A Novel Computation-to-core Mapping Scheme for Robust Faoage
Modeling on GPUs

Yong Cao Seung-In Park Layne T. Watson

Abstract— Though the GPGPU concept is well-known in
image processing, much more work remains to be done to
fully exploit GPUs as an alternative computation engine. Tl
difficulty is not reformulating the algorithm and writing th e
code so that the program can run in parallel. The bigger
challenge is achieving good GPU utilization, which require a
careful implementation armed with in-depth knowledge of the
performance characteristics of the underlying architectue. This
paper shows how to optimize the computational parallelismn
robust facet image modeling to GPU architecture, using fine-
grained block level parallelism achieved by assigning more
GPU cores/threads to process one pixel, rather than pixel
level parallelism. The mapping strategy dependence on the
computational profile is characterized.

A novel computation-to-core mapping scheme that seeks
fine-grained parallelism by asking multiple GPU cores to
process one pixel is proposed. This novel type of paratielis
called block-level facet processinggreatly enhances the
efficiency of GPU resource usage, resulting in a substantial
performance gain. The proposed block-level processing im-
plementation out-performs the standard pixel-level magpi
scheme by a factor of 32, and the overall performance gain
from the GPU implementation is a speedup of 159 compared
with a standard CPU implementation.

The rest of the paper is organized as follows. Section 2
describes the architecture and programming model of GPUs.

Keywords: Facet image modeling, Robust estimation,
GPGPU, Computation-to-core mapping.

Several previous studies on image processing using GPUs are
reviewed in Section 3. Section 4 illustrates the robusttface
image modeling algorithm and analyzes the computational
characteristics of the algorithm. Section 5 explores two
A long standing challenge to the field of image processintinplementation designs differing in the mapping of data
is that massive computational power is required in order t8lements to GPU processing units. Section 6 discusses how
achieve higher speed. It is often the case that an imadfége mapping affects the performance and what mapping
processing algorithm, such as robust facet image modditrategy should be taken depending upon the computational
ing, is theoretically sound but not useful for real-worldprofile and purpose, and Section 7 summarizes and describes
applications due to the computational resource and tinfegture work.
requirements. Many applications have successfully lgyerta
the computational power of graphics processing units (GPUs
toward their real-time requirements in image processing. This work is concerned with programming GT200-series
It is well known that a GPU is a many-core processoNVIDIA GPUs, which come with the CUDA (Compute
capable of high performance parallel computation and datdnified Device Architecture) programming framework and
throughput, which is an ideal implementation platform forinstruction set architecture. The CUDA device is built as
image processing algorithms. a collection of streaming multiprocessors, each of which
Many image processing tasks perform the same operatiéAnsists of eight SIMT (single-instruction, multiple-¢iad)
on each pixel of the input image, a typical data paralle$tream processors. The SIMT architecture allows eachrstrea
scenario. Therefore, they are readily mapped to the paralRrocessor in a multiprocessor to run the same instruction on
architecture of GPUs in a fashion that the processing of eaélifferent data independently, making it ideal for datagtlat
pixel is in parallel. In some cases, such a computationete-c computing. This section will discuss the thread organarati
mapping scheme is simple and efficient. However, in sonfef CUDA and GPU memory hierarchy. A detailed description
other cases, such as robust facet image modeling, the amo@fithe programming model and architectural specification ca
of computation for each pixel is too heavy for a GPU core t&€ found in [1] and [8].
execute efficiently. Sometimes, such a mapping also resulgs Thread Organization
in a GPU resource deficit, which makes the processing of
large images impossible. CUDA manages a large number of computthgeadsand
This paper provides a detailed illustration of the disadorganizes them into a set of logitocks Each thread block
vantages of a pixel-level mapping scheme on a GPU infan be mapped onto one of the multiprocessors for execution.

plementation of the robust facet image modeling algorithmi.he number of threads allowed in a block depends on some
hardware limitation and the computational resources requi

by each thread in the block. Blocks are further organized
into grids. The threads within one grid all execute the same
kernel function and the thread grids are scheduled to run
sequentially on the GPU.

