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Abstract. Training agents in a virtual crowd to achieve a task can be
accomplished by allowing the agents to learn by trial-and-error and by
sharing information with other agents. Since sharing enables agents to
potentially reach optimal behavior more quickly, what type of sharing is
best to use to achieve the quickest learning times? This paper categorizes
sharing into three categories: realistic, unrealistic, and no sharing. Real-
istic sharing is defined as sharing that takes place amongst agents within
close proximity and unrealistic sharing allows agents to share regardless
of physical location. This paper demonstrates that all sharing methods
converge to similar policies and that the differences between the methods
are determined by analyzing the learning rates, communication frequen-
cies, and total run times. Results show that the unrealistic-centralized
sharing method – where agents update a common learning module – is
the most effective of the sharing methods tested.

Keywords: cooperative learning, multi-agent reinforcement learning,
crowd simulation, 2D virtual world, inter-agent communication.

1 Introduction

Single-agent reinforcement learning (RL) has been widely studied over the past
few decades [4]. Its extension to multiple agents that share a common environ-
ment is called multi-agent reinforcement learning (MARL) [1]. In the recent years
MARL has been studied and adapted to work in the crowd simulation domain
[8,2]. The overarching goal of crowd simulation is to realistically emulate the
outward behaviors of its constituents, or agents, for the purposes of replicating
physical actions and their resultant effects in an environment. Its applications
include architectural and urban planning, evacuation planning, and video game
and movie domains. The reason for adapting MARL to work within the crowd
simulation domain is simple: since people learn and consequently adapt to sit-
uations using a form of reinforcement learning, why not apply this technique
to train simulated computer agents to learn how to behave in a crowd? Natu-
rally, because the agents are surrounded by other agents, it is logical to assume
that they will come into contact with one another during simulation. The agents
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could benefit from communicating what they have learned to others. This pa-
per focuses on the concept of inter-agent sharing within the crowd simulation
domain for an evacuation scenario. It seeks to understand the impact that var-
ious methods of sharing have on the effectiveness of the agents’ learning while
exploiting the benefits of using a layered MARL architecture. Effectiveness is
defined by resultant navigational behavior and total training time. Ultimately,
this research serves as a case study to explore the most efficient ways to scale up
to larger crowds in larger environments. Before delving into the specifics of the
research, this paper will briefly discuss further reasoning for the necessity of this
study followed by the essential background material relevant to understanding
MARL, inter-agent sharing, and layered MARL. This paper attempts to explore
how the intersection of these three domains and their application to the crowd
simulation domain results in a previously unstudied research void.

2 Related Work and Motivation

RL is good at capturing individuality, or diversity, in an agent because each agent
learns based on its own experiences within an environment. These experiences
shape the decisions made by an agent, causing them to appear as if they have
their own unique personality as they navigate through the environment. In the
real world, people not only learn from trial-and-error exploration but also from
each other through observational and/or verbal communication.

For purposes of this paper, realistic sharing is defined as taking place amongst
agents within close proximity to one another. Other literature on sharing meth-
ods within the RL domain follow a trend in which inter-agent sharing is done
via sharing across all agents, independent of agent location [7,3,9]. These pa-
pers use unrealistic methods of sharing and claim to be able to train the agents
using fewer numbers of episodes, which is indicative of faster learning rates. It
is important to note that faster learning rates do not necessarily imply faster
total run times for agent training. For example, one learning rate could be faster
than another but have a much higher communication overhead associated with
it. During training this communication overhead could prove to dominate the
total simulation training time. This type of method would therefore prove to be
much more ineffective, computationally-wise, than a method that has a slower
learning rate but a smaller communication overhead. This raises questions about
the differences in the resultant navigational behavior between learning with re-
alistic, unrealistic, and independent (no sharing) methods. This paper also seeks
to identify viable, potentially faster, methods for training agents in the crowd
simulation domain.

