
A Real-time System of Crowd Rendering:
Parallel LOD and Texture-Preserving Approach

on GPU

Chao Peng, Seung In Park, Yong Cao

Computer Science Department, Virginia Tech, USA
{chaopeng,spark80,yongcao}@vt.edu

Abstract. In modern games, rendering a massive scene with a large
number of animated character is imminent and a very challenging task.
In this paper, we present a real-time crowd rendering system on GPUs
with a special focus on how to preserve texture appearance in progressive
LOD-based mesh simplification algorithms. Our results show that the
proposed parallel LOD approach can get up to 5.33 times of speedup
compared with the standard pseudo-instancing approach.

Keywords: Level of detail, Crowd animation, Texture-preserving, GPGPU

1 Introduction

Rendering large crowds of animated characters has become a common require-
ment in massively multi-player online games and interactive virtual environ-
ments. In many video games, human characters are the major 3D content com-
posed of deformable meshes, where each mesh is represented with a set of tri-
angles. In a typical massive crowd scene, one of the main challenge is how to
increase rendering performance of a large number of articulated characters so
that the users can have a real-time gaming experience. To do this, many Level
of Detail (LOD) approaches, such as Progressive Mesh [7] and Quadric Error
Metrics(QEM) [5], have been used to reduce the complexity of meshes. A LOD
is a geometrically simplified representation of an original mesh without losing
visual fidelity at a certain distance. In most of games, the rendering attributes,
especially surface texture, are as important as geometry shapes for the realistic
rendering of animated characters. And it is essential to preserve the correctness
of texture appearance on different LODs.

During the past years, Graphics Processing Units (GPUs) have been sig-
nificantly improved to perform general-purpose computation. By utilizing their
highly parallel architecture, the algorithms, traditionally implemented on CPUs,
can be re-designed and implemented on GPUs to enhance the performance. Re-
searchers have proposed parallel LOD algorithms on GPU to support real-time
rendering [8, 13]. In this paper, we extend our previous work [13], and present
a GPU-based system to render crowds of animated characters while preserving

2 Chao Peng, Seung In Park, and Yong Cao

their per-vertex attributes (e.g. texture coordinates). Our contribution empha-
sizes on a set of criteria that provide texture-preserving constraints for edge-
collapsing in data preprocess. We also propose a processing pipeline that com-
bines the NVIDIA’s parallel computing architecture and OpenGL shaders to
efficiently render the LOD meshes which are generated in runtime.

We organize the rest of the paper as follows. In Section 2, we review some
previous works in LOD techniques and GPGPU computing for rendering. In
Section 3, we provide a brief overview of our rendering system. In Section 4, we
describe our approach of texture-preserving criteria applied in the preprocess.
In Section 5, we present the pipeline for rendering animated characters. We
describe our experiments and results in Section 6. Finally, we conclude our work
and discuss the future works in Section 7.

2 Related works

Mesh simplification has been well studied in the past. In this section, we review
the some previous approaches. We also review the work on general propose GPU
computing in this area.

2.1 Mesh Simplification and LOD

LOD is a common representation for simplified meshes. It aims to reduce the
complexity of 3D meshes based on some criteria, such as the distance to a camera.
There are two typical types of LODs: Discrete LOD and Continuous LOD.

The concept of discrete LOD is to offline create a limited number of meshes
to represent the original object. During runtime, the renderer choose a proper
LOD from the already generated meshes to be the alternative for rendering. The
major limitation of discrete LOD is that it can not provide smooth transitions
between two LODs, and cause the “popping” artifacts. Markus Giegl and Michael
Wimmer [6] presented a blending-based algorithm to avoid artifacts in image
space, which is further improved by [15]. However, it requires high similarities
between LOD meshes in order to achieve a smooth LOD change. In addition,
the noisy artifacts may occur on the silhouettes of the LODs.

Continuous LOD is supported by a data structure encoding a continuous
spectrum of mesh details. A well-known algorithm of continuous LOD is pro-
gressive meshes [7], where a original mesh is simplified by collapsing edges it-
eratively. Then, the mesh is represented as a base mesh with a sequence of
vertex splits. At runtime, a LOD mesh can be recovered by applying a prefix
of splits on the base mesh. Other simplification approaches for continuous LOD
include region-merging measurement [14], quadric error metrics [5], appearance-
preserving method [1] and image-driven simplification [9].

