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Abstract Multiple-GPU systems have become ubiquitously available due to
their support of massive parallel computing and more device memory for large
scale problems. Such systems are ideal for In-Situ visualization applications,
which require significant computational power for concurrent execution of sim-
ulation and visualization. While pipelining based parallel computing scheme
overlaps the execution of simulation and rendering among multiple GPUs,
workload imbalance can cause substantial performance loss in such parallel
configuration. The aim of this paper is to research on the memory manage-
ment and scheduling issues in the multi-GPU environment, in order to balance
the workload between this two-stage pipeline execution. We first propose a
data-driven load balancing scheme which takes into account of some impor-
tant performance factors for scientific simulation and rendering, such as the
number of iterations for the simulation and the rendering resolution. As an
improvement to this scheduling method, we also introduce a dynamic load
balancing approach that can automatically adjust the workload changes at
runtime to achieve better load balancing results. This approach is based on
an idea to analytically approximate the execution time difference between
the simulation and the rendering by using fullness of the synchronization data
buffer. We have evaluated our approaches on an eight-GPU system and showed
significant performance improvement.
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1 Introduction

Graphics processing unit (GPU) offers massively parallel processing that can
greatly accelerate a variety of data parallel applications. Use of multiple GPUs
leads to even greater performance gains by executing multiple tasks on different
GPUs simultaneously. This provides an opportunity for handling larger scale
problems that require more memory and computational resources. In GPU
computing, especially multi-GPU approaches, workload imbalance is one of
the major issues for performance loss. This is because the data partition or
task partition in the parallel configurations is not usually even. Effective load
balancing can greatly increase utilization and performance in a multi-GPU
environment by distributing workloads evenly.

There are two general approaches for multi-GPU computing: data parallel
and pipelining. The data parallel approach distributes data among available
processing units. The pipelining approach splits the processing of data into
stages for different processors to handle. In this paper, we focuses on the load
balancing problem of the pipelining approach since data parallel approaches
that equally distribute data require little effort in load balancing. Specifically,
we are interested in the In-Situ Visualization applications, which have become
popular in the era of exa-scale (even peta-scale) computing because of its
support of immediate visual feedback of the simulation for early error detection
and computational steering. In-situ visualization includes two computational
stages for pipelining: simulation and rendering. At each simulation time frame,
the simulation is executed and followed with the rendering of simulation result
of the current time frame, before moving to the next simulation-rendering cycle
for the next time frame. A data buffer of multiple simulation time frames
is used to communicate and synchronize the pipeline execution so that the
simulation of the current time frame and the rendering of the previous time
frame can be overlapped, as shown in Figure 1. However, if the workload
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Fig. 1 Top figure shows the multi-GPU configuration used in an in-situ visualization appli-
cation, where simulation GPUs and visualization GPUs synchronize the work in a pipeline
fashion with the support of a FIFO data buffer. Bottom figure illustrates the pipelining
stages in the application.
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Fig. 2 A rendered image of the N-body simulation, which is the case-study application for
this paper. The colors of the particles represent different masses that affect the simulation.

between the simulation and the rendering is not equal, a “bulb” will be created
inside the pipeline causing performance loss.

Load balancing in the multi-GPU environments introduces special issues
compared with multi-threaded CPU environments. The most significant one
is the high communication cost of the central data buffer. GPUs have limited
device memory. Therefore, the data buffer has to be resided at the large host
memory. The data write (simulation stage) and data read (rendering stage)
to the host buffer from the GPU can cause significant performance lost be-
cause the PCl-express bus which connects the host memory and the GPU is
several magnitude slower than direct GPU memory access. Another challenge
in load balancing for in-situ visualization applications is that the workload
of simulation and rendering is constantly changing between time frames. A
static load balancing scheme without the consideration of these performance
factors, including simulation time step and rendering resolution, will fail to
evenly distribute the tasks during the long period of scientific simulation.

To address these issues, we propose two methods of load balancing suit-
able for different applications, as the main contributions of this paper. First,
based on our previous work [8], we introduce a data-driven load balancing
approach, which balances the workload based on the past performance and
improve utilization by determining the best configuration for a given appli-
cation beforehand. However, this method requires the collection of various
performance data in a pre-analysis stage to determine the best workload dis-
tribution for a given application. Furthermore, this method does not adapt
to unpredicted changes at runtime for an application. Therefore, we propose
the second approach, dynamic load balancing, which can adapt workload dis-
tribution to take into account changes at runtime without data preparation.
Without losing generality, we evaluate our approaches on an in-situ visualiza-
tion application with a gravitational N-body simulation and ray-tracing based
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rendering algorithm. The N-body simulation is based on the algorithm of Ny-
land et al. [12]. The simulation result of a certain time frame is rendered as
shown in Figure 2. The interactive application allows the user to navigate the
scene by rotating and zooming using the mouse.