Tan [7] includes discussions on the communicational overhead associated with
unrealistic and independent sharing methods. However, these discussions are
limited in that the author analyzed communication overhead from a theoreti-
cal perspective only and discussed learning rate separately from communication
overhead. As the realistic sharing methods presented in this paper allow agents
to share on an inconsistent basis, we cannot perform static, theoretical analysis.
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Instead performance tests measure learning rate, actual communication overhead
and total running time for each sharing method. Learning rate and communica-
tion overhead need to be analyzed in conjunction with one another in order to
classify the effectiveness of a method more accurately. Total method run time
sufficiently captures the effectiveness of a method.

3 Background Concepts

3.1 Multi-agent Reinforcement Learning

RL is a bottom-up programming methodology that imbues agents with the abil-
ity to generalize learned information and extract salient environmental cues on-
line. RL relies on the concept of Markov decision processes (MDP) to model
how an agent moves around in the environment. An MDP is a 4-tuple taking
the form (S,A, P a

ss′ , R
a
ss′) where S is the state space, A is the action set, P

is the transition function where P a
ss′ represents the probability of transitioning

from state s to state s′ via action a, and R is the reward function where Ra
ss′

represents the expected value of the reward achieved when an agent moves from
state s to state s′ via action a. As an agent explores its environment, it updates
its policy function π that maps each state s ∈ S and action a ∈ A(s) to π(s, a)
which represents the probability of taking action a in state s. Agents define an
action-value function for policy π by Qπ(s, a) which indicates the expected re-
turn given that the agent takes action a in state s and then applies policy π.
The agent attempts to maximize the expected total sum of rewards gained over
time to converge to an optimal policy π∗ (of which there can be multiple). For
this paper, we use a simple and popular form of RL called Q-learning: a type of
temporal-difference (TD) learning. TD learning is a learning technique in which
an agent will update its previously estimated state values using the differences
between its current and former values. This effectively propagates more accurate
estimates of the state values as learning continues. Q-learning represents an off-
policy form of TD control which, for the one-step case used in this paper, takes
the following form:

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
. (1)

where t is the time step parameter, α is the learning rate parameter, and γ is the
discount rate parameter. In this paper, the single-agent form of RL is applied
to each agent in a multi-agent environment. Essentially, this means that agent
learning takes place simultaneously and agents treat each other as independent,
dynamic forces acting within the same environment.

3.2 Layered MARL Architecture

By default, RL and its extension to MARL, use one learning module to cap-
ture the learned policy of an agent. In a layered MARL architecture, an agent
will use multiple learning modules to capture the learned policy of an agent [5].



576 B. Cunningham and Y. Cao

Takahashi et al. [6] state that decomposing the control structure into smaller
chunks, or learning modules, allows for the module policies to be transportable
and applicable to new situations. To understand this, think about how an agent
views a state in their state space. States are composed of multiple state param-
eters – any environmental information that the programmer wants the agent to
consider when learning needs to be encoded in a state variable. For instance, a
state variable could represent a position on the grid described by Cartesian coor-
dinates or a facing direction described by a cardinal direction. Learning modules
can be designed in such a way as to split up and group states’ parameters for the
purposes of decomposing the problem into separate logical units. These logical
units can then be used to train separate learning modules within an agent. The
learning modules work together to decide an appropriate action for the agent to
take in a given state. This is advantageous because by decomposing the state
parameters into logical components, learned behaviors can become more general-
ized and less dependent on other state parameters that may have no correlation.
This helps reduce the total state space necessary to navigate, increases learning
efficiency, and allows for sharing at the module level where data is less coupled
by design.

3.3 Inter-agent Sharing

People can learn based on consciously or subconsciously observing and/or com-
municating various types of information based on the situation. Tan and Ribiero
et al. [7,3] show that inter-agent sharing of sensation, policies and/or episodes
decreases the steps necessary to reach optimal or good convergence points when
compared to agents that did not share. This paper explores inter-agent shar-
ing methods and classifies each as either realistic, unrealistic, or independent.
With regard to this paper, sharing between two agents is classified as realistic
only when the agents are sharing within communication distance of one another.
This communication distance represents the range at which an agent is able to
physically see or talk to another agent in the environment. Within this range,
sharing would imitate realistically how people learn based on observing others
or by verbally communicating information they might have learned.

