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Abstract

Computational steering integrates modeling, computation, data analysis, visualization, and data input components

of a simulation. Since the simulation space is, in general, very large and continuous, selecting discrete simulation
points that can reasonably present the whole simulation space is difficult. We need to interpolate the “missing”
values and cover a continuous region of interest in the simulation space. We describe an approach that, in an

iterative manner, allows a domain expert to interactively select data points (design of experiments), approximate
the values in a continuous region of the simulation space (regression) and automatically find the “best” points in
that continuous region based on the specified constraints and objectives (optimization), using the regression and
aggregated data. Once the objectives are found, data points in the neighborhood of the objective are generated by
the simulation tool thus providing denser coverage of the regions of interest.

1. Introduction and Related Work

Computational steering integrates modeling, computation,
data analysis, visualization, and data input components of a
simulation. However, the interaction between simulation and
visualization can be a very difficult problem. Since the com-
putational cost of a single simulation run can be high, we
need a framework where simulation is done in an adaptive,
iterative fashion to reduce the overall number of simulation
runs by focusing on “interesting” cases. Since computational
steering is a highly interactive process, the user interface is
a critical component [MGJHOS].

In each iteration of computational steering a user defines
a region of interest that has to be explored in more details.
Additional simulation runs needed to cover that region of in-
terest constitute a new “‘simulation experiment.” The design
of such an experiment, i.e. the selection of the simulation
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points in the region of interest, is very important since we
would like to reduce the number of simulation runs while
providing good cover of the region of interest [Kle07].

While support for user controlled simulation is at the very
core of computational steering, there is very limited support
for user controlled optimization [BP10]. Very often there is
no clear or unique optimal solution and the user has to ana-
lyze, in an interactive fashion, trade-offs and interdependen-
cies between objectives [PGR99]. Using an analytical rep-
resentation of the objective function the user can be pre-
sented the values of the objective function in the region of
interest [MMO6]. Such values can dynamically updated in
all views and brushes (selections) [PTMB09]

The type of the objective function determines the nature
of the optimization process. In the case of linear or quadratic
programming there are efficient and fast algorithms that pro-
vide the optimal solution [BV04]. In a general case we are
dealing with nonlinear optimization where gradient based
optimization methods are used to find a heuristic solution.

The simulation data consists of discrete simulation points
while the region of interest is usually a continuous space.
We can use the simulation points to “span” that space using
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a surrogate (regression) model that approximates simulation
results over the region of interest. Machine learning tech-
niques (e.g., Support Vector Machines [BGV92]) can create
a linear, quadratic or nonlinear surrogate models.

2. Computational Steering Framework

We describe an approach that, in an iterative manner, allows
a domain expert to interactively select data points (design of
experiments), approximate the values in a continuous region
of the simulation space (regression) and automatically find
the optimal points in that continuous region based on the
specified constraints and objectives (optimization), using the
regression and aggregated data. The data points around the
optimal solutions are then generated by the simulation tool.

When the simulation space is very large, the iterative pro-
cess can be time consuming and tedious. We would like to
automatize that process as much as possible and help the
domain expert. Given the simulation model of the problem
being explored, this process has four stages (Figure 1):

Design: Since the simulation space is, in general, very large
and continuous, selecting representative discrete simulation
points is difficult. While the domain expert can select “inter-
esting” values, we can provide automatic methods, such as
randomization or blocking, to determine a set of input values
that can be used for a sequence of simulation runs.

Simulation: The specified input values and the develop sim-
ulation model are used by the simulation tool to generate the
corresponding output. The input values and the correspond-
ing output values represent a point in the simulation space.
A collection of these points (a collection of simulation runs)
are then evaluated using an evaluation (visualization) tool.

Evaluation: The evaluation can be conducted using an in-
formation visualization tool [KMG*06] (coordinated multi-
ple views, composite brushes, etc.). Since discrete simula-
tion points do not provide full “coverage” of the simulation
space, we can interpolate the “missing” values and cover the
whole space. Various interpolation, regression, and machine
learning techniques can be used to extrapolate the data.