2.2 GPU Computing for Mesh Simplification

With the GPU’s parallel architecture, we can design and implement efficient
parallel algorithm and achieve high performance. GPU-based mesh simplifica-

A Real-time System of Crowd Rendering 3

tion has been studied in the past. In [2], the authors designed a GPU-friendly
octree structure for cluster-based LOD generation. Hu et al. [8] proposed a par-
allel algorithm for view-dependent LOD rendering. Feng et al. [3] presented a
parallel LOD approach for skinned meshes using geometry images. Peng et al.
[13] presented a method of parallel progressive LOD for rendering massive and
complex models interactively. Although these parallel approaches increase the
performance of the LOD-based rendering, none of them are well studied on how
the textures should be preserved while appearing on different LODs. Since tex-
ture is an important rendering feature for gaming-related applications, in this
paper, we contribute a set of texture-preserving criteria for the simplification of
deformable mesh.

3 Overview

Our system leverages the advantages of a previous work [13], which provides an
efficient, parallel LOD algorithm, and interactively renders massive and static
models on GPUs. Our system includes two major stages: Data Preprocess and
Rendering Pipeline. We illustrate the system overview in Fig. 1.

LOD
Selection

LOD
Generation

LOD
Deformation

Rendering
Workflow:

Preprocess:

Re-arranged
Mesh

Collapsing
Information

Collapsing
Criteria

Skeleton Animation
Original
Mesh

On CPU memory

On GPU memory

Parallel processing

Bounding
Spheres Skin

Fig. 1. The overview of preprocess and rendering pipeline.

3.1 Preprocess

In preprocess stage, the vertices and triangles of the original mesh is simplified
iteratively. At each iteration, one edge is chosen to be collapsed according to a
collapsing criterion. We record the collapsing information into an array struc-
ture, where each element corresponds to a vertex, and the value of the element
indicates the target vertex that it merges to. Then, we re-arrange the vertices
and triangles of the mesh based on the order of edge-collapsing (referring to the
details in [13]). we also create a Bounding Sphere(BS) for each original mesh.
Note that the BS is large enough to bound the deformed mesh for any animated
pose. A BS serves two purposes at runtime. First, we determine the visibility of
a character by testing the BS against the view frustum. Second, we generate a
desired LOD based on the size of the projected area of the BS.

4 Chao Peng, Seung In Park, and Yong Cao

To avoid the problematic texture mapping onto the surface of each LOD,
we present a set of texture-preserving criteria as an auxiliary control on how
edges are collapsed at each iteration of simplification process. We describe our
texture-preserving criteria in Section 4.

3.2 Run-Time Rendering Pipeline

At runtime, we employs the GPU parallel architecture to increase the rendering
performance. Our rendering pipeline includes the following three steps to render
an image frame:

1. LOD Selection. We compute the desired complexity for each character. To
do this, we determine the visibilities of the characters by testing the BSes
against the view frustum. If a character is visible, the LOD level is deter-
mined with the appropriate vertex and triangle counts.

2. LOD Generation. Based on the desire complexity of a character, we select
a set of triangles from the original data and reform those triangles by per-
forming the precomputed edge collapsing operations.

3. LOD Deformation. We deform the generated LODs to calculate the final
positions of vertices with the skeleton, skin and motion data.

4 Mesh Simplification By Perserving Texture Appearance

We first split the vertices associating with multiple sets of texture coordinates.
Second, we describe how to categorize the vertices and apply different collapsing
rules to them.

An articulated character model is represented as a triangulated mesh associ-
ated with a set of texture coordinates. Thus, mesh M can be denoted as a triple,
(V,U, T), where V = {vi, v2, . . . , vm} is m vertices; U = {u1, u2, . . . , ur} is r tex-
ture coordinates; T = {t1, t2, . . . , tn} is n triangles. ti is a triple of index pairs,
denoted as ti = {(vdx1, udx1), (vdx2, udx2), (vdx3, udx3)}, where vdxj(j ∈ [1, 3])
is a vertex index in the range of [1,m], and udxj(j ∈ [1, 3]) is a texture coordinate
index in the range of [1, r].