The rest of the paper is organized as follows. We first describe the re-
lated research to this work in Section 2. Then, we provide a formal problem
statement with some background information in Section 3. In Section 4, we
introduce our data-driven load balancing approach and provide the perfor-
mance evaluation of the approach. In Section 5, we propose the dynamic load
balancing approach and show the performance results. We conclude our work
and describe the future research directions in Section 6.

2 Related Work

Several areas of past research have recently addressed issues related to the
load balancing. We will present some researches for GPU-based and multi-
GPU based load balancing work.

2.1 GPU-based Load Balancing

Cederman et al. show results comparing GPU load balancing methods applied
to octree construction [5]. Their methods tested include centralized blocking
task queue, centralized non-blocking task queue, centralized static task list,
and task stealing. They find that task stealing performs the best out of these.
Heirich et al. compare load balancing techniques for ray tracing, and they
find that static load balancing results in poor performance [9]. They apply a
new method based on a diffusion model with static randomization. Similar to
our findings with a visualization application, a dynamic method can adapt to
additional applications that static load balancing cannot adjust to. Fang et
al. propose a method for scheduling on multicore systems to account for data
locality [6]. This can help to reduce communication in order to improve per-
formance. They test a simulation on several benchmarks and show that their
method can improve performance by taking into account scheduling on cores to
decrease latency. Jimenez et al. present a scheduler for GPU-CPU systems that
uses past performance in order to schedule based on past performance [10].
They achieve a significant speedup using adaptive runtime scheduling. Like
our data-driven approach, they take into account past performance in order
to predict configurations for use. Joselli et al. present a novel physics engine
that uses automatic distribution of processes between the CPU and GPU to
improve performance [11]. It proposes a dynamic scheduling scheme that ap-
proximates the load on the CPU and GPU, and uses this to distribute physics
computations.

Other works have presented work stealing as a method for load balancing.
Acar et al. present an analysis of work stealing methods and how their data
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locality affects performance [1]. They provide a new work stealing method
based on locality that improves over past methods. This method works by
having certain processors take on work from processors that are overworked.
This allows for a significant performance speedup. Like our work, they focus
on load balancing, but do not focus on a pipelined approach with a general
framework as ours does. Agrawal et al. propose A-steal, a load balancing al-
gorithm based on work stealing for CPU systems [2]. The method uses past
performance data as the algorithm runs in order to schedule tasks. Statisti-
cal techniques are used to determine the optimal work stealing configuration.
Similar to our data-driven load balancing method, they present a technique
that uses past performance to apply load balancing. However, their technique
could be extended in future work to account for more dynamic changes in
GPU applications at runtime as our work does. Aroral et al. present work on
load balancing on CPUs [3]. They provide a non-blocking work stealing algo-
rithm with a two-level scheduler, where the two levels are used to partition the
scheduling of the system. This new method introduces a way to load balance
by reducing synchronization costs. Our work also deals with scheduling and
synchronization for load balancing, but focuses on a pipelined approach for
multi-GPU computing.

While these works provide methods for load balancing, they do not focus
on multi-GPU load balancing using a pipelining approach as our method does.

2.2 Multi-GPU Load Balancing

Fogal et al. implement GPU cluster volume rendering that uses load balanc-
ing for rendering massive datasets [7]. They present a brick-based partitioning
method that distributes data to each GPU in order to be processed, where
the final image is composited from these separate rendered images. However,
their load balancing does not use a pipelined approach and is limited to a
specific volume rendering method. Monfort et al. use load balancing methods
in a game engine for rendering that use split screen and alternate screen par-
titioning [13]. Split screen load balancing involves partitioning a single frame
for multiple GPUs, while alternate frame rendering distributes single consecu-
tive frames to GPUs to be rendered. They find that alternate frame rendering
leads to better performance due to fewer data dependencies, and they present
a hybrid method that improves performance by load balancing both within
and across rendered frames. Binotto et al. present work in load balancing
in a CFD simulation application [4]. They use both an initial static analysis
followed by adaptive load balancing based on various factors including per-
formance results. But these only focused on the top-down data partitioning
for load balancing and have not researched on the pipelining approach with
multiple stages of computation.

