion is based on a probabilistic preference func-
tion, and members of a group share the cho-
sen macro-coordination plan by each doing their
participatory actions in particular roles. The se-
lection of a macro-coordination plan results in a
set of values for heading direction, desired posi-
tion, and velocity for those agents involved in a
group activity.

Because our interest is on generating social
interaction behaviors of agents in a pedestrian

simulation, we provide four macro-coordination
plans for the most common navigation strate-
gies. The four macro-coordination plans
are ‘detour-together, ‘divide-and-wait’, ‘divide-
and-meet’, and ‘divide-and-proceed’.

If a ‘detour-together’ plan is selected, the en-
tire group detours together when a group mem-
ber has to go to some point of interest. This plan
reflects the follow-the-leader behavior, which is
a commonly adopted approach for simulating
group behaviors in other work [14, 21]. In the
‘divide-and-wait’ plan, an agent heads for a sub-
goal by itself while the rest of a group members
stay at the current location. After it achieves
the sub-goal, the divided agent returns to where
it left the group members. If different sub-
goals are simultaneously generated for multiple
agents, the ‘divide-and-meet’ behavior allows
for all agents or sub-groups to go and execute
their sub-goals and return to the point of separa-
tion. This plan can be thought as analogous to
a temporary sub-group generation observed in
real group movements [3]. Once all parties have
accomplished their sub-goals, they return to the
previous location where they divided up and re-
sume the original navigation when the group is
reconstituted. If the ‘divide-and-proceed’ plan
is selected, a member that received the sub-goal
trigger detours to visit a sub-goal while the rest
of members proceeds with their original naviga-
tion plan. They reunite at the final goal location.

4.2 Micro-Coordination

In our model, micro-coordination relates to the
simulation of CG negotiation. We call this a
micro-coordination because it is always situ-
ated and local to the current group configuration.
Figure 2 shows how a plan is composed of a set
of RABs involving group members to simulate
CG negotiation.

4.2.1 Reciprocating Action Block (RAB)

RAB consists of a set of actions to simulate
the execution of a specific unit of communica-
tive intent (e.g., an agent getting the attention
of its interlocutors). An action block typically
involves dual actions that need to be executed
together or consecutively (e.g., the interlocutor
nods when the first agent waves in its field of



view). The utility of the block is thus to cre-
ate cohesive atomic behaviors within a coordi-
nation sequence. Table 1 illustrates such an ac-
tion block in our airport scenario. A may signal
her intention S of heading to a schedule board
by pointing toward it. This is followed by B
signaling acknowledgement by nodding at A.

Table 1: RAB

Role Action Description
proponent A presents sa to B intending that S
respondent B takes up sa by presenting sb

Initially, an agent who receives a subgoal trig-
ger is assigned with a proponent role. As the
communication proceeds, the roles may be in-
terchanged. For example, at the proposal of us-
ing the ‘divide-and-stay’ macro plan from A, B
understands the intention of A but may suggest
to use the ‘divide-and-meet’ plan by pointing
where he wants to drop by. Then, in the next
chunk of RAB, B takes a proponent role and A
becomes a respondent.

4.2.2 Communication Initiation

The first RAB in a micro-coordination plan is al-
ways the preparatory action needed to ensure ef-
fective communication. For an agent who needs
to initiate communication, it must first identify
the other member agent and the spatial relation
between them.

The agent has to assess the state of the re-
spondent agents with respect to their perception
model described in Figure 1, and perform a nec-
essary action to meet the condition for establish-
ing communication. Figure 3 illustrates possible

B
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A5

A1

A2
A3xi

xj

Figure 3: Six possible spatial relations of group
members

spatial relations of any two agents, A and B. In
this case, A is the initiator of an interactive ex-
change. Hence A has to evaluate the state of

perception of B depending on where she is with
respect to B. There are six possible spatial re-
lations, labeled A1 . . . A6 in the figure. If A de-
termines it is in the A3 position, it is outside the
immediate perception ofB and has to move into
a position where one of her means of communi-
cation is possible. A micro-coordination action
may then be selected to move within B’s field
of view (for example, position xi). The second
action block is for A to get B’s attention (e.g.,
by waving). An alternative action block may be
to have A walk into hearing range (e.g., position
xj), before calling out to B to get his attention.