4.1 Splitting Vertices According to Texture Coordinates

In OpenGL-based graphics pipeline, Vertex Buffer Objects (VBOs) are a common
mechanism for storing vertex data on GPU memory. In a mesh, since multiple
sets of texture coordinates may associate to a vertex, they will be indexed dif-
ferently from other vertex attributes. But the OpenGL only supports one index
stream used by all vertex attributes. As such, we need to duplicate the vertices
which have more than one texture coordinate set so that the index pairs of a
triangle, (vdxj , udxj), can be replaced with a single universal index, and we call
this process Vertex Splitting. As a result, each vertex of the mesh will have only
one set of texture coordinates, and the vertex count will be equal to the texture

A Real-time System of Crowd Rendering 5

coordinate count. Then, a triangle ti can be redefined as {idxj}(j ∈ 3), where
idxj is the universal index for all vertex attributes.

Druing vertex splitting, we also record the splitting information into an array,
called Adjacent Vertices, denoted as adjV . The adjV [i], associated to the vertex
vi, is a set of vertices that are split from the same original vertex vi, including
the original vertex vi. For example, in Figure 2 (a), vertex v1 is split into v9 and
v10, therefore, adjV [1] = {v1, v9, v10}. Note that a vertex split from a boundary
vertex is still treated as a boundary vertex.

4.2 Texture-Preserving Criteria

QEM [5] is a general and efficient criterion for mesh simplification. At each it-
eration, each edge is weighted by its cost. Then the edge with the lowest cost is
chosen to be collapsed, and the triangles associated with this edge are removed.
QEM considers the lengths of edges and face normals when computing the costs
of edges. Thus, by using the criteria, we can avoid the mesh inversion problem
and preserve the mesh boundaries so that the fidelities of the mesh approxima-
tions can be maintained. However, QEM is not sufficient to preserve the texture
appearance on the surface, especially after the vertex splitting.

In order to perform a texture-preserving process of mesh simplification, we
classify the vertices into three categories according to the splitting information
recored in adjacent arrays. We define the categories and the rules of classification
as follows (also see Fig. 2(a-b)):

Fixed Vertices. If a vertex, vi, is a boundary vertex, or the number of vertices
in adjV[i] is larger than 2, vi is classified as a fixed vertex. The fixed vertices
are non-collapsible and not involved in the iterations for collapsing edges.
They constitute the simplest version of original mesh.

Companioned Vertices. If a vertex, vi, is not a boundary vertex, and the
number of vertices in adjV[i] is equal to 2, vi is classified as a companioned
vertex. if the vertex in adjV[i] is denoted as vi, vi will be the companion of
vi during the edge-collapsing.

Regular Vertices. If a vertex, vi, is not a boundary vertex, and adjV[i] is
equal to 1 (did not split), vi is classified as a regular vertex.

At each iteration, an edge, (va, vb), weighted with the lowest cost is collapsed
by merging va to vb. We define that an edge is valid for collapsing if either of
the following conditions is satisfied:

1. va is a regular vertex.
2. va is a companioned vertex; and (va, vc) is an actual edge in both the world

space and the texture space, where vc ∈ adjV [b].

When collapsing the edge (va, vb), if va is a companioned vertex, we also
collapse the edges (va, vc) by merging va to vc. This is because (va, vb) and
(va, vc) are identical in 3D space, and the texture must appear continuously

6 Chao Peng, Seung In Park, and Yong Cao

World Space

!"#$!%&#!"'(# !)#$!""&#!")(#

!*# !+#

!,#!-#

!.#$!"+(#
!"#$%&&
'$()*$+&

,-./01"-1$%&&
'$()*$+&

2$3450(&
'$()*$+&

!/#$!"*(#

!"# !$#

!%# !&#

!'# !(#

!)#!*#

!""#!+#

!"'#

!",# !"$#

!"(#

Texture Space

(a) (b) (c) (d)