Hagan et al. present a data-driven method for load balancing based on in-
put parameters for in-situ visualization applications [8]. By taking into account
past performance for different combinations of supersampling, simulation, and
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dataset size, the best configuration can be chosen. This work is presented in
this paper and is extended with a new dynamic load balancing approach, which
also takes into account unpredicted changes at runtime.

3 Problem Statement

As we discussed in the previous sections, our focus is on a two-stage pipeline
execution of in-situ visualization applications. The computation stages are the
simulation and followed by the rendering. The two-stage pipeline has to be
executed on a sequence of simulation time frames. Therefore, if multiple com-
putation units are available, the simulation and rendering can be executed
concurrently where the simulation of the current frame can be overlapped
with the rendering of the previous frame, as illustrated in the bottom picture
of Figure 1. This is achieved by a data buffer into which is written by the
simulation process and read by the rendering process. To avoid the read-write
conflict by the two processes, double-buffer is introduced to enable simultane-
ous read and write. In double-buffer, two buffer frames are introduced, each
of which can hold the simulation data of one time frame.

However, if the workload of the simulation is larger than the rendering,
then the rendering process has to wait for the simulation to write a frame of
data to the buffer. If the rendering workload is larger than the simulation,
the double buffer frames will be filled soon, and the simulation process has to
wait until the rendering process consumes a buffer frame. In theory, if infinite
number of buffer frames are available, there will be no waiting time for the
simulation process. In practice, we can only provide a fix number of buffer
frames, therefore, the waiting time is unavoidable.

In the scope of this paper, we assume a system with a multi-GPU array, in
which each GPU can be assigned to either simulation process or rendering pro-
cess. As such, the load balancing can be achieved by scheduling the number of
GPUs assigned to each process. For example, when workload of the simulation
process is larger, the data buffer will be almost empty, and more GPUs will
be assigned to the simulation process to avoid the idle time for the rendering
GPUs. When the workload of the rendering process is larger, the data buffer
will be filled quickly, and more GPUs will be assigned to the rendering process.
And this assignment procedure should adapt the workload difference between
the simulation and rendering time frames. The entire adaptive load balancing
process is illustrated in Figure 3.

Let us have a formal definition of the execution time associated with this
process so that we can formulate the problem we address in this paper. T
and T are the execution time of the rendering stage and simulation stage
for the time frame i respectively. There are a set of parameters, p1,ps, ...,
including hardware settings and algorithm settings, that affect the execution
time, such that

T‘it(wk :wz?aSk(naplal)?a"')a (1)
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Fig. 3 The multi-GPU configuration and the problem definition of our load balancing
approaches.

where n is the number of GPUs assigned to the task (vis or sim); the function
wf‘”k maps the performance parameters of the task to an execution time at
frame 4, which is monotonically decreasing for when the number of GPUs
assigned to the task, n, increases.

The load balancing problem in a multi-GPU environment of N available
GPUs can be defined as the following optimization process,

M; = argmin (|0 (M;,p1,p2,...) — Y (N = My, pl,ph. .. )[), (2)
M,;e{1,...,.N—1}

where M; is the final number of GPUs assigned to the simulation process
(N — M; GPUs are assigned to the rendering process), so that execution time
difference between 7" and T is minimized. We need to note that M; needs
to be determined at every time frame 3.

4 Data-driven Load Balancing

As we described in the previous section, our load balancing approaches are
rooted on the solution of the minimization problem defined in Equation 2,
which is to find the optimal number M; € {1,...,N — 1} for each frame ¢
that balanced execution time for the simulation and rendering. In this section,
we assume that the hardware settings and software settings do NOT change
between time frames. Therefore, all the M; values should be the same across
all the frames.

The key to this minimization process is the understanding of the map-
ping function 1, which determines the execution time of a task based on the
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hardware and algorithmic parameters. Due to the complexity of the hardware
architecture and algorithm configuration, it is difficult to provide an analytical
description of ¥. The common practice is either rigorously analyze the perfor-
mance through a multi-dimensional characterization approach [?], or model
an approximated performance model by significantly simplifying the GPU ar-
chitecture, e.g., only focusing on the memory transactions [?]. Therefore, we
introduce a data-driven approach to estimate the function ¢ by sampling the
parameter space of the function during a performance pre-evaluation phase.
In this section, we provide a brief illustration of this data-driven load balanc-
ing approach. For the detail about the approach, please refer to our previous
work [8].