When sharing using MARL, agents share learned information – for instance,
in the form of Q-Values – from their policies and incorporate new information
being shared with them into their existing policies. Unrealistic sharing indicates
the broad range of sharing methods that are not based on reality as we have de-
fined it above. In this case, sharing may not necessarily take place when agents
are within one another’s communication fields. The sharing method described
earlier in which agents share regardless of their location on the map is an exam-
ple of this. Another example of unrealistic sharing that will be encountered in
this paper is centralized sharing. Centralized sharing enables agents to share a
single Q-Value table and collectively contribute to and use its learning knowledge
to make policy decisions. Note that realistic sharing methods are always local-
ized sharing methods, but localized sharing methods are not exclusively realistic
sharing methods.
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4 Problem Statement

This paper will address the following questions: How do the sharing methods
affect an agent’s resultant navigational behavior? How do the sharing methods
affect the learning rates of convergence, the communication overhead, and the
overall training time for an agent? Can the layered MARL architecture be used
to enable agents to successfully navigate both static and dynamic obstacles in
the environment, in addition to finding and arriving at a goal location?

5 Approach

5.1 Agents, Environment, and Task

To explore the problems presented, a small-scale environment in which a simple
evacuation simulation will take place was created. Agents attempt to evacuate
to a common location using the most optimal path while encountering obstacles
along the way. Agents traverse a discrete environment consisting of 7 x 7 cells.
At each agent’s turn, or step, agents are able to move Up, Right, Down, Left, or
Stay in the current spot. There are two types of obstacles in the environment:
walls (static) and other agents (dynamic). No two agents may be in the same
cell as another, so if an agent attempts to move into an occupied cell, it will
stay where it is. Similarly, if an agent attempts to leave the map or move into
a space blocked by a wall, it ’bounces’ off the map edge or wall and stays in
place. Agents attempt to navigate to the same goal location and therefore are
homogeneously oriented.

Testing occurs on 3 maps that are designed not only to explore the effec-
tiveness of the sharing methods but also to investigate whether layered MARL
is a feasible architecture within the crowd simulation domain. To do this, the
three maps test dynamic obstacle avoidance, static obstacle avoidance, and a
combination of the two, respectively. Map 1 tests dynamic obstacle avoidance
because it contains no walls and focuses on agents learning to reach the goal in
cell (6,3) while avoiding the other agents. Map 2 tests static obstacle avoidance
because it contains a randomized placement of walls and disables agent-agent
collisions. Map 3 tests both static and dynamic obstacle avoidance by reusing
the same randomized map from Map 2 but turns agent-agent collisions back on.
For all three maps, agents start in an assigned location. Agents 1, 2, and 3 start
in positions (0,1), (0,3), and (0,5), respectively.

5.2 Sharing Methods

The following descriptions provide detail regarding the four variations of sharing
methods that will be used in testing: (1) Independent (No Sharing): Agents do
not share any information with one another. (2) Realistic-Localized Sharing: For
realistic-localized sharing, agents share the Q-values in their policies with other
agents when they are within one another’s communication fields. An agent’s
communication field is determined by the communication field size, where the
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size corresponds to the depth of cells directly surrounding the agent. A field size
of 1, for instance, would indicate that all cells directly around the agent’s cell are
part of the communication field. A cell C in a communication field must have an
unobstructed line-of-sight, free of walls, to the agent the field emanates from; oth-
erwise the agent will not be able to communicate with another agent that may be
in C at the time. For both the realistic-localized and unrealistic-localized sharing
methods, sharing is performed by using the frequency of state-action visitation to
determine which agent has the most experience with that particular state-action
pair. When this is determined, the Q-value for that particular state-action pair
is synchronized to this best Q-value across all agents who are participating in the
share. This continues for each possible state-action pair for both of the learning
modules every time a share event occurs. Variables that are adjusted for testing
this method are communication field size (CFS) and sharing step size (SS), where
SS represents the minimum frequency, in terms of steps, with which an agent is
allowed to share with another agent. (3) Unrealistic-Localized Sharing: Similar to
realistic-localized sharing, except that sharing takes place uniformly at defined
step sizes by all agents at once. Only the SS variable will be adjusted for test-
ing this method as CFS is not applicable. (4) Unrealistic-Centralized Sharing :
Agents update a shared, central Q-Value table and no explicit sharing occurs.