I. INTRODUCTION

II. GPU ARCHITECTURE

Yong Cao, Seung-In Park and Layne T. Watson are with the Drapat
of Computer Science, Virginia Polytechnic Institute anat&tUniversity,
Blacksburg, VA, 24061. Layne T. Watson is also with the Dépant of
Mathematics. Emails{yongcao, spark80, Ith@vt.edu.Yong Caois the
contact author. The conference namé?BPTA'10.

In terms of scheduling, a group of 32 threads forms @resented a 2-D rigid image registration pyramid-based al-
warp, which is the minimum thread set that is scheduledorithm on CUDA and examined the performance efficiency
independently to run on multiprocessors in parallel. Sincef their work. They reported speedup of 90 with bilinear
each multiprocessor has only one instruction fetch unit, ainterpolation and speedup of 33 with bicubic interpolation
threads in a warp must execute the same instruction in a GPley profiled the data to identify performance bottlenecks
clock cycle for the best performance. If a branch instructioof the CUDA platform and emphasized the need to manage
causes the execution of diverged codepaths within a wdrp, alemory resources carefully to obtain maximum speedup.
different codepaths have to be executed sequentially,iwhiS&melyanskiy et al. [9] implemented subvolume based ray-

results in performance degradation. casting for volume rendering on an NVIDIA GTX280 and
achieved speedup of 5 to 8 over the scalar baseline ver-
B. Memory Hierarchy sion running on a single core Harpertown. These efforts

Another important feature of CUDA is a memory hierar-,demonStratGd that the GPU is an effective platform for

chy to hide memory and pipeline latency. CUDA threaddM@d€ processing and computer vision, but did not present a
can read from or write into multiple memory spaces afiat€gy to port the image processing algorithm onto a GPU

different access speeds during the executlonal, shared platform fpr ‘?P“”?a' performance. Although Bui addres_se_d
or global memory Local memory access is allowed exclu-N€ OPtimization in terms of memory management, this is
sively for some automatic variables, therefore the usey onf!réady a generally known issue for GPU programming.

has control over shared and global memory management.
Shared memory is on-chip memory with very fast access

that is partitioned among all the threads in the same block. The concept of facet image modeling was introduced by
Global memory can be accessed by all threads across flhrajick and Watson [5]. Bes! et al. [2] proposed a robust
multiprocessors but is costly; global memory latency is 40Qindow operator to yield good model estimates for facets
to 600 cycles while shared memory latency is 10 cyclegyhen the sample data are contaminated with more than one
Consequently global memory access should be minimized ggyistical distribution. The algorithm applies robustistics
much as possible for the best performance. However, ofy minimize the error between the underlying gray level
16KB of shared memory is given per multiprocessor, anghode| and the observed data from the image. While there are
if enough shared memory to process the kernel function if wide range of applications of robust facet image modeling
at least one thread block is not available, then the kerngj;ch as edge detection, background normalization, andgmag
launch will fail. In addition to these read-and-write memor segmentation, the computational requirement is very high
spaces, threads also can access readeamgtanandtexture anq increases rapidly as the order of the model increases.

IV. ROBUST FACET IMAGE MODELING

memoryas shown in Figure 1. The remainder of this section sketches the algorithm.
P . fMuIti—processor\ rMIJIT.i—prODESSOI’\ Multi-processor A M-estimation
rocessin .
e - AHEE (HEENE EEEN

The robust window operator estimates the parameters of
the underlying facet model for a given two-dimensional
n x m window centered at the pixel with local coordinates
(0,0); the model functionf(r,c) at pixel (r,c) is a linear
combination of (polynomial) basis functions,

Shared
Memory -}
Cache
Memory ™"}

P
f(T5 C) = Z ai¢i (Tv C)a (1)
i=1

wherep is the dimension of the vector space generated by
Fig. 1. CUDA memory hierarchy. the G;.
To find the coefficient vectos of the fitting function, M-
estimation minimizes the residual error
1. RELATED WORK