Fig. 2. (a-b) shows an example of vertex categories. (a) is the mesh after split-
ting vertices in world space; (b) is the texture coordinates of the mesh in texture
space. The set of fixed vertices is {v1, v2, v9, v10, v11, v12}; the set of companioned ver-
tices is {v7, v8, v13, v14}; the set of regular vertices is {v3, v4, v5, v6}. (c-d) shows the
comparison of accuracy on the deformed mesh. (c) is the LOD based on the
simplification of the static bind-pose mesh; (d) is the LOD based on the simplification
considering all frames of motions. Note that both (a) and (b) are composed of 300
triangles. As a result, (d) is more accurate than (c) in visual fidelity.

crossing those edges. Thus, we collapse both the edges concurrently to avoid any
distorted texturing effects .

For a deformable mesh, the actual shape of the mesh changes between frames.
If we perform the simplification process only on a static shape of the mesh, the
LOD generated for the actual shape may not be sufficiently accurate (see Fig.
2(c-d)). This is because when a bone of the skeleton is bent, the flat region of
the static shape around this joint may significantly change to a high curvature
region, where more features are demanded [3]. To solve this problem, we collapse
an edge by considering the actual shapes of all frames in the motions. That means
that the cost to collapse an edge is the average of the costs computed from all
frames. We show an example of a sequence of LODs in Fig. 3.

Fig. 3. A sequences of LODs generated by using texture-preserved criteria.
From the left to the right, the LODs have 2620, 655, 388, 276,190 triangles respectively.

A Real-time System of Crowd Rendering 7

5 Rendering Pipeline for Animated Characters

In this section, we describe the runtime pipeline for rendering a crowd of ani-
mated characters.

5.1 LOD Selection

At runtime, we determine the complexity of each character. In our system, the
complexity is represented with appropriate vertex count and triangle count. The
farther a character is from the camera, the less complexity is needed to render. A
common solution to compute the complexities is a distance-based method [10].
Although it is a simple and efficient method, the major disadvantage is that an
arbitrary point for each character must be chosen for distance calculation, which
would lead to inaccurant results. Alternatively, we use a screen-based method
utilizing the projected area of BSes on the image plane. Simuliar to [13, 16], we
use Equation 1 to compute the complexities, and the total triangle count of all
characters is smaller than a predefined maximal count.

k = N
A

1
α
i∑l

i=1A
1
α
i

(1)

In Equation 1, k is the appropriate vertex count computed out of l characters;
N is the maximal vertex count, which is predefined according to the rendering
performance or quality. Ai is the projected area of BS of the ith character. 1

α is
a parameter determining how the model perception contributes to the selection
process (Refer to [17] for the details for choosing a value of α). By mapping k to
the corresponding number of triangles, we can obtain the appropriate triangle
count, q, where q ∈ [1, n].

If a character is out of the view frustum, it is invisible to users, and we set its
complexity to zero. By using NVIDIA’s CUDA computing framework, we first
test BSes against the view frustum in parallel. Then we apply Equation 1 for all
the characters inside the view frustum.

5.2 Generating LODs By Reforming Triangles

After LOD selection, for each character, we select the successive sets of vertices
and triangles from the original data. The vertex and triangle data of the mesh
are re-arranged according to the order of the edge collapses in preprocess. The
first vertex of the mesh is the last one collapsed; and the fist triangle of the mesh
is the last one removed. Thus, according to the computed complexity, we create
those two sets by picking the successive vertices and triangles starting from the
first. Then, the LOD of the character is generated by reforming those selected
triangles. As a result, the vertex indices of a triangle are replaced with the target
indices returned from the per-vertex lookup of the collapsing information. Please
refer to [13] for detailed description.

8 Chao Peng, Seung In Park, and Yong Cao

5.3 Deforming LODs

In order to animate a 3D mesh, we apply the standard smooth skinning algo-
rithm, which uses information defined asskin and skeleton. Skeleton is a set of
interconnected bones organized in an inverted tree hierarchy. Skin indicates how
the vertices are influenced by the skeleton. In our system, we allow a maximum
of 4 bones controlling one vertex, and each of 4 bones associates with a scaling
factor, called deforming weights, to specify its strength influencing the vertex.
Thus, we animate a character by deforming its LOD mesh with a skeletal pose
defined by the movements of bones. In our system, we use the pre-captured mo-
tions, where a motion is composed of a sequence of skeletal poses. At runtime,
a skeletal pose can be chosen from the motion data to deform the mesh.