5.3 Layered MARL Implementation Details

This paper uses a simple two-module layered architecture: the pathfinder (P)
and collision-avoidance (CA) learning modules. The pathfinder learning module’s
purpose is to find a path from the initial starting position to the goal position.
The pathfinder module’s set of actions are AP={Up, Right, Down, Left, Stay}.
The module’s set of states SP represent each cell position (x,y) on the map and
therefore |SP| = n ×m where n is the number of cells in the vertical direction
and m is the number of cells in the horizontal direction. The collision-avoidance
learning module’s purpose is to avoid colliding with obstacles in the environment.
The collision-avoidance module’s set of actions are ACA={Up, Right, Down,
Left, Stay}. The module’s set of states SCA are represented by each unique
permutation of the 8 cells directly surrounding the agent where each cell can
be either empty (= 0) or not empty (= 1) for a total of 28 = 256 states. These
two learning modules work together because the pathfinder module determines
an action and passes it to the CA module. Based on both the surrounding
obstacles and the action suggested by the pathfinder module, the CA module
then determines an action to take and instructs the agent to take that action.
The pathfinder’s module defines rewards as follows: QP: (SP × AP) → IR where
all actions that lead to a non-goal state receive a reward of -0.005 and all actions
that lead to a goal state receive a reward of 1.0. The CA’s module defines rewards
as follows:QCA: (SCA × ACA)→ IR where an action in agreement with the action
A chosen by the pathfinder module receives a reward of 0.005. An action that,
oriented with respect to A, points to the side (left or right) receives a reward
of -0.005. An action that, oriented with respect to A, points backwards receives
a reward of -0.1. An action that, when A was any action but stay, was stay
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receives a reward of -0.005. Finally, an action that, when A was stay, was any of
the other actions other than stay, receives a reward of -0.005.

5.4 Experimental Setup

In this paper, agents operate using a discrete MDP in an environment conducive
to episodes. Each episode is defined with an initial starting state and spans until
a terminal, or goal, state is reached for each agent. A series of episodes define a
simulation run. 150 simulation runs were tested for each sharing method in order
to generate dependable data averages. An agent’s learned policy was carried over
from one episode to the next within a run, so ideally this results in convergence
to an optimal policy as the agent learns more about the state-action space. In
order to equally test the sharing methods we used an ε-greedy exploitation-
exploration method with ε = 0.05. The simulation was run until each sharing
method converged to the same number of steps per episode – meaning that a path
convergence point had been reached. The CFS parameter for realistic-localized
sharing will vary and take the values of 1, 2, 3, and 4 where 1 represents a very
limited communication field and 4 represents a fairly wide communication field.
The SS parameter for both realistic and unrealistic-localized sharing will vary
and take the values of 1, 5, 10, and 15. A SS value of 1 corresponds to agents
being able to share their policies after a minimum of every step and a SS value
of 15 indicates that sharing will occur less often, after a minimum of every 15
steps. The values for the simulation are set as follows: αP = 0.9, γP = 0.8, αCA

= 0.2, γCA = 0.8.

6 Results and Contributions

Results were gathered across the 3 maps for the 3 agents. The resulting trends
associated with Maps 1 and 2 were the same as the trends associated with Map 3,
therefore only the findings from Map 3 will be presented. Similarly, overall data
trends amongst agents agreed and only the findings for agent 1 will be shown.
Results from the path convergence testing measure learning rate (in average
steps per run), communication frequency, and total run time (in seconds) for
each sharing method. Communication frequency measures every time a Q-table
is shared with another agent – for example, sharing both a pathfinder and a CA
Q-table count as two communication units because two Q-tables are shared.