Optimization: The evaluation tries to determine some “in-
teresting” points. That can be described as an optimization
problem with an objective function over some subset of the
simulation space. The objective function can be a single pa-
rameter, a combination of several parameters, or a multiple-
objective function. Various optimization methods can then
be applied. The result of the optimization may then trigger
the next iteration where the additional simulation points are
defined in the next design stage.

Simulation and visualization can be combined in a single
framework allowing a user to conduct computational steer-
ing. Once a region of interest is detected, a new simulation
run (design of experiment) is conducted to adaptively in-
crease the resolution of the simulation points in that region.

Design Optimization

Simulation Evaluation

Figure 1: Exploring large simulation spaces.
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Figure 2: An iterative approach to prototyping using a com-
bination of simulation, visualization and optimization tools.

We can increase the analytic capabilities provided to the user
by the framework by extending the framework with the sup-
port for interactive optimization. An iteration within the ex-
tended framework consists of the following steps:

e Conduct simulation runs based on the design of experi-
ment in the previous iteration (for the first iteration create
an initial design of experiment).

e Integrate the new simulation runs with the existing simu-
lation data.

e Visually analyze the data and determine the objective

function.

Create a surrogate model, explore the objective function.

Identify the region of interest.

Use optimization to determine optimal value(s).

If the optimal value is not satisfactory, create a new design

of experiment with increased resolution.

Figure 2 shows the iterative approach to prototyping, a
combination of simulation, visualization, and optimization.

Loops A, B, and C describe combinations of simulation
and visualization. Loop A describes direct visualization of
simulation results. Loop B describes a combination of simu-
lation and visualization using a set of control parameters val-
ues. Loop C also allows for changes in the simulation model.

Loops D, E, and F describe combinations of visualization
and optimization. Loop F describes direct visualization of
simulation results. Loop E describes a combination of visu-
alization and optimization using a set of optimization param-
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eters values. Loop D also allows the user to determine a new
objective function, the corresponding surrogate model, and
to specify the optimization constraints.

Determining the surrogate model is, in general, a trial-
and-error process. More complex models, such as support
vector model regression using polynomial or radial basis,
can predict the objective function values using the simula-
tion data w, however finding the correct model parameters
can be challenging. Once the surrogate model y(x;w) is de-
termined (Equation 1), it can be used to present additional
simulation points and different resolutions to determine the
region of interest (K (x,X;) is a kernel function).

N
y(x;w) = ZwiK(x,xi)ero (1
i=1

Once the region of interest is identified, the correspond-
ing optimization constraints are determined and the values
provided by the surrogate model can be used in non-linear
optimization techniques. The optimization results are then
visualized and used for further analysis.

3. Illustrative Example

We illustrate the above described system using an example
from automotive industry. Together with a domain expert we
explored a modern, common rail, Diesel car engine injection
system. A high pressure in the rail is used to inject fuel into
cylinders. Electronically controlled actuators open and close
injectors and precisely control the injection.

Due to high pressures and quick changes in the system
some phenomena, not typical for classical fluid mechan-
ics, appear during injection. Furthermore, in a common rail
system, each cylinder, or injector, is influenced by others
through the rail. All of these requires careful re-thinking of
traditional approaches in injection system design. One of the
great challenges of a common rail injection system design
is to understand and prevent unwanted pressure oscillations
which can lead to an unexpected system operation. This re-
sults in the reduced efficiency and increased emission, ex-
actly the opposite of the design goals.

Modern simulation software can be used to simulate injec-
tion systems. The data used in this example were computed
using the AVL Hydsim simulation software. The whole sys-
tem (four injectors) was simulated. We focus on the high-
pressure pipe geometry and the common-rail itself. We ana-
lyze their contribution to the oscillations in pressure and we
try to tune the system to minimize these oscillations. Due
to the overall system complexity we need advanced tools to
comprehend behavior of the whole system.

