
A Novel Computation-to-core Mapping Scheme for Robust Facet Image
Modeling on GPUs

Yong Cao Seung-In Park Layne T. Watson

Abstract— Though the GPGPU concept is well-known in
image processing, much more work remains to be done to
fully exploit GPUs as an alternative computation engine. The
difficulty is not reformulating the algorithm and writing th e
code so that the program can run in parallel. The bigger
challenge is achieving good GPU utilization, which requires a
careful implementation armed with in-depth knowledge of the
performance characteristics of the underlying architecture. This
paper shows how to optimize the computational parallelism in
robust facet image modeling to GPU architecture, using fine-
grained block level parallelism achieved by assigning more
GPU cores/threads to process one pixel, rather than pixel
level parallelism. The mapping strategy dependence on the
computational profile is characterized.
Keywords: Facet image modeling, Robust estimation,
GPGPU, Computation-to-core mapping.

I. I NTRODUCTION

A long standing challenge to the field of image processing
is that massive computational power is required in order to
achieve higher speed. It is often the case that an image
processing algorithm, such as robust facet image model-
ing, is theoretically sound but not useful for real-world
applications due to the computational resource and time
requirements. Many applications have successfully leveraged
the computational power of graphics processing units (GPUs)
toward their real-time requirements in image processing.
It is well known that a GPU is a many-core processor
capable of high performance parallel computation and data
throughput, which is an ideal implementation platform for
image processing algorithms.

Many image processing tasks perform the same operation
on each pixel of the input image, a typical data parallel
scenario. Therefore, they are readily mapped to the parallel
architecture of GPUs in a fashion that the processing of each
pixel is in parallel. In some cases, such a computation-to-core
mapping scheme is simple and efficient. However, in some
other cases, such as robust facet image modeling, the amount
of computation for each pixel is too heavy for a GPU core to
execute efficiently. Sometimes, such a mapping also results
in a GPU resource deficit, which makes the processing of
large images impossible.

This paper provides a detailed illustration of the disad-
vantages of a pixel-level mapping scheme on a GPU im-
plementation of the robust facet image modeling algorithm.

Yong Cao, Seung-In Park and Layne T. Watson are with the Department
of Computer Science, Virginia Polytechnic Institute and State University,
Blacksburg, VA, 24061. Layne T. Watson is also with the Department of
Mathematics. Emails:{yongcao, spark80, ltw}@vt.edu.Yong Cao is the
contact author. The conference name isPDPTA’10.

A novel computation-to-core mapping scheme that seeks
fine-grained parallelism by asking multiple GPU cores to
process one pixel is proposed. This novel type of parallelism,
called block-level facet processing, greatly enhances the
efficiency of GPU resource usage, resulting in a substantial
performance gain. The proposed block-level processing im-
plementation out-performs the standard pixel-level mapping
scheme by a factor of 32, and the overall performance gain
from the GPU implementation is a speedup of 159 compared
with a standard CPU implementation.

The rest of the paper is organized as follows. Section 2
describes the architecture and programming model of GPUs.
Several previous studies on image processing using GPUs are
reviewed in Section 3. Section 4 illustrates the robust facet
image modeling algorithm and analyzes the computational
characteristics of the algorithm. Section 5 explores two
implementation designs differing in the mapping of data
elements to GPU processing units. Section 6 discusses how
the mapping affects the performance and what mapping
strategy should be taken depending upon the computational
profile and purpose, and Section 7 summarizes and describes
future work.

II. GPU ARCHITECTURE

This work is concerned with programming GT200-series
NVIDIA GPUs, which come with the CUDA (Compute
Unified Device Architecture) programming framework and
instruction set architecture. The CUDA device is built as
a collection of streaming multiprocessors, each of which
consists of eight SIMT (single-instruction, multiple-thread)
stream processors. The SIMT architecture allows each stream
processor in a multiprocessor to run the same instruction on
different data independently, making it ideal for data-parallel
computing. This section will discuss the thread organization
of CUDA and GPU memory hierarchy. A detailed description
of the programming model and architectural specification can
be found in [1] and [8].

A. Thread Organization

CUDA manages a large number of computingthreadsand
organizes them into a set of logicblocks. Each thread block
can be mapped onto one of the multiprocessors for execution.
The number of threads allowed in a block depends on some
hardware limitation and the computational resources required
by each thread in the block. Blocks are further organized
into grids. The threads within one grid all execute the same
kernel function, and the thread grids are scheduled to run
sequentially on the GPU.