- = d(r,c) — f(r,c
Several applications of GPU technology for image Ela) = Z Z P(%), (2)
processing have already been reported in the literature. r=—nle=—m’
Mizukami and Tadamura [7] proposed implementation of n == 17 m = m__17
Horn and Schunck’s regularization algorithm with a mul- 2 2

tiscale search method for optical flow computation basedhered(r,c) is observed datg is a symmetric, monotone
on the CUDA programming framework. Making use of on-increasing function withp(0) = 0, and the scaling factos
chip shared memory, they were able to get speedup &f evaluated using the median absolute deviation (MAD).
approximately 16 using a NVIDIA GeForce 8800GTX card The optimal coefficient vectod is found by minimizing
over a 3.2-GHz CPU on Windows XP. Bui and Brockman [3]F'(a). Choosingp so that its derivative is the Huber minimax

function, VE(a) = 0 can be written as be terminated with the estimated coefficients for the fitting
o » function. If the maximum iteration limit is reached without
. _ convergence, the next higher degree fit is computed. At the
T;ﬂ Zw(r’ €)9i(rs c)ardi(r,) final step, the fit quality for each degree polynomial model
is evaluated, and then the fitting function with the best fit
d) 1 quality is chosen. Note that facet image modeling begins
(rQu(r,)gilrc), i=1....p, by computing the median value of the window; the zero-th
(3) order model (constant fit) is initialized with the medianual
. . _ of the observed data without performing the IRLS process.
where the weightu(r,c) is defined asp’(e(r,c))/e(r,c), Then the first set of residual errors, scale factor, and wsigh
e(r,c) = (d(r,c) — f(r,c))/s. Equation (3) in matrix form are computed from the zero-th order fit to initialize the pian

M

/

c=—m' k=1

’
n

i M s

n'c m/’

T

is fit.
WS a=d'Wd, 4)

. m x n Window
which is a nonlinear equation inbecause the weight matrix ‘
W depends on these coefficiendsis anm x p matrix whose Fe———
rows are¢,(r,c), ..., ¢p(r,c). W is anm x nm diagonal Med'az"a'“e
matrix whose diagonal elements arér, ¢), a is a p-vector [coettcients, | [T oo vergence
whose entries are;, andd is anm-vector whose entries are Fit Quality ‘

L2

the observed image data. Iteratively reweighted leastregua

. . B .) . Planar Fit
(IRLS) is used to solve this nonlinear matrix equation via .
the recurrence formula Coefficients, Convergence or

Fit Quality Iteration Limit Huber/Hampel

a(t+1) _ (‘I)tW(a(t))(I))71(1)tW(a(t))d7 (5)
Quadratic Fit

Coefficients, Convergence or

B. Iterative Reweighted Least Squares (IRLS) "T1 FitQualty [~ | lteration Limit Huber/Hampel
The IRLS process for polynomial models of each order

occurs iteratively. To initialize the iteration, an initiét

wheret is the iteration number.

coefficient vectora(”) is neededa(®) for zero-th order is | || coeficenss, |, | Gonvergence or

the median value of the observed data, and is set with the Fit Quaiity lteration Limit Huber/Hampel
previous order fit coefficient vector for higher order, ethe

final planar fit initializes the quadratic fit. # Choose Best Fit, Final Coefficients ‘

IRLS uses the)) R decomposition to solve Equation (5).
A QR decomposition of am x n matrix A is a factorization
A = QR, whereQ is anm x m orthogonal matrix and? is _
anm x n upper triangular matrix. Among three majorR Pseuglo codg for thaobust FIMaIgoUthm_ can be found
factorization algorithms—modified Gram-Schmidt, Givensin Algorithm 1, illustrating the IRLS estimation process &
and Householder—the Householder transformation algarith-th degree fitting polynomial, which hascoefficients, for a
outperforms the modified Gram-Schmidt algorithm in nu$ingle pixel. Algorithm 1 maintains a two-dimensioma m
merical stability, and requires fewer arithmetic openagio ©Pserved data matriwindow for the pixel. The matrix
than the Givens rotation algorithm [4]. Therefore tBR stores _the r_eS|duaI error petw_een the obse_rved data_L and the
factorization is done with Householder transformations, §PProximation for each pixel imindow. W' is the weight
series of orthogonal transformations applied to the inpdfatrix whose values are assigned with ‘WeightFunction of
matrix A to bring it into upper triangular form. The product the residual error matri¥’. A is anm x p matrix, which is
of these orthogonal transformations is the matikgiving the multiplication of W2 and the Gram matrixb of basis