(© The Eurographics Association 2011.
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Figure 3: Two scatter plots show four control parameters,
the histogram shows rail pressure (three variations used).
The parallel coordinates show five aggregates used in the
analysis, and the curve view shows injection curves. 405 ini-
tial simulation runs are shown.

3.1. Iterative Analysis - a combination of automatic and
interactive process

The analysis is based on results from multiple simulation
runs. There are many parameters which has to be set in the
simulation model. We varied five most relevant parameters
in the optimization process, the high pressure pipe geometry,
L_line and D_line (the length and diameter), the common-
rail characteristics, V_rail and rail_pressure (the volume of
the rail and the pressure inside the rail), and the inlet ge-
ometry, V_inlet (the volume of a junction between the rail
and high pressure pipe). For each simulation run more than
30 output parameters are computed, all of them being time
series, i.e., functions of the crank angle. As automatic opti-
mization methods expect each point in a multidimensional
space to have scalar dimensions, our data does not fit. We
have to aggregate time series outputs in order to use auto-
matic optimization. The more aggregates we have, a curve
is better described, and the optimization and the regression
model will be more precise. At the same time the regression
model and the optimization become more and more complex
as number of parameters increases.

We first varied every control parameter in several steps
(405 simulation runs). This is a starting point for exploration
and optimization. We use a coordinated multiple views tool
to explore results. We can easily select (brush) some simula-
tion runs in any view and see all attributes highlighted in all
other views. We use a curve view to depict time dependent
attributes. Figure 3 shows the initial 405 simulation runs.

We use the same tool to specify optimization criteria. We
interactively brush (using composite brushing if necessary)
the constraints — we define an area in the whole space where
the solution should be. We use a special view to define tar-
get optimization goals. Based on the constraints and already
computed regression model the system suggests an optimum
point. As this point is based on a regression model which
is computed using curve aggregates, we compute the actual
data for the computed optimum. Moreover, we also compute
a set of points in the neighborhood of the point using origi-
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Figure 4: After the user selects constraints and defines op-
timization goal the optimization module computes the op-
timum. The optimum is depicted in a different color (black
in the scatterplot), and additional points in the constrained
space are computed. The original simulation is started for
each new point, including optimum. All views show results
from two iterations. Note the optimum on the border of the
subspace indicating a possible direction for a new iteration.

Figure 5: Results from the second iteration (the scatterplot
is zoomed in). The curves are of the desired shape. Moving
the subspace further to the left (smaller L_line) is not possi-
ble due to the physical constraints of the system.

nal simulation model rather then regression model. Note that
regression model and optimization is done using a reduced
subset based on curves aggregates. We most often use max-
imum value, the length of injection interval, the slope of the
curve as parameters. Still, we have to check the shape of the
suggested curve, sometimes it has some unwanted charac-
teristics, although all computed curve parameters are within
wanted range. We have reduced the possible solution space
using interactive visual analysis and the system computed
the optimum point. Figure 4 shows the newly computed
point (upper left scatter plot, black point). We computed ad-
ditional points in the neighborhood, explore the curve shapes
(computed using simulation software), changed the con-
straints now, computed new regression model and computed
new optimum. The results after two iterations are shown in
Figure 5. The process continues for other parameters.

4. Conclusion

Analysis and optimization of complex systems can be done
either automatically or using interactive visualization. How-

ever, when dealing with complex systems with many param-
eters and complex data models, neither approach works well.
We described a computational steering framework that in-
tegrates simulation (Hydsim), visualization (ComVis), and
optimization (Matlab) tools. The domain expert (one of the
co-authors of the paper) successfully used this implemen-
tation on a real-world case study. The proposed workflow
can be applied to any exploration or optimization problem of
complex systems. There are two computational bottlenecks,
simulation and optimization. In either case, the massive data
parallel processing power of GPUs can provide large perfor-
mance leap, thus, greatly shortening the turn-around time of
the iterative system design process.
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