4.2.3 Chains of Coordination

An example of micro-coordination plan com-
posed of a set of RABs between two agents
is shown in Table 2 (Note that a micro-
coordination plan may be extended to include
any number of participants). A moves to be
within B’s range of view in order to initiate
communication. In the following RAB2, A may
wave at B to get his attention, and B gives at-
tention to A by turning at A. Next in RAB3, A
may point to the schedule board for indicating
that she wants to check the departure time, and
B looks at where she points as a response to her
signal. However, B wants to go to a restroom,
so he points towards a nearby restroom and then
to their current location. A understands what he
means, so nods at him, in the RAB4 stage. As
B sees A’s nodding at him, B nods back to her
to indicate that he knows that she got the plan.
A finalizes that they are on the same plan, and
both take the movements.

Table 2: Micro-Coordinations plan, µγ

Step Action Description
RAB1 A moves to be within B’s view range
RAB2-1 A performs a signaling action, sa.
RAB2-2 B gives attention to A.
RAB3-1 A proposes a macro plan, Pα (i.e. select Pα)
RAB3-2 B signals his understanding of A’s intention
RAB4-1 B proposes a macro plan, Pβ (i.e. select Pβ )
RAB4-2 A signifies acknowledgement for Pβ .
RAB5-1 B accepts A’s acknowledgement
RAB5-2 A finalizes the agreement on using Pβ .

If µγ is successful,
Return TRUE (i.e. execute Pβ ),

Else Return FALSE (coordination failed)



4.3 Atomic Action

RAB specifies the reciprocating atomic actions
that satisfies a particular communicative intent.
More than one RAB may satisfy an commu-
nicative intent, and the selection of RABs can
provide behavioral variability, leading to greater
believability. We show examples of the high-
level communication intents and corresponding
RABs (as atomic action pairs) in Table 3.

Table 3: Examples of communication intents
and corresponding micro-behaviors

Communication Intent RAB Selected
Initiate communication A moves into B’s view;

B turns toward A
Request attention A waves in direction of B;

B looks at A & nods
Suggest macro-behavior A points toward sub-goal;

B nods at A

5 Perceptual Study and Results

Our CGCS model derives from CG theory with
a basis in extensive observational science, and
provides a means to simulate purposive behav-
ior of human groups in interacting. The open re-
search questions are whether this model is suit-
able for crowd simulation, and whether our op-
erationalization of the theory produces realis-
tic crowd models. The question may be refor-
mulated by asking whether our model produces
plausible animations from the viewpoint of hu-
man observers in a series of user studies.

Since our model decomposes the overall co-
ordinated behavior of groups into Macro- and
µicro-coordination components, we designed a
set of pairwise-comparative studies to investi-
gate the efficacy of the approach. In this section,
we shall discuss the virtual setting in which our
tests are conducted, the study conditions tested,
the design of the studies, and our study results.

5.1 Virtual Environment and Scenario

In our studies, the simulation takes place in
a virtual airport setting. 2D and 3D repre-
sentations of our airport model are shown in
Figure 4. The airport terminal contains 10
restrooms (blue squares), 16 flight schedule
boards (red squares), and 62 stores (yellow
squares) as potential sub-goals. Eight gates

(light purple squares) are generated as possible
final goals for agents. A* algorithm is used to
generate a global path for each Gk. An initial
navigation plan of G7 is drawn in navy blue on
top of the 2D map of the airport in Figure 4(a).

(a) 2D map (b) 3D animated scene
Figure 4: Airport terminal model

A crowd in each animation was made up of
60 individuals, 104 groups of 2 individuals, 30
groups of 3, 6 groups of 4, thus 200 groups in
total. This distribution of pedestrian was deter-
mined by approximately following the informa-
tion reported in [2]. However, to make the ges-
tures of characters easily observable to viewers,
the camera was set to focus at a few number of
groups, but not at the overall scene.

For all of the individuals and agents of groups,
one of the eight gates is selected as a final goal at
random. Starting from initial positions, agents
walk around the terminal and eventually pro-
ceed to the gate. A random event generator
may trigger agents to visit the nearest restroom.
When agents pass by schedule boards and shops,
they may be attracted to some of the places.
RVO2 Library [22] was used to generate low-
level collision-free steering decisions.

5.2 Simulation Condition

To test the degree of realism afforded by our
model, we generated a number of 30-second an-
imations in the four conditions summarized in
Table 4. We varied whether µ-coordination was
included in the simulation, and the kind of M -
coordination strategies employed. When no µ-
coordination is used, the groups just proceeded
to the M -coordination plan once a sub-goal is
introduced. In CDT and CµDT, the groups
always chose commonly used detour-together
strategy [14, 21], and in the CM and CµM con-
dition, our four Macro-coordination plans de-
scribed in Section 4.1 were employed.