To calculate the final positions of vertices, each vertex is transformed by
applying the transformation matrices of its associated bones. We show the per-
vertex calculation in Equation 2.

−→p ′ =

4∑
i=1

wbi ·GT biB
−1
bi
−→p ; where

4∑
i=1

wbi = 1; (2)

where bi is the index of the bone influencing the vertex; G is the world trans-
formation matrix of the character having this vertex; T bi is the transformation
matrix of the bone; B−1bi is the inverse binding matrix of the bone defined in the
initial skeleton. −→p is the original position of the vertex. To do this calculation
efficiently, we store the skeleton, motions and skin in texture memories of GPUs,
then calculate −→p ′ by reading them in the vertex shader.

6 Experiments and Results

Our system is designed to render a large number of animated characters. In this
section, we show the rendering results, and evaluate the performance.

6.1 Implementation and Experiment

We have implemented our system for crowd rendering on an workstation equipped
with Intel Core i7 2.67 GHz, 12GB of RAM, and a Nvidia Quadro 5000 graphics
card with 2.5GB device memory. Our program uses Nvidia CUDA Toolkit v3.2.
In our experiments, we use a character composed of 1642 vertices and 2620 tri-
angles. We applied the criteria presented in Section 4 in preprocess. As shown
in Fig. 3, the continuity of the texture appearing on different version of LODs is
perserved. In Fig. 4, we also show a live-captured image rendering 512 characters.

6.2 Performance Evaluation

We evaluate the performance of the rendering system by comparing with the
OpenGL pseudo-instancing approach. Instancing technique is to render multiple

A Real-time System of Crowd Rendering 9

(a)

(b) (c)

Fig. 4. An example of rendering 512 characters with 98,638 triangles in
total. (a) shows the rendering result from an user camera. (b) demonstrates the texture
appearance on the LODs generated based on the camera setting in (a). In (c), we show
the result of view-frustum culling of (a). The spheres indicate the characters outside
the view frustum.

instances of the same character with a single drawing call. In OpenGL graphics
pipeline, pseudo-instancing has been widely, for example, in [11, 12, 18], where
the crowd rendering is optimized by sharing vertex data, primitive counts and
types, among all instances. It minimizes the amount of duplicated data. The
technique accesses persistent vertex attributes associated in vertex shader, and
per-instance data(e.g. world transforms) as textures.

We present the performance evaluation of our approach with varying counts
of character instance in Table 1. Arbitrary number N is chosen to satisfy the
certain base level of rendering quality. In our test case, we set such N that
guarantees no over-simplification on the farthest characters from the camera.
α = 3 is configured to produce the equivalent result of Funkhouser’s benefit
function as in [4, 17]. “Updating Animation” is the time for changing the frame
index of motion, and “Rendering” is the time for the process of deformation and
rasterization. “# of triangles” represents the number of triangles used in our
approach comparing to that of pseudo-instancing. Since our approach adjusts
the complexity of character meshes at runtime, only 7.2% ∼ 47.7% of triangles
are maintained while preserving the visual fidelity.

10 Chao Peng, Seung In Park, and Yong Cao

Table 1. Performance benchmark of our approach with varying number of characters.

of FPS LOD Triangle Updating Rendering # of
instances Selection Reformation Animation triangles

32 337 0.28 ms 0.084 ms 0.0004 ms 2.603 ms 40,056/83,840
64 292 0.32 ms 0.11 ms 0.0004 ms 2.994 ms 49,236/167,680
128 228 0.34 ms 0.13 ms 0.001 ms 3.915 ms 78,058/335,360
256 156 0.35 ms 0.21 ms 0.002 ms 5.848 ms 139,642/670,720
512 111 0.42 ms 0.32 ms 0.004 ms 8.265 ms 211,685/1,341,440

1,024 79 0.43 ms 0.49 ms 0.006 ms 11.732 ms 329,594/2,682,880
2,048 47 0.44 ms 0.89 ms 0.014 ms 19.933 ms 617,031/5,365,760
4,096 26 0.48 ms 1.75 ms 0.032 ms 36.200 ms 1,182,280/10,731,520
8,192 16 0.58 ms 3.08 ms 0.054 ms 58.786 ms 1,946,977/21,463,040