In terms of scheduling, a group of 32 threads forms a
warp, which is the minimum thread set that is scheduled
independently to run on multiprocessors in parallel. Since
each multiprocessor has only one instruction fetch unit, all
threads in a warp must execute the same instruction in a GPU
clock cycle for the best performance. If a branch instruction
causes the execution of diverged codepaths within a warp, all
different codepaths have to be executed sequentially, which
results in performance degradation.

B. Memory Hierarchy

Another important feature of CUDA is a memory hierar-
chy to hide memory and pipeline latency. CUDA threads
can read from or write into multiple memory spaces at
different access speeds during the execution:local, shared,
or global memory. Local memory access is allowed exclu-
sively for some automatic variables, therefore the user only
has control over shared and global memory management.
Shared memory is on-chip memory with very fast access
that is partitioned among all the threads in the same block.
Global memory can be accessed by all threads across all
multiprocessors but is costly; global memory latency is 400
to 600 cycles while shared memory latency is 10 cycles.
Consequently global memory access should be minimized as
much as possible for the best performance. However, only
16KB of shared memory is given per multiprocessor, and
if enough shared memory to process the kernel function in
at least one thread block is not available, then the kernel
launch will fail. In addition to these read-and-write memory
spaces, threads also can access read-onlyconstantandtexture
memoryas shown in Figure 1.

Fig. 1. CUDA memory hierarchy.

III. R ELATED WORK

Several applications of GPU technology for image
processing have already been reported in the literature.
Mizukami and Tadamura [7] proposed implementation of
Horn and Schunck’s regularization algorithm with a mul-
tiscale search method for optical flow computation based
on the CUDA programming framework. Making use of on-
chip shared memory, they were able to get speedup of
approximately 16 using a NVIDIA GeForce 8800GTX card
over a 3.2-GHz CPU on Windows XP. Bui and Brockman [3]

presented a 2-D rigid image registration pyramid-based al-
gorithm on CUDA and examined the performance efficiency
of their work. They reported speedup of 90 with bilinear
interpolation and speedup of 33 with bicubic interpolation.
They profiled the data to identify performance bottlenecks
of the CUDA platform and emphasized the need to manage
memory resources carefully to obtain maximum speedup.
Smelyanskiy et al. [9] implemented subvolume based ray-
casting for volume rendering on an NVIDIA GTX280 and
achieved speedup of 5 to 8 over the scalar baseline ver-
sion running on a single core Harpertown. These efforts
demonstrated that the GPU is an effective platform for
image processing and computer vision, but did not present a
strategy to port the image processing algorithm onto a GPU
platform for optimal performance. Although Bui addressed
the optimization in terms of memory management, this is
already a generally known issue for GPU programming.

IV. ROBUST FACET IMAGE MODELING

The concept of facet image modeling was introduced by
Haralick and Watson [5]. Besl et al. [2] proposed a robust
window operator to yield good model estimates for facets
when the sample data are contaminated with more than one
statistical distribution. The algorithm applies robust statistics
to minimize the error between the underlying gray level
model and the observed data from the image. While there are
a wide range of applications of robust facet image modeling
such as edge detection, background normalization, and image
segmentation, the computational requirement is very high
and increases rapidly as the order of the model increases.
The remainder of this section sketches the algorithm.

A. M-estimation

The robust window operator estimates the parameters of
the underlying facet model for a given two-dimensional
n × m window centered at the pixel with local coordinates
(0,0); the model functionf(r, c) at pixel (r, c) is a linear
combination of (polynomial) basis functionsφi,

f(r, c) =

p
∑

i=1

aiφi(r, c), (1)

wherep is the dimension of the vector space generated by
the φi.

To find the coefficient vectora of the fitting function, M-
estimation minimizes the residual error

E(a) =

n′

∑

r=−n′

m′

∑

c=−m′

ρ

(

d(r, c) − f(r, c)

s

)

, (2)

n′ =
n − 1

2
, m′ =

m − 1

2
,

whered(r, c) is observed data,ρ is a symmetric, monotone
increasing function withρ(0) = 0, and the scaling factors
is evaluated using the median absolute deviation (MAD).