Fig. 2. Outline of IRLS-based robust facet image modelirgpathm.

Q'A=R. function valuese(r, ¢), andb is anm vector, which is the
_ multiplication of W= andwindow. Both A andb are needed
C. The Algorithm to rewrite Equation (4) as the least squares problenr b.

Figure 2 outlines the algorithm for IRLS-based robusfhenA is factored inta) and R components, which are used
facet image modeling, referred to Rebust FIMfrom now to find coefficient vectora with backward substitution. The
on. Given ann x m window, several different order robust function ‘House’ returns the transformation vectorand the
surface fits for a pixel are computed up to a preselectddouseholder reflection matriX/ is computed fronw. If =
maximum order. Here three is selected as the highest degisean arbitrary column vector of dimensign< nm, then
of the fitting polynomial function, since the complexity bt with o« = —sgn(z1)||z||, the firstnm — ¢ components ob
fitting function is adequate enough for the most commonlgre zero, and the remaining componentsadre given by
used window size, which i5x 5. If the IRLS iteration yields ==2L-, wheree; is the canonical vector (1, 0, ., 0)” and

|[z—cedll

a zero MAD of the residual (a perfect fit), the algorithm will || - || is the Euclidean norm. Transforming sequentially each

column of A yields an upper triangular matrik. Details scheme, and the limitation of the scheme with a multiGPU
for the Householde) R decomposition algorithm can be processing approach are addressed. Detailed performance
found in [6]. The robust fit quality measure is given byresults for these two schemes can be found in Section VI.
the ‘FitQuality’ function of E, p, and scale. The process
is repeatedly performed until yielding a zero MAD (only for
a perfect fit) or reaching the maximum iteration limit. As mentioned in Section II-A, the massive parallelism
of a GPU is achieved by organizing a large number of
Algorithm 1 k-th Degree Polynomial Fit for a Single Facetconcurrently executed threads, which are organized into
Require: window(n|[m] of image datagd[l : nm] is vector thread blocks and run on the multiprocessors of the GPU.

representation ofvindow, p is number of coefficients To determine the thread-block organization for a specific

A. Thread-level Facet Processing

Ensure: coefficient vectory, [p] algorithm., the overall computation is segmented into units
1: E = |window — ®y_ax_| of operations that can be mapped onto each GPU thread.
2 =0 Among various criteria used for computation segmentation,
3: while (scale! = 0 & i < MAXITERATION) do independence is paramount. It is obvious that if two pro-
e W= WelghtFunct|0|(1r scale) cessing units can be executed independently, they can be
5. A=W? x ®y scheduled to run in parallel without synchronization.

6 b=TV%xd For Robust FIM an independent computational unit is the
7 Q=1 processing of the facet image model of a pixel. Thus an
g forj=1topdo ?nput image withwidth X hez’ght_pixels haSwz'dth x heigh

9 v[1 : nm] = HouséA[j : nm, j]) independent computa‘uo_nal units, (_each of wh|ch calculates

10: H—=1— 200t the facet model for a pixel. The first computation-to-core
11: Qt = H x Q mapping scheme, thread-level facet processing, is based on
12: A—Hx A such a computation segmentation—simply map the facet
13- end for processing of one pixel onto a GPU thread.