Table 4: Study Conditions

Condition µ-Coordination M -Coordination
CDT No Detour-Together
CµDT Yes Detour-Together
CM No Varied
CµM Yes Varied

5.3 Study Design

We tested our study conditions using a pairwise
comparison design. To determine the effect of
micro-coordination on human perceptions of the
crowd behaviors produced by our model, we
compare CDT vs CµDT, and CM vs CµM. The
first comparison tests the effectiveness of intro-
ducing CG to the common detour-together strat-
egy [14, 21], and the second comparison tests
the effectiveness of adding CG to a more var-
ied set of macro-coordination strategies. We use
two measures as our dependent variable. The
first, MR, measures the participant’s estimation
of the realism of a simulation, and the second
MP measures the participant’s estimation of the
plausibility of a simulation.

For each pair of model comparisons, the par-
ticipant were shown several animation pairs that
were generated using the two models. That is,
each participant was shown 10 pairs of different
CDT and CµDT, and 11 pairs of different CM
and CµM animations. The order of the presen-
tations were randomized. We followed a within-
subjects design, therefore all of the participants
were shown the 21 pairs of animations.

Our study consists with three tasks. The first
two tasks are for the realism and plausibility
measures. The third task is for investigating par-
ticipants’ understanding of character behaviors.

For our realism measure, we employ a cover
story to avoid demand characteristic biases. For
each pair of simulations presented, the partic-
ipant was told that one animation was derived
from tracking data from a real crowd, and the
other was synthetically generated. The partici-
pant was given a forced choice task of determin-
ing which was ‘Real’ and which was synthetic.
MR measures the realism estimate for a simu-
lation condition as the fraction of the number of
times a simulation in that condition is rated as
‘Real’ across multiple exposures. For example,
if a participant judges 7 of the 10 CµM simula-
tions as being from ‘real data’, then CµM has a

MR score of 0.7 (and CM has a MR score of
0.3).

For our plausibility measure, participants
were asked to say if the behaviors of the groups
in a particular simulation are plausible on a 7-
point likert scale. Hence for our 10 presenta-
tions, each simulation model will have 10 lik-
ert scores. The plausibility measure MP of the
model is the average of the 10 likert scores.

To obtain a better understanding of the cri-
teria used by our participants to judge plausi-
bility, an additional pair of CM and CµM sim-
ulations were shown to the participants where
three members of a group select the ‘divide-
and-stay’ plan. This time, we highlighted a
particular group of agents in each simulation
(with a white circle). Participants were asked
to describe their impression and understanding
of character behaviors in the animations they
saw. The rationale for this third study con-
dition is the notion of ‘narrative intelligence’
whereby one’s belief concerning the truth of a
phenomenon is dependent on one’s ability to ex-
plain the phenomenon [10, 23]. At the end of
our 3-part study, the participants were given a
semi-structured interview to gain better insight
for how they judged the realism and plausibility
of the simulations.

Three characters 
walking together 

(CM): One member leaves 
without communication

(CμM): Members communicating
to each other

Two members 
waiting on the other

Figure 5: A paired CM and CµM animations

Figure 5 shows some animation scenes from
the pair of CM and CµM which was used for this
task. Characters start from the same initial posi-
tions (Figure 5 (a)) and the focused groups select
the divide-and-stay plan (Figure 5 (c)). Before
a split occurs, the characters exchange commu-
nicative actions in the CµM condition (bottom
of Figure 5 (b)) while they simply leave each
other in the CM condition (top of Figure 5 (b)).



5.4 Procedure

42 volunteers (28 females, 14 males), aged 18
to 38, were recruited for the study. At the be-
ginning of the study, we showed them a demo
video of our virtual airport terminal with a large
number of virtual characters.

5.5 Results and Discussion

5.5.1 Quantitative Analysis

We hypothesized that groups employing µ-
coordination would appear more realistic and
believable than the groups without the µ-
coordination. Specifically, we hypothesized that
groups in CµDT and CµM simulations would
score higher MR and MP than those in CDT
and CM simulations, respectively. Paired t-
tests were conducted to compare MR values for
CDT and CµDT, and CM and CµM animations,
and MP values for CDT and CµDT, and CM
and CµM animations.

We found a significant effect of incorporating
social behaviors of coordination in the partici-
pants’ responses on the crowd animations. Fig-
ures 6 (a) and (b) show that participants chose
the CµDT groups as real more often than the
CDT groups (p < 0.01), and CµDT groups as
more plausible than the CDT groups (p < 0.01).
The analysis results in Figures 7 (a) and (b) also
confirm that participants rated the CµM groups
as real more often than the CM groups (p <
0.01), and CµM groups as more plausible than
the CM groups (p < 0.01).