4.1 Task Partition and Scheduling Algorithm

Before we introduce our data-driven approach, we like to lay some ground
work for the task scheduling algorithm.

Load balancing for our case-study application requires partitioning the
work load of a task in order to distribute to different GPUs. Two types of work
partitioning are possible for the application: intra-frame and inter-frame, as
shown in Figure 4. Intra-frame partition splits the work load of the task in a
time frame into n portions for n GPUs, and each GPU is assigned one portion
to finish. Inter-frame partition collects n frames of work load of a certain task
for n GPUs, and each GPU is assigned to finish one frame of work load.

The N-body simulation utilizes intra-frame partitioning by splitting up
a simulated particles into several portions. Since each frame of simulation
requires the data from previous frame, the simulation for consecutive frames
cannot be computed concurrently. Thus, inter-frame partition is not possible
for the simulation task. While this requires additional data communication
between different simulation GPUs to combine the simulation results for each
frame, the computation can be distributed among multiple GPUs.

Ray tracing (rendering) in this implementation uses inter-frame partition-
ing, so that each GPU will render an individual frame of data in order to
avoid the communication for combining results. Since rendering each frame
only depends on the required simulation data, each frame can be rendered
independently using the inter-frame partition approach.

Note that the intra-frame partition needs to combine the data from differ-
ent GPUs into a complete frame of simulation data. Therefore, all the simu-
lation GPUs have to be synchronized before moved to the simulation of the
next frame. For the rendering GPUs, since their tasks are independent with
each other, no synchronization is necessary.

Based on this task partition strategy, the distributed scheduling algorithm
for each GPU can be illustrated as Figure 5. As shown, all GPUs begin with
initialization to allocate host and GPU memory. Afterwards, each GPU con-
tinually carries out the execution loop, which involves reading, execution, and
writing of results. A barrier is used for simulation for every frame to ensure
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Fig. 4 Intra-frame and inter-frame task partitioning schemes for simulation and rendering,
respectively.
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Fig. 5 The distributed scheduling algorithm for each GPU in our data-driven load balancing
approach.

results are written together, while each rendering GPU can execute separately
and does not require a barrier. The core of this algorithm is the determination
of the task (simulation or rendering) for each GPU, which we will describe in
the next section.

4.2 Execution Time Evaluation and Estimation

In order to solve the minimization problem defined in Equation 2, we refor-
mulate the optimization as a general function,

M = f(i,s,p), (3)

where i, s, p are the three most important performance factors that influence
the optimal load balancing value M, which is the optimal number of GPUs
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allocated for rendering task versus simulation task. ¢ is the number of iterations
for simulation for a single simulation time frame, s is the number of samples for
supersampling used in the ray tracing algorithm, p is the number of particles
simulated in the application.

We then build a data-driven model to evaluate and estimate the function
in Equation 3. The model is built by evenly sampling the three-dimensional
parameter space while experimentally determining the optimal value M for
the best load balancing results for each sample. After the sampling stage, we
have a 3-D rigid grid of data samples that covers the entire parameter space.
The sampling resolution for each dimension is determined experimentally to
avoid dramatical result changes for load balancing.

Based on the previous performance results for this data-driven model, the
method computes the optimal workload balance for a new set of input param-
eters. Given a new set of input parameters, 7', s’,p’, we estimate the new load
balancing value M’ by performing a trilinear interpolation in the 3D sampling
space of previously evaluated results, as illustrated in Equation

Misp = Mooo(1 —4)(1 — s)(1 —p) +Migoi(1 — s)(1 - p)
+ Mo10(1 —i)s(1 — p) +Mopo1 (1 —4)(1 —s)p
+ Mio1i(1 — s)p +Mo11(1 —4)sp
+ Mi10is(1 — p) +Mi11isp

4.3 Data-driven Load Balancing Results

Our experimental results are obtained on a single workstation system with a
quad-core Intel CPU with Hyper-Thread and four NVidia GTX 295 graphics
card (two GPUs per card). In this section, we first characterize the three
performance factors. We then present the load balancing performance of our
data-driven approach.