14 R=A 1) Implementation of Kernel Functiole implement the
15 ag[l : p] = BackwardSubstitutioiRa;, = Q'b) overall algorithm Robust FIMin one kernel function that
16 E = |window — dpay| execytgs Algorl_thm 1 four times, once for each o!egree of
17. scale = 1.4826 Mediar() the fitting function (from constant fitc = 0, to cubic fit,

18 i=i+1 k = 3). The implementation is straightforward since the
19: end while computation within a CUDA kernel is sequential. All the
20: fit[k] = FitQuality(E, p, scale) CI_DU code, written in C_, is simply copied for Alg_orithm 1to
21: returna[1 : p| this CUDA kernel function, using the GPU’s device memory

instead of the host CPU memory.

Table | lists all the required variables and their memory
requirements in Algorithm 1, with two additional temporary
variablesT and¢. The matrixT is used to store the result

This section introduces two different computation-toecorof matrix-matrix multiplication (at line number 11 and 12
mapping schemes when implementing the robust facet image Algorithm 1), and the vector is used to store the
modeling algorithm, as described in Section IV, on GPUsesult of matrix-vector multiplication (at line number 6 in
These two mapping schemes exhibit different levels of pailgorithm 1). The matrixR shares the same memory space
allelism, thread-level facet processing and block-leaelet with A (A is not used afterR). The nm x nm diagonal
processing. Each of the schemes has unique memory requinesight matrix ¥ only requiresn x m elements of memory
ments, posing different hardware limitations with respgect space.p;, is the number of coefficients for thieth degree
the size of input data and the order of the fitting function. Apolynomial model, e.gps = 10 for a cubic fit. SinceRobust
a result, a substantial performance difference can be fouRdM calculates four fits, the vectat must hold all the
between these two GPU implementations. coefficients from all fits. Therefore the space needed:fisr

Consider first the thread-level facet processing scheme= Zf:o p; = 14+34+6+ 10 = 20. Fit quality is evaluated
since it is a straightforward choice for implementing imagdor each polynomial modek = 4. Table | also lists memory
processing algorithms. Why the memory requirement of theequirements for two window size§,x 5 and7 x 7. Note
thread-level mapping scheme is a limitation will be expdgin that each element in the vectors and matrices has data type
by providing a detailed presentation of how the memory| oat .
resources in GPUs are allocated and shared between thread#\ccessing shared memory is two orders of magnitude
The explanation of the limitation of the thread-level magupi faster than global memory, so as many variables as possible
scheme motivates the second mapping scheme, a block-legkbuld be allocated to shared memory space before reaching
facet processing scheme, which provides an intuitive gmiut the space limit, which isl6K for each multiprocessor.
to the problem introduced by memory limitations of theThe rest of the variables, mostly matrices, must use global
first scheme. Performance analysis of the second mappingemory.

V. APPROACH

Variable || Memory (bytes) || 5x5 | 7x7 space. The required global memory for a large input image,
a gx4 80 80 therefore, can exceed the hardware limit. To run the thread-
window nxmx4 100 196 level processing implementation forsa< 5 window size on
E nxmx4 100 196 the GTX280 GPU, which has 1GB of global memory, the
w nXxXm x4 100 196 input image can not be larger thail x 351, a significant
b nxmx4 100 196 limitation for the application oRobust FIM
v nxmx4a 100 196
n nxmx4 100 196 B. Block-Level Facet Processing
P nm X p x4 1,000 | 1,960 To address the limitation of the thread-level mapping
A(R) nm X px4 1,000 | 1,960 scheme, a novel computation-to-core mapping scheme is pro-
H nm X nm x4 || 2,500 | 9,604 posed. This mapping scheme seeks block-level parallelism
Q! nm X nm x 4 2,500 | 9,604 where the estimation of a facet model is executed bioak
T nm X nm x 4 2,500 | 9,604 of threads instead of only one thread. All the threads in a
fit kx4 16 16 block work collaboratively to accelerate the linear alggbr
[Total | [10,196] 34,004] such as matrix multiplication.