(a) MR (b) MP

Figure 6: CDT vs CµDT

(a) MR (b) MP

Figure 7: CM vs CµM

5.5.2 Qualitative Analysis

We employed two qualitative approaches to an-
alyze our qualitative data. First, we analyzed the
participants’ responses for objective statements
of belief concerning each model in the third task.
This allows us to determine why one model was
judged as more believable than another. For the
CM animation, 10 participants stated that they
were not sure on what was going on in the an-
imation (e.g., “it seems strange, the people ran-
domly stop and one person leaves”). 24 partici-
pants provided just a factual description of what
they witnessed without providing any reasons
for what they saw, for example, “one guy in a
suit walked away while others are standing.” 10
among these 34 indicated that they thought the
characters are not with together (e.g., “I think
the first two are traveling together, and the guy at
the end wasn’t with them”). 8 subjects made an
interpretation in which they assumed the group
members communicated before they split up.

In contrast, for the CµM animation, 40 sub-
jects indicated that they had a better understand-
ing of the character behaviors, and interpreted
the split as resulting from negotiation (e.g., “one
of the character actually told the other two char-
acters to wait on him”). 10 of the 40 subjects
explicitly stated that the CµM animation was
much more clear, and it was due to the exhibi-
tion of communicative acts of characters (e.g.,
“there was obvious communication between the
members of the group so it was very direct and I
didn’t have to assume what was going on”), and
11 of them added more stories into their descrip-
tion (e.g., “he might say something like ‘do you
know where we have to go,’ so he checks...”). 2
provided the similar factual description to what
they had for the CM animation.

In the semi-structured post interview, we
asked participants what criteria they used to
evaluate animations. To obtain categories for
the rationale for the participants’ beliefs, we em-
ployed an open coding method [24]. We per-
formed two passes through the data. In the first
pass, we collected categories of responses con-
cerning belief, and in the second, we employed
these categories to group the participants’ re-
sponses.

Through our analysis, we were able to deter-
mine three categories for reasons that the par-



ticipants rated the CG model as more believ-
able. The three categories of rationale are: In-
teraction, Formation, and Cohesion. In the
Interaction category, participants were atten-
tive to whether there was evidence of interac-
tion among characters before stopping or chang-
ing direction while walking (e.g., exchange
of gestures, body alignments to talk). Sub-
jects answered that the characters with the µ-
coordination behaved in a way that allows them
to structure the sequence of behaviors into a nar-
rative whole, and makes the animation be more
comprehensible and believable. For the For-
mation category, spatial patterns of groups such
as side-by-side walking and linear walking for-
mation were considered. In the Cohesion cate-
gory, subjects looked for whether group mem-
bers maintained appropriate proximity and/or
respected group integrity (i.e. circumnavigated
other groups rather than just cutting through
them). As shown in Figure 8, 34 participants
employed Interaction, 5 used Formation, and
3 used Cohesion as their criteria to make their
evaluations.

0	  
5	  

10	  
15	  
20	  
25	  
30	  
35	  
40	  

Interac/on	   Forma/on	   Cohesion	  

Figure 8: Criteria used to evaluate animations

Our results demonstrate that the believability
of an animation is affected by communicative
and social interactions among characters. Peo-
ple are attentive to not only what the charac-
ters do but also why, because they try to un-
derstand the chains of character behaviors by
constructing a coherent story [10]. People rated
a given animation realistic and more plausible
when they thought a specific walking strategy
(e.g., divide-and-stay) of a group was made as a
result of communication among the characters.
This indicates that the meaning of behaviors of
individuals in group activities is not decidable in
isolation but people relate the behavior to the be-
havior of interacting entities to understand them.
It is shown that the comprehensibility may be
essential to believable agents, and this suggests

that the model of character behaviors should be
designed to provide interpretability, or rational-
ity, to external observers in order for achieving
the enhanced realism.

6 Conclusion

In this paper, we presented a model of social
group behaviors using Clark’s Common Ground
theory to accommodate high-level sociality of
characters in a crowd simulation. The CGCS
model enabled our agents to present commu-
nicative behavioral cues in coordination with
other agents in a group. We conducted a user
study in which the efficacy of our CGCS model
was examined. The study results showed that
the communicative purpose in our model can be
consistently carried through from simulation to
animation, and it produces more believable be-
haviors of animated characters from the view-
point of human observers.

Our future research direction includes extend-
ing our model to handle subgroups and various
types of relationships. In the real world, indi-
viduals are embedded in different social struc-
tures simultaneously, such as subgroups (e.g.,
parents, siblings), groups (e.g., family), and or-
ganization (e.g., pedestrians). Also, intergroup
ties could vary (e.g., pedestrians-pedestrians,
pedestrians-authority figures). The different so-
cial relationships may have an impact on the use
of micro-coordination and macro-coordination
strategies. For example, pedestrian-pedestrian
coordination will require the construction of ad
hoc proximal groups with different strategies.
Such extension will provide interesting chal-
lenges to extensions of our model.