4.8.1 Characteristics for Performance Factors

Supersampling is a commonly used techniques for improving the quality of
ray-tracing based rendering. The differences in supersampling can be seen in
Figure 6. Aliasing artifacts due to inadequate sampling can be seen in the
image on the left with one sample per pixel. Using sixteen samples per pixel
in a random fashion, on the other hand, significantly improves the results.

While supersampling improves the quality of the final image, it comes at
a performance cost as shown in Table 1. The increase in execution time for a
greater number of samples for supersampling is linear.

Table 2 shows the time for simulation when performing multiple iterations
for each time frame. The performance of simulation shows a linear increase
in time with an increase in number of iterations. While a smaller time-step
provides more accurate simulations, it requires more iterations to advance the
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Fig. 6 Comparison of single sample (left) and 16 sample randomized supersampling (right).

1 sample 2 samples 3 samples 4 samples
45.9062 ms | 85.5727 ms | 124.571 ms | 162.728 ms

Table 1 GPU execution time (ms) for ray tracing based on number of samples for super-
sampling.

20 iterations | 40 iterations | 60 iterations | 80 iterations
31.87 ms 62.56 ms 92.70 ms 122.86 ms

Table 2 GPU execution time for simulation based on number of iterations.

Iterations | 2000 4000 6000 8000 10000 | 12000
Percent 58.07 | 35.37 | 26.87 | 21.81 14.94 0.00

Table 3 Percent difference in positions of simulation from 12000 iteration simulation.

simulation for each frame. Thus, using a smaller time-step but increasing the
number of iterations leads to an increase in execution cost.

Table 3 shows the percent difference in positions of simulation from 12000
iteration simulation, which uses the smallest time-step. Each simulation is car-
ried out over the same total time, with a smaller time-step for simulations run
for more iterations. With a smaller time-step, the accuracy of the simulation
is improved due to the finer granularity used for integration in the N-body
simulation.

Figure 7 shows the trends for performance times according to M (number
of simulation GPU) with varying number of simulation particles using sixteen
samples for ray tracing and eighty iterations for simulation. The minimum
along each line segments represents the optimal load balance value M since it
has the shortest execution time. The cost of simulation increases at a faster
rate as particle number increases due to the nature of the N-body simulation,
while ray tracing scales linearly with the particle number. This causes the
overall performance to be increasingly limited by simulation time for larger
problems.

Figure 8 shows performance for various number of particles with a varying
workload distribution for four-sample ray tracing and 80 iterations for simu-
lation. This graph shows that allocating more GPUs for simulation when the
number of samples is low can result in performance gain. The difference in the
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Fig. 7 The total execution time of the application when simulating various number of
particles with 16 samples for ray-tracing supersampling and 80 iterations for the N-Body
simulation. X axis is the number of rendering GPUs (N — M).
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Fig. 8 The total execution time of the application for 4 samples for ray-tracing supersam-
pling and 80 iterations for the N-Body simulation.

trend from Figure 7 also demonstrates that different algorithmic parameters
can lead to significantly different optimal workload distributions.

Figure 9 shows the trend for varying simulation iterations with a constant
number of supersampling samples (4) and particle number(1,000). This dia-
gram shows that for a small particle number, the execution time is mostly
limited by rendering. However, with the largest number of rendering GPUs we
can see that introducing more iterations increases the workload for simulation
tasks and shows that execution time is then limited by simulation.

In comparison to the previous graph, Figure 10 shows the trend for varying
the number of samples for supersampling with a constant number of simulation
iterations and input size. Due to the low number of simulation iterations, it is
always necessary to allocate many rendering GPUs for the optimal workload
balance. However, as the number of samples increases, it becomes increasingly
more costly to have fewer GPUs allocated for rendering.

4.3.2 Load Balancing

The optimal load balancing demonstrates some trends in the data that must be
accounted for by our data-driven load balancing. Figure 11 (a) shows a trend
of optimal load balance based on the number of iterations for simulation.
As shown, increasing the number of iterations requires a greater number of
GPUs dedicated to simulation to achieve optimal load balance. With the fewest
iterations for simulation, the majority of GPUs should be allocated for ray
tracing due to the greater cost of ray tracing.
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Fig. 9 The total execution time of the application for 4 samples for ray-tracing supersam-
pling and 1000 simulated particles.
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Fig. 10 The total execution time of the application for 20 simulation iterations and 1000
simulated particles.
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Fig. 11 The optimal load balance, number of rendering GPUs, affected by (a) number of
supersampling samples and number of simulation iterations, with 3,000 simulated particles;
(b) number of simulated particles and number of supersampling samples, with 60 simulation
iterations.