This block-level mapping scheme allows more variables of
Robust FIMto fit into the shared memory space because only
one instance of the algorithm is executed in a multiproaesso
Consequently, no or little global memory is required forteac
thread, obviating the limitation associated with the tdrea

Width level mapping scheme.
_ 1) Implementation of Kernel Functionin Algorithm 1,

: : each matrix and vector operation is segmented into compu-
tational units. These units are mapped onto different ttsea
in a block and executed in parallel. For example, in matrix-
matrix multiplication, a unit is defined as the calculation
of an element in the resulting matrix, which is the inner
product between a row vector from the first matrix and a

TABLE |
MEMORY REQUIREMENT FOR EXECUTING THERObust FIMALGORITHM
FOR A SINGLE FACET

Thread (+;

WbleH

Thread (A column vector from the second matrix. For matrix-vector
W= BlockFiight multiplication, a unit is defined as the calculation of an-ele
K hoamm ment in the resulting vector, which is also an inner product.
L = Width/N All the other operations in Algorithm 1 are segmented into

units of computation in a similar fashion—a block of threads
covers the computation of all the units in the operation.
In this implementation, each matrix/vector operation can b
computed in parallel.

Fig. 3. Thread-Block configuration for thread-level facebgessing.

2) Thread-Block Configuration:Since all threads in a
block share the same shared memory space in a multiproces- Width
sor, there can only be a minimal number of threads in a block
if each thread is to use as much of the shared memory space Block
as possible for the variables listed in Table I. A 32-thread o
warp is the minimum thread set that can fully utilize the
computational resources in a multiprocessor. Therefowe, t -
thread-level facet processing approach generates 32dthrea
per block, and¥txeiahl piocks in total as our thread-
block configuration, as shown in Figure 3.

3) Limitations: In the thread-level processing scheme, e ()
each thread requires a large amount of global memory space.
For a5 x 5 window, 8.7K of global memory is allocated N = BlockWidth
for each thread for the variablest, A(R), H,Q!, and T Block
(the rest of the variables listed in Table | are allocated in (il
shared memory). All threads are executed in parallel on the
GPU, and global memory is pre-allocated for all threads Fig. 4. Thread-Block configuration for block-level facebpessing
before calling the CUDA kernel function. Each thread runs
one instance of the algorithm on a single pixel, and the For this block-level mapping scheme, all the variables
whole input image is processed with many instances of the Algorithm 1 fit in high speed shared memory in mul-
algorithm running concurrently in their own global memorytiprocessors. There is no global memory allocation for the

Thre: 1)

computation. At the beginning of the kernel function, we Thread Blocks , A
load the image data in shared memory and allocate shared
memory space for the variables. During thRLS iteration, I R
all threads in the same block operate on the data in shared GPH.Hmware\._‘ e e M
memory. Finally, the result is written back to global memory K

2) Thread-Block ConfigurationThe block-level mapping
scheme generates one threhlbck for each pixel/facet, g.gie
as shown in Figure 4. The block threads cover all the 4 ., L
computational units of each matrix/vector operation. Agnon Memory
these operations, matrix-matrix multiplication has theéest Global
number of units. For example, for & x 5 window, the Memory
largest matrix is25 x 25, which will result in 625 units

TB 2

TB 1 Space ‘ ‘ TB 2 Space ‘
TB 1 Space ‘ ‘ TB 2 Space ‘

—
™ gt £ o
= o Eleeene o] IS -
3] 1= E =) =]
~ W, ~

TB 1

of computation. Since the maximum number of threads per Active Global Memory o
block is set to 512 as a hardware limitation, each thread has @
more than one unit to complete. Thread Blocks -

In CUDA, the 32-threadwarp is the atomic resource "/ T8 |
unit that is scheduled by the GPU thread manager. The = S
number of threads in a block should be a multiple of GPU Hardware _,.""))
32. Our experiments show that the thread block with size ML SM2
16 x 26 yields the best performance in the block-level facet
processing implementation. m = |

3) Advantages over Thread-level Mapping Scherfiee [mwn J||[™mez]
proposed block-level mapping scheme has no global memory [mmn][TBm]
constraint and can be applied to any size image. This =
advantage over thread-level parallelism derives fromdoe f ~ |||z||5| -0 [||B]--o E