“Triangle Reformation” time shows our approach scales well with the num-
ber of triangles. The number of triangles and reformation time to render 2, 048
characters are set to 1.0, and the ratios of triangles number and reformation time
for the rest test cases show the linear relation in Table 2. The GPU we used has
11 stream processors in which each processor is composed of 128 computational
cores. Hence, at least 11 × 128 = 1, 408 threads need to run concurrently to
prevent GPU from underutilization. In our parallel implementation, each thread
performs a kernel of LOD selection and triangle reformation, therefore the test
case of 2, 048 instances is chosen to the base for the comparison.

Table 2. Performance and scalability.

of # of Triangle Ratio of Ratio of
Instances Triangles Reformation Triangles Triangle Reformation

2,048 617,031 0.95 ms 1.00 1.00
4,096 1,182,280 1.75 ms 1.91 1.84
8,192 1,946,977 3.08 ms 3.15 3.24
16,384 3,103,167 5.23 ms 5.02 5.49
32,768 6,184,824 10.47 ms 10.02 11.02

Although our approach introduce additional costs on the steps of LOD se-
lection and LOD generation, it is not the performance bottleneck of the system.
As shown in Fig. 5(a), the sum of computation time spent on those two stages
is 6.65% of the total time. Fig. 5(b) shows the performance comparison mea-
sured by FPS(Frames Per Second) between our approach to pseudo-instancing.
The same camera setting is used for both approaches on the same number of
instances. The procedure for changing the frame index of motion is also set to be
identical. Our LOD-based approach achieves 1.22X to 5.33X speedup comparing
to the pseudo-instancing approach.

A Real-time System of Crowd Rendering 11

Updating Animation
(0.07%)

LOD Selection
(2.26%)

Triangle Reformation
(4.39%)

Rendering
(93.28%)

0	

50	

100	

150	

200	

250	

300	

350	

400	

32	
 64	
 128	
 256	
 512	
 1024	
 2048	
 4096	
 8192	

Our	
 Approach	

Psedo-­‐Instancing	

(a) (b)

Fig. 5. (a) shows the percentages of different computation times of our approach listed
in Table 1. The pie chart is generated by averaging the timing results of all nine“‘
configuration of instance counts. (b) shows the performance over different instance
counts according to the FPS results in Table 1.

7 Conclusion and Future Work

We present a LOD-based real-time crowd rendering system for animated char-
acters. Our contributions are focused on a set of texture-preserving criteria for
parallel and progressive mesh simplification. In the preprocess stage, we first
splitting the original vertices based on the layout of texture coordinates in or-
der to preserve the continuity of texture appearing on the surface. Then, the
vertices are classified into three different categories. Each category is set with
different rules of how the vertices should be merged during the iterative process
of edge collapsing. In our rendering pipeline, we generate the appropriate LODs
on the fly, and deform them to obtain the actual shape of mesh for the current
animation frame. We leverage the computing power of the parallel architecture
of GPUs, and achieve the real time performance for our test cases.

In the future, we like to apply the texture preserving criteria to other ren-
dering attributes, such as vertex normals. We would also like to research on the
parallel algorithms for occlusion culling based on frame-to-frame coherence.

References

1. Cohen, J., Olano, M., Manocha, D.: Appearance-preserving simplification. In: Pro-
ceedings of the 25th annual conference on Computer graphics and interactive
techniques. pp. 115–122. SIGGRAPH ’98, ACM, New York, NY, USA (1998),
http://doi.acm.org/10.1145/280814.280832

2. DeCoro, C., Tatarchuk, N.: Real-time mesh simplification using the gpu. In: Pro-
ceedings of the 2007 symposium on Interactive 3D graphics and games. pp. 161–
166. I3D ’07, ACM, New York, NY, USA (2007), http://doi.acm.org/10.1145/
1230100.1230128

3. Feng, W.W., Kim, B.U., Yu, Y., Peng, L., Hart, J.: Feature-preserving triangular
geometry images for level-of-detail representation of static and skinned meshes.