Increasing the number of samples for supersampling increases the cost of
ray tracing and also impacts the load balancing scheme. Figure 11 (b) shows
that increasing the number of samples for supersampling results in need of
additional ray tracing GPUs to improve workload balance. A larger number
of particles requires fewer GPUs for ray tracing due to the smaller increase in
cost of ray tracing with larger datasets.
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Figure 12 shows the average performance speedup of our data-driven load
balancing compared with non-balanced execution. In the Figure, we show the
speedup percentage when we perform the interpolation in the data-driven
model using one, two, and there parameters. These results show that a signif-
icant speedup can consistently be achieved with different parameter configu-
rations.

80.00
70.00
60.00
50.00
40.00
30.00
20.00
10.00
0.00 T T

1D 2D 3D

Percent Speedup

Fig. 12 Average data-driven load balancing speedup when predicting the optimal configu-
ration using one, two, and three parameters.

5 Dynamic Load Balancing

Although data-driven load balancing is suitable for the applications with pre-
defined hardware and software settings, it has several limitations. If the hard-
ware or the algorithm changes, the performance data has to be re-collected
and the data-driven model has to be re-built. In addition, if the algorithm
allows some performance factors, such as the number of simulation iterations
and supersampling samples, to change at run-time, the data-driven approach
will become useless if the pre-collected performance data does not cover the
changes.

To some extent, the data-driven model is not a general solution, since it
tries to probe the optimization process, defined in Equation 2, as a black-
box by tediously sampling the input-output relation space of the performance
function of Equation 1. Instead, the best approach is to analytically solve the
optimization problem at run-time.

We introduce a dynamic load balancing approach with a method to ap-
proximate the function [|§" (M;, p1,p2,...) — V(N — M;, pi, ph,...)| used
in Equation 2, which tells the difference in workload between the simulation
and the rendering. The main idea behind it is to estimate the workload dif-
ference, which is influenced by a complicated set of hardware and algorithmic
parameters pi, ps, ..., with a simplified metric, as follows,

fim(MivplvaV . ) - ';MS(N - Miapllap,27 .. ) ~ ¢(p)a (4)
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where p is a performance indicator that is not directly related to hardware
and algorithmic parameters py,po,...,p}, 5, ...; and function ¢ should be
computationally cheap to be evaluated. Such approximation will make the
optimization process much simpler since it only depends on one performance
factor instead of many algorithmic parameters.

The key to the success of the approximation defined in Equation 4 is how
to choose the performance factor p and the mapping function ¢. An obvious
choice of p is the actual recorded execution time difference from the previous
time frame, therefore,

o) = 27— 1%,

However, only use the performance data from the previous time frame can not
accurately approximate the execution time of the current time frame, since the
algorithmic setting between these two frames can be dramatically different.

In this work, we introduce a new performance indicator, the number of the
filled buffer frames F', for the approximation. Since the host buffer is used to
synchronize between the simulation and the rendering tasks, its fullness can be
used to indicate which task has more workload. For example, when the buffer
is close to full, it means the simulation is executed faster than the rendering,
and more GPUs should be assigned to the rendering task. When the buffer is
close to empty, it means the simulation takes more time to finish, and more
GPUs should be assigned to the simulation.

The final approximation function is then defined as follows.

~1.0 if F=0,
Vi =i mg(p) = 4(F) = 0.0  if Fe{l,...,B-1}, (5)
1.0 if F =B,

where B is the maximal number of the buffer frames.

In Equation 5, we define the empty buffer as the simulation workload
smaller than the rendering; the full buffer as the simulation workload larger
than the rendering; and the other cases as the balanced workload.

5.1 Dynamic Load Balancing Algorithm

Based on this load balancing approximation and strategy, the workload schedul-
ing algorithm will switch a GPU from one task to another when the buffer is
full or empty; otherwise, the task assignment for each GPU keeps the same.
When the buffer is full, all the simulation GPUs must wait and one simulation
GPU will switch its own task to the rendering to avoid idle time. When the
buffer is empty, all the rendering GPUs must wait and one rendering GPU
will switch its own task to the simulation to avoid idle time. This task switch
only allows one GPU switch at a time so that no dramatic workload change
can happen and no scheduling/switch oscillation can occur.
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Fig. 13 This flowchart shows the execution and task switching for dynamic load balancing.
F' is the number of host buffers, B is the maximum number of host buffers, M is the current
number of rendering GPUs, and N is the total number of GPUs available for load balancing.