= = (@ &8

that the GPU manages global memory and shared memory e
d iﬁerently' Activ: Global Memory

Figure 5 illustrates this difference, whetiethread blocks,
TBy, ..., TB,, are scheduled to execute on stream Fig. 5. CUDA Thread Block Scheduling. Top half: executionfio$t m

muItiprocessorsSMl SM On the top half of the thread blocks. Bottom half: execution of next thread blocks.
) ey m-

figure, CUDA first schedules: thread blocks7' B, to T'B,,,,

assuming that only on&'B can execute on &M . On the .
bottom half of the figure, the secomd T'Bs are scheduled,

after the firstm T'Bs are completed. Focusing on global
memory and shared memory usage, notice that the shared
memory space IS M; is used by bothl’B; and T B, ;.
Therefore, if the amount of shared memory inSa/ is

enough for a thread block, no additional memory is neededig. 6. Noisy input image (right), the processed images ftwth CPU
In terms of global memory usage, however, no space can ffplementation (middie) and GPU implementation (left).
shared between differefitBs, because the scheduled order

of the T'Bs is indeterminate. Alll’' Bs have to pre-allocate _ _ . _ _

global memory space. If the image size>> m, nis limited ~ Fingerprint With a size of2,048 x 2,048, Lenaimage is

by the hardware constraint on global memory size. also used for performance experiments with different image
sizes, where a portion of the image is used.

VI. RESULT AND DISCUSSION

To test the accuracy and efficiency of our GPU imple
mentation, we perform experiments on a machine equippedWe shall first demonstrate the accuracy of our GPU
with an Intel Core 2 Quad 2.33 GHz CPU, 4GB systenimplementation of the Robust FIM algorithm. In Figure 6,
memory, and a NVIDIA GTX280 GPU, which has 240we show a noisy input image and two processed images
processor cores with 1.3 GHz clock for each core, and 1Gisulting from CPU and GPU implementations of the al-
of device memory. To evaluate the performance on a multgorithm. In this experiment, we use thenaimage with
GPU system, we also use a system with 4 NIVIDA GTX 294rtificially added impulse noise. In Figure 6 the two resigti
cards, each of which has 2 GPUs with the similar hardwaiienages are visually identical. For quantitive comparissa,
specifications with GTX 280 card. calculated the normalized Root Mean Square (RMS) distance

We have chosen 5 example images as our test cases. Theyween processed images resulting from our CPU and GPU
are the canonicalena picture and 4 other noisy imagesimplementations. The results from all five test images are
downloaded from the interneCell, Airplane, Moon,and listed In Table II.

A. Accuracy of the GPU Implementation

Image RMS | CPU time (sec)| GPU time (sec) 1o MBLP ®BLFPUGPU) - BLFP(3GPU)
Lena 0.0014 120.696 7.009 160 15211 157.41 157.40 158.76 159.86
Cell 0.0028 142.301 7.009 140 135.89 |
Airplane 0.0014 138.882 7.003 N
Moon 0.0035 142.459 7.006 3
- - 3 7848 79.50 79.56
Fingerprint|| 0.0008 101.313 5.641 &
TABLE 1l
COMPARISON BETWEENCPUAND GPUIMPLEMENTATION.
32x32 64x64 128x128 256x256 512x512 1024x1024 2048x2048
B. Comparison Between Two Mapping Schemes Fig. 8. Performance Gain Over CPU with process degree k=3

Figure 7 shows the performance speedup of the block-

level processing scheme over thread-level processing. The

) n simple and compact kernel functions, so that each thread
block-level mapping scheme greatly out-preforms thread- . o
. . can work efficiently with limited hardware resources, such
level scheme. For the image size 2if6 x 256, block-level

. . as shared memory. In tHRobust FIMalgorithm, estimating
scheme rung2.01 times faster than thread-level processing L
) . & local facet model for a pixel is too much work for a thread,
largely due to the performance gain from accessing hi

speed shared memory instead of global memor Ahich makes the execution inefficient.
P y 9 Y- Secondly, GPU memory resources are allocated and used