12 Chao Peng, Seung In Park, and Yong Cao

ACM Trans. Graph. 29, 11:1–11:13 (April 2010), http://doi.acm.org/10.1145/
1731047.1731049

4. Funkhouser, T.A., Séquin, C.H.: Adaptive display algorithm for interactive frame
rates during visualization of complex virtual environments. In: Proceedings of the
20th annual conference on Computer graphics and interactive techniques. pp. 247–
254. SIGGRAPH ’93, ACM, New York, NY, USA (1993), http://doi.acm.org/
10.1145/166117.166149

5. Garland, M., Heckbert, P.S.: Surface simplification using quadric error metrics. In:
Proceedings of the 24th annual conference on Computer graphics and interactive
techniques. pp. 209–216. SIGGRAPH ’97, ACM Press/Addison-Wesley Publishing
Co., New York, NY, USA (1997), http://dx.doi.org/10.1145/258734.258849

6. Giegl, M., Wimmer, M.: Unpopping: Solving the image-space blend problem for
smooth discrete lod transitions. Computer Graphics Forum 26(1), 46–49 (2007),
http://dx.doi.org/10.1111/j.1467-8659.2007.00943.x

7. Hoppe, H.: Progressive meshes. In: Proceedings of the 23rd annual conference on
Computer graphics and interactive techniques. pp. 99–108. SIGGRAPH ’96, ACM,
New York, NY, USA (1996), http://doi.acm.org/10.1145/237170.237216

8. Hu, L., Sander, P.V., Hoppe, H.: Parallel view-dependent refinement of progressive
meshes. In: Proceedings of the 2009 symposium on Interactive 3D graphics and
games. pp. 169–176. I3D ’09, ACM, New York, NY, USA (2009), http://doi.

acm.org/10.1145/1507149.1507177

9. Lindstrom, P., Turk, G.: Image-driven simplification. In: ACM Transactions on
Graphics. vol. 19, pp. 204–241 (July 2000)

10. Luebke, D., Watson, B., Cohen, J.D., Reddy, M., Varshney, A.: Level of Detail for
3D Graphics. Elsevier Science Inc., New York, NY, USA (2002)

11. Millan, E., Rudomin, I.: Impostors and pseudo-instancing for gpu crowd rendering.
In: Proceedings of the 4th international conference on Computer graphics and
interactive techniques in Australasia and Southeast Asia. pp. 49–55. GRAPHITE
’06, ACM, New York, NY, USA (2006), http://doi.acm.org/10.1145/1174429.
1174436

12. Park, H., Han, J.: Fast rendering of large crowds using gpu. In: Proceedings
of the 7th International Conference on Entertainment Computing. pp. 197–202.
ICEC ’08, Springer-Verlag, Berlin, Heidelberg (2009), http://dx.doi.org/10.

1007/978-3-540-89222-9_24

13. Peng, C., Cao, Y.: Gpu-based streaming for parallel level of detail on massive
model rendering. Tech. Rep. TR-11-12, Computer Science, Virginia Tech (2011),
http://eprints.cs.vt.edu/archive/00001158/

14. Ronfard, R., Rossignac, J., Rossignac, J.: Full-range approximation of triangulated
polyhedra. In: Rossignac, J., Sillon, F. (eds.) Proceeding of Eurographics, Com-
puter Graphics Forum. vol. 15(3), pp. C67–C76. Eurographics, Blackwell (August
1996)

15. Scherzer, D., Wimmer, M.: Frame sequential interpolation for discrete level-of-
detail rendering. Computer Graphics Forum 27(4), 1175–1181 (2008), http://dx.
doi.org/10.1111/j.1467-8659.2008.01255.x

16. Schmalstieg, D., Fuhrmann, A.: Coarse view-dependent levels of detail for hierar-
chical and deformable models. Tech. rep. (1999)

17. Wimmer, M., Schmalstieg, D.: Load balancing for smooth levels of detail. Tech.
Rep. TR-186-2-98-31, Vienna University of Technology (1998)

18. Zelsnack, J.: Glsl pseudo-instancing. Tech. rep., NVIDIA Corporation (2004)