References

[1] J. S. Coleman and J. James. The equi-
librium size distribution of freely-forming
groups. Sociometry, 24(1):pp. 36–45,
1961.

[2] A. F. Aveni. The Not-So-Lonely Crowd:
Friendship Groups in Collective Behavior.
Sociometry, 40(1):96–99, 1977.

[3] C. Peters and C. Ennis. Modeling groups



of plausible virtual pedestrians. IEEE
Comput. Graph. Appl., 29(4):54–63, 2009.

[4] I. Karamouzas and M. Overmars. Sim-
ulating and evaluating the local behav-
ior of small pedestrian groups. IEEE
Trans. on Visualization and Comp. Graph-
ics, 18(3):394–406, 2012.

[5] C. Ennis, C. Peters et al. Perceptual effects
of scene context and viewpoint for virtual
pedestrian crowds. ACM Trans. Appl. Per-
cept., 8(2):10:1–10:22, 2011.

[6] C. Ennis and C. O’Sullivan. Perceptually
plausible formations for virtual conversers.
Computer Animation and Virtual Worlds,
23(3-4):321–329, 2012.

[7] S. I. Park, F. Quek et al. Modeling social
groups in crowds using common ground
theory. In Proceedings of the Winter Sim-
ulation Conference, pages 113:1–113:12,
2012.

[8] S. I. Park, F. Quek et al. Modeling agent
social joint actions via micro and macro
coordination strategies. In Web Intelli-
gence and Intelligent Agent Technology,
2012 IEEE/WIC/ACM Intl. C. on, 2012.

[9] H. H. Clark. Using Language. Cambridge
University Press, 1996.

[10] J. Bruner. The narrative construction of re-
ality. Critical inquiry, 18(1):1–21, 1991.

[11] D. Thalmann and S.R. Musse. Crowd
Simulation. Springer-Verlag London Ltd,
2007.

[12] N. Badler, J. Allbeck, and N. Pelechano.
Virtual Crowds: Methods, Simulation, and
Control (Synthesis Lectures on Computer
Graphics and Animation). Morgan and
Claypool Publishers, 2008.

[13] M. Moussaı̈d, N. Perozo, et al. The Walk-
ing Behaviour of Pedestrian Social Groups
and Its Impact on Crowd Dynamics. PLoS
ONE, 5(4):e10047+, 2010.

[14] S. Lemercier, A. Jelic, et al. Realis-
tic following behaviors for crowd simula-
tion. Comp. Graph. Forum, 31(2):489–
498, 2012.

[15] F. Qiu and X. Hu. Modeling group struc-
tures in pedestrian crowd simulation. Sim-
ulation Modelling Practice and Theory,
18(2):190 – 205, 2010.

[16] E. Ju, M. G. Choi, et al. Morphable
crowds. ACM Trans. Graph., 29(6):140:1–
140:10, 2010.

[17] M. Kim, Y. Hwang, et al. Tiling mo-
tion patches. In Proc. of the 2012
ACM SIGGRAPH/Eurographics symp. on
Comp. animation, 2012.

[18] G. Klein, P. J. Feltovich, et al. Com-
mon ground and coordination in joint ac-
tivity. Organizational Simulation, pages
139–184. John Wiley and Sons, Inc., 2005.

[19] R. Kirby, R. Simmons, et al. Compan-
ion: A constraint-optimizing method for
person-acceptable navigation. In Robot
and Human Interactive Communication,
The 18th IEEE International Symposium
on, pages 607–612, 2009.

[20] D. C. Neale, J. M Carroll, et al. Evaluat-
ing computer-supported cooperative work:
models and frameworks. In Proc. of the
ACM conf. on Comp. supported coopera-
tive work, pages 112–121, 2004.

[21] C. Reynolds. Steering Behaviors for Au-
tonomous Characters. In Game Develop-
ers Conference, 1999.

[22] J. van den Berg, S. J. Guy et al.
Rvo2 library: Reciprocal collision avoid-
ance for real-time multi-agent simula-
tion. http://gamma.cs.unc.edu/
RVO2/, 2011.

[23] M. Mateas and P. Sengers. Narrative Intel-
ligence. Advances in Consciousness Re-
search Series. John Benjamins Pub., 2003.

[24] A. L. Strauss and J. M. Corbin. Basics
of qualitative research: grounded theory
procedures and techniques. Sage Publica-
tions, 1990.