324 230 differently in a thread block for global memory and for
323 1303 shared memory. It's important to consider memory con-
ng straints when deciding on the level of parallelism for the
g 45 3201 gpplication. In theRobust FIMalgorithm, a large amount of
Baro 31.85 sies s o global memory is required for thread level parallelism, ebhi
“ 318 - makes large input images impossible.
;; I I I E In the future, we plan to address memory limitation
35 4 . ‘ B problems associated with a larger window-size, such as

6ax64 9696 128x128 160x160 192192 224x224 256256 1 X 7. IN this case, the shared memory is not enough for

the computation of a single facet even in our block-level

Fig. 7. Speedup of block-level processing over threadHpvecessing. processing scheme. The solution of this problem can be
found in other computation-to-core mapping schemes, e.g.

C. Performance Gain Over CPU multiple blocks per facet.

To demonstrate the performance gain of our proposed REFERENCES
GPU approach over _the stapdard_ CPU implementation, W8 nviDiAs Compute Unified Device Architecture. http://
developed a sequential version (single thread) ofRbbust devel oper. nvi di a. coni obj ect/ cuda. htm /.

i i 2] P.J. Besl, J.B. Birch, and L.T. Watson. Robust window rap@s.
.FlM algomh.m O.n th.e CP.U of our te.St maCh.me' The pr Machine Vision and Applicationg(4):179-191, 1989.
|mplementat|0n is written in C++ and is complled with hlgh-[3] P. Bui and J. Brockman. Performance analysis of acaeldrimage

est optimization level (-O3 in gcc to include SSE options). registration using GPGPU. IBPGPU-2: Proceedings of 2nd Workshop

Compared with the performance of the CPU implementation, ©" General Purpose Processing on Graphics Processing Upiges
38-45, New York, NY, USA, 2009. ACM.

our GPU algorithm exhibits a significant speedup, as ShOV\{@] G.H. Golub and C.F. Van LoarMatrix Computations (3rd ed.)Johns

in Figure 8. The block-level mapping scheme on a single Hopkins University Press, Baltimore, MD, USA, 1996.

GPU shows a speedup of 20 times for2a)48 x 2.048 [5] R.M. Haralick and L.T. Watson. A facet model for image alat
. P P . 70 ’ Computer Graphics Image Processirid(2):113-129, 1981.
image. As the number of GPUs increase, GPU performangg a s Householder. Unitary triangularization of a nomsyetric matrix.

increases linearly; a 4-GPU implementation shows a speedup J. ACM 5(4):339-342, 1958.

of 79.99, and a 8-GPU shows a speedup of 159.86. [7] Y. Mizukami and K. Tadamura. Optical flow computation congoute
P P unified device architecture. IHCIAP '07: Proceedings of the 14th
VIl. CONCLUSION AND FUTURE WORK International Conference on Image Analysis and Processpapges

179-184, Washington, DC, USA, 2007. IEEE Computer Society.
This paper propose a novel computation-to-core mappirigj J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scatalgarallel
scheme for the robust facet image modeling algorithm og programming with CUDA.Queue 6(2):40-53, 2008.
. . N] M. Smelyanskiy, D. Holmes, J. Chhugani, A. Larson, D.Mar@ean,
GPUs. This mapping scheme shows a significant perfor- p. Hanson, P. Dubey, K. Augustine, D. Kim, A. Kyker, V.W. Lee,
mance gain over the standard pixel-based mapping scheme.A.D. Nguyen, L. Seiler, and R. Robb. Mapping high-fidelitylume
From the experience we have gained in this experiment, 'éndering for medical imaging to CPU, GPU and many-core i@ch
. . . tures. |EEE Transactions on Visualization and Computer Graphics
the following two principles should be considered when 15():1563-1570, 2009.
optimizing an application for the GPU platform.
Firstly, when considering the level of parallelism for im-

plementation on a GPU, we will choose the level that results