Table 1 provides a detailed table containing results from all variations of the
sharing methods used. Recall that faster learning rates (indicated by smaller
learning rate numbers) signify that an agent has reached convergence in a fewer
number of episodes. As expected, the methods that share the most have the
lowest learning rates. Figure 1 illustrates differences in learning rates across a
run for the variations of the four unique sharing methods with the best learning
rates. The figure shows that the unrealistic-centralized sharing method signifi-
cantly outperforms the other methods. This is understandable as the frequency
of sharing, uniformity of sharing, and quality of sharing all increase as we move
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from independent sharing to unrealistic-centralized sharing. To determine the
overall computational differences between the sharing methods, especially with
the realistic-localized method, we had to consider both learning rate and com-
munication frequency in conjunction, which most clearly translated to a total
run time.

Table 1. Learning rate, communication frequency, and total run time for the sharing
methods

Sharing Method Learning Rate Communication Total Run
(avg. steps) Frequency Time (s)

Independent 95.88 0.00 0.01
Realistic-Localized:
CFS = 1, SS = 1 61.31 361.13 0.75
CFS = 1, SS = 5 62.68 135.93 0.30
CFS = 1, SS = 10 63.79 98.71 0.22
CFS = 1, SS = 15 65.36 83.31 0.18
CFS = 2, SS = 1 59.87 829.76 1.59
CFS = 2, SS = 5 60.80 259.55 0.54
CFS = 2, SS = 10 62.51 166.60 0.36
CFS = 2, SS = 15 63.95 134.47 0.29
CFS = 3, SS = 1 59.07 1060.96 1.86
CFS = 3, SS = 5 60.33 321.05 0.61
CFS = 3, SS = 10 61.58 202.08 0.38
CFS = 3, SS = 15 62.18 158.24 0.30
CFS = 4, SS = 1 57.03 1166.88 1.99
CFS = 4, SS = 5 58.32 364.44 0.69
CFS = 4, SS = 10 60.55 233.88 0.43
CFS = 4, SS = 15 61.40 177.40 0.33
Unrealistic-Localized:
SS = 1 49.53 8641.49 7.06
SS = 5 50.96 1776.64 1.48
SS = 10 51.29 852.56 0.72
SS = 15 52.78 577.79 0.50
Unrealistic-Centralized 45.01 0.00 0.01

Performance timing for the total run times provides a general picture of how
effective each method is with regard to one another. Figure 2 depicts the differ-
ences in time per episode across a run for the variations of the four sharing meth-
ods with the fastest total times. Both the independent and unrealistic-centralized
sharing methods performed equally well as no sharing takes the same amount of
time that implicit sharing does.

The realistic-localized and unrealistic-localized methods perform much more
poorly, on the order of 19x and 51x more slowly, respectively. Overall, with re-
spect to both learning rate and total run time, the unrealistic-centralized sharing
method is the most effective method tested in this experiment. Realistic sharing
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Fig. 1. Average number of steps vs. number of episodes for the sharing methods
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Fig. 2. Average time vs. number of episodes for the sharing methods

limits the rate at which learning can take place because sharing takes place less
frequently and less uniformly. Localized sharing in general does not allow for
policy information to be as readily absorbed as it is with centralized sharing –
not to mention the explicit communication overhead present that overwhelms
the training time for the agent. It is important to mention that while central-
ized sharing is the best choice for the purpose of efficiency, simulations that
study communication flows in crowds, for example, must be done using realistic-
localized methods. This type of method preserves communication fidelity and
ensures accurate inter-agent communication patterns.

7 Conclusions and Future Work

This paper demonstrates that all sharing methods converge to the same policies.
The differences between realistic, unrealistic, and independent sharing methods
are determined by analyzing the learning rates, communication frequencies, and
total run times. The unrealistic-centralized sharing method proved to be the
most effective of the sharing methods tested. Finally, testing showed that agents
successfully navigated both static and dynamic obstacles in the environment,
in addition to finding and arriving at a goal location. This research opens up
the possibility to study more detailed problems concerning applying a layered
MARL architecture within the crowd simulation domain. For instance, how does
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adding more learning modules to each agent affect the complexity of the state-
action space? Additionally, how well do the sharing methods presented in this
paper port to the GPU in order to support the simulation of more agents in a
more finely discretized environment?
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