The distributed scheduling algorithm that runs on each GPU can be illus-
trated as Figure 13. It is similar to the scheduling algorithm for data-driven
load balancing, with additional steps for checking to switch tasks.

Before the task execution begins, initialization is necessary. Initialization
involves allocating both host and GPU memory required for data. A barrier
is used after initialization to ensure initialization has completed for each task
before starting. After initialization, the task execution loop begins where each
task iteratively executes each stage for all time frames. A task may either be
executed by a group of GPUs or a single GPU. A barrier is used to implement
synchronization for intra-frame task partition of the group of GPUs for the
simulation, This is to ensure the completion of writing a frame of data to the
host buffer. This barrier is also used for another rendering GPU that need to
join this task group for simulation. However, this group barrier is unnecessary
for the rendering GPUs since they process the data individually and do not
require data partitioning. For example, if the host buffer is full and a simulation
GPU needs to switch to a group of rendering GPUs , then the GPU must wait
until the group of simulation GPUs have completed writing the current frame
data. If a GPU needs to switch from the simulation to the rendering, then the
GPU can switch without waiting for other rendering GPU.
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5.2 Dynamic Load Balancing Results

We now present results that show the advantage of our dynamic load balanc-
ing method over data-driven (static) load balancing. The experiments were
executed on a single workstation with a 2.67 GHz Intel Core i7 processor and
four GTX 295 graphics cards (two GPUs per card).

5.2.1 Dynamic Load Balancing Without Runtime Changes

Figure 14 shows the changes in buffer fullness F' and number of rendering
GPUs over time for the N-body simulation without algorithmic changes at
runtime. Here the y-axis represents the number of filled buffers for buffer
fullness, and it represents the number of rendering GPUs for the other series.
The number of host buffers B is ten, where all buffers begin empty. This graph
shows how the buffer begins empty, then fills, and then load balancing adjusts
the workload until an equilibrium is reached. The execution begins with the
maximum number of allocated simulation tasks, which causes the host memory
to immediately fill as buffer fullness F' approaches the number of host buffers
B. When the buffer becomes full, dynamic load balancing switches simulation
GPUs to rendering one at a time. This causes the buffer to eventually become
empty again, causing a task switch back to simulation. The buffer then fills
again, and after a final task switch the system reaches an equilibrium in fill
and empty rate. At the final moment, the number of rendering GPUs M for
the optimal load balance is reached. Dynamic load balancing thus allows for
changing tasks at runtime to avoid waiting when the buffer becomes full or
empty. Many cases of execution oscillate between two configurations due to
the limitation of a discrete number of GPUs, but on average over time this
results in the optimal load balance.

This advantage of dynamic load balancing of being able to switch tasks
at runtime allows for a speedup over static load balancing. Figure 15 shows

12

—o— Buffer
Fullness

-~ Rendering
GPUs

SN O AN Wn o MmO wn NN
- T VWA NTONNONT NN ®
- o o = = - NN NN NN

Frame Number

Fig. 14 Change in buffer fullness and the number of rendering GPUs over time for 3000
particles using dynamic load balancing without runtime changes. The maximum frames of
host buffer is 10, while the maximum number of rendering GPUs is 6.
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Fig. 15 Comparison of the execution time of the static configurations and dynamic load
balancing with 2000 particles without runtime algorithmic changes.

the performance of six static configurations of GPUs compared to dynamic
load balancing for 2000 particles. The figure demonstrates how different static
configurations have varying performance due to the number of rendering GPUs
and the varying amount of processing required for rendering and simulation.
It also shows how dynamic load balancing can adjust workloads to the optimal
static configuration without needing a performance model or performance data
beforehand.

Figure 16 exhibits the ability of dynamic load balancing to find the optimal
configuration for 4000 particles as well. More simulated particles require a
relatively greater workload since the cost of the N-body simulation increases
at a higher rate than ray tracing, which scales linearly with the number of
particles. In both cases the dynamic load balancing method can adjust to the
optimal workload distribution.
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Fig. 16 Comparison of the execution time of the static configurations and dynamic load
balancing with 4000 particles without runtime algorithmic changes.
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5.3 Workload Changes at Runtime

Dynamic load balancing can adjust to dynamic algorithmic changes in work-
loads at runtime. For example, a user may want to change the quality of an
image by increasing the number of samples for supersampling. Supersampling
improves the quality of the rendering, but it will increase the cost of ray tracing
as well. Many other dynamic changes such as zooming and evolving simula-
tions can introduce similar changes in workload. These changes will lead to a
change in optimal load balance in workload distribution. Static load balancing
is not able to optimally handle such unpredicted change.
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Fig. 17 Change in buffer fullness over time for 3000 particles with increases in supersam-
pling every sixty frames as shown by red dotted lines. Here the maximum number of full
host buffers is ten, while the maximum number of rendering GPUs is six.

Figure 17 shows an experiment, in which the supersampling level changes
at fixed intervals of 60 frames, with four, eight, and twelve samples. It shows
the changing buffer fullness and the rendering GPU number switches for a
3000 particle simulation. It illustrates how dynamic load balancing continu-
ally increases the number of rendering GPUs as the sample count increases
for supersampling. The maximum number of simulation GPUs is first allo-
cated, causing the buffer to quickly fill as the fullness F' reaches the number
of host buffers B, and dynamic load balancing increases the number of ren-
dering GPUs. After soon reaching an equilibrium for four samples for super-
sampling, an increase in supersampling is applied as shown by the dotted line.
This causes the buffer fullness to quickly increase. Dynamic load balancing
then switches more tasks to rendering, and an equilibrium is again reached.
A second increase in supersampling then causes the buffer fullness to sharply
increase again, followed by another task switch from dynamic load balancing.

Figure 18 (a) shows the performance of static configurations versus dy-
namic load balancing for trials that involves a change in the number of samples
and simulation iterations from 1 to 16 and 320 to 20, respectively, for 2000
particles. This chart shows a performance improvement when using dynamic
load balancing over all static configurations. The average number of rendering
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GPUs is about three since the single change in supersampling and simulation
iterations causes a switch from the least to the greatest number of rendering
GPUs allocated. Figure 18 (b) shows the comparison with 4000 particles and
also shows a significant performance improvement of dynamic load balancing
over static configurations. Thus, these results show that dynamic load balanc-
ing can consistently reach the optimal load balance for different dataset sizes
and can offer a performance improvement over static configurations.
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Fig. 18 Comparison of the execution time with changes in supersampling and simulation
iterations for static configurations and dynamic load balancing. (a) The simulation with
2000 particles and (b) 4000 particles.

Dynamic load balancing leads to consistent speedup over both average and
optimal static workloads balancing as shown in Figure 19. It shows a constant
speedup of dynamic load balancing over the optimal static load balancing con-
figuration. An much greater speedup can be seen for dynamic load balancing
over worst case static configurations. This worst case speedup increases due
to the greater difference in workloads as the dataset size increases due to the
faster increase in cost of simulation with dataset size.
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Fig. 19 Speedup of dynamic load balancing over optimal, average, and worst case for
different dataset sizes (the number of simulated particles) with changes at runtime.
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6 Conclusions and Future Work

We propose a data-driven and a dynamic multi-GPU load balancing approaches
for the pipeline execution, and have shown the viability of the load balancing
methods by applying them to an in-situ visualization application. The data-
driven load balancing predicts the optimal scheduling configurations through
an interpolation model built from the previously recorded performance data
of an application. As an extension of the data driven model, in order to adapt
the run-time changes of the algorithmic parameters, we introduce the dynamic
load balancing approach. The approach dynamically schedules the GPUs be-
tween simulation and rendering tasks by approximating the workload differ-
ence with a performance metric, fullness of the data buffer. Dynamic load
balancing can achieve equivalent performance to data-driven load balancing,
and it can also gain additional performance improvement when an application
has runtime changes in workloads.

Several areas of future work could be explored for this project. A possible
additional criteria for load balancing is a performance model, which may more
quickly find an optimal load balance and reduce oscillations in load balancing.
A performance model could be used to calculate an approximation to the
optimal load balancing scheme based on a small sample of data.

Another alternative for criteria is rate of change in buffer fullness. This
could also be used in combination with buffer fullness as a criteria for switch-
ing, where a high enough fill or empty rate would trigger a switch in addition
to an empty or full buffer. This would allow a switch to be triggered more
quickly than buffer fullness alone after an immediate runtime change in work-
loads, since it could avoid waiting until the buffer is completely empty or full.
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