The optimal coefficient vectora is found by minimizing
E(a). Choosingρ so that its derivative is the Huber minimax

function,∇E(a) = 0 can be written as

n′

∑

r=−n′

m′

∑

c=−m′

p
∑

k=1

w(r, c)φi(r, c)akφk(r, c) =

n′

∑

r=−n′

m′

∑

c=−m′

d(r, c)w(r, c)φi(r, c), i = 1, . . . , p,

(3)

where the weightw(r, c) is defined asρ′
(

e(r, c)
)

/e(r, c),
e(r, c) =

(

d(r, c) − f(r, c)
)

/s. Equation (3) in matrix form
is

ΦtWΦ a = ΦtW d, (4)

which is a nonlinear equation ina because the weight matrix
W depends on these coefficients.Φ is anm×p matrix whose
rows areφ1(r, c), . . ., φp(r, c). W is a nm × nm diagonal
matrix whose diagonal elements arew(r, c), a is a p-vector
whose entries areai, andd is anm-vector whose entries are
the observed image data. Iteratively reweighted least squares
(IRLS) is used to solve this nonlinear matrix equation via
the recurrence formula

a(t+1) =
(

ΦtW (a(t))Φ
)−1

ΦtW (a(t))d, (5)

wheret is the iteration number.

B. Iterative Reweighted Least Squares (IRLS)

The IRLS process for polynomial models of each order
occurs iteratively. To initialize the iteration, an initial fit
coefficient vectora(0) is needed.a(0) for zero-th order is
the median value of the observed data, and is set with the
previous order fit coefficient vector for higher order, e.g.,the
final planar fit initializes the quadratic fit.

IRLS uses theQR decomposition to solve Equation (5).
A QR decomposition of anm×n matrixA is a factorization
A = QR, whereQ is anm×m orthogonal matrix andR is
an m × n upper triangular matrix. Among three majorQR
factorization algorithms—modified Gram-Schmidt, Givens,
and Householder—the Householder transformation algorithm
outperforms the modified Gram-Schmidt algorithm in nu-
merical stability, and requires fewer arithmetic operations
than the Givens rotation algorithm [4]. Therefore theQR
factorization is done with Householder transformations, a
series of orthogonal transformations applied to the input
matrix A to bring it into upper triangular form. The product
of these orthogonal transformations is the matrixQt giving
QtA = R.

C. The Algorithm

Figure 2 outlines the algorithm for IRLS-based robust
facet image modeling, referred to asRobust FIMfrom now
on. Given ann × m window, several different order robust
surface fits for a pixel are computed up to a preselected
maximum order. Here three is selected as the highest degree
of the fitting polynomial function, since the complexity of the
fitting function is adequate enough for the most commonly
used window size, which is5×5. If the IRLS iteration yields
a zero MAD of the residual (a perfect fit), the algorithm will

be terminated with the estimated coefficients for the fitting
function. If the maximum iteration limit is reached without
convergence, the next higher degree fit is computed. At the
final step, the fit quality for each degree polynomial model
is evaluated, and then the fitting function with the best fit
quality is chosen. Note that facet image modeling begins
by computing the median value of the window; the zero-th
order model (constant fit) is initialized with the median value
of the observed data without performing the IRLS process.
Then the first set of residual errors, scale factor, and weights
are computed from the zero-th order fit to initialize the planar
fit.

m x n Window

Constant Fit:

Median Value

Convergence

Planar Fit

Convergence or

Iteration Limit

Quadratic Fit

Convergence or

Iteration Limit

Cubic Fit

Convergence or

Iteration Limit

Coefficients,

Fit Quality

Coefficients,

Fit Quality

Coefficients,

Fit Quality

Coefficients,

Fit Quality

Choose Best Fit, Final Coefficients

IRLS

IRLS

IRLS

Huber/Hampel

Huber/Hampel

Huber/Hampel

Fig. 2. Outline of IRLS-based robust facet image modeling algorithm.

Pseudo code for theRobust FIMalgorithm can be found
in Algorithm 1, illustrating the IRLS estimation process for a
k-th degree fitting polynomial, which hasp coefficients, for a
single pixel. Algorithm 1 maintains a two-dimensionaln×m
observed data matrixwindow for the pixel. The matrixE
stores the residual error between the observed data and the
approximation for each pixel inwindow. W is the weight
matrix whose values are assigned with ‘WeightFunction’ of
the residual error matrixE. A is a nm× p matrix, which is
the multiplication ofW

1

2 and the Gram matrixΦ of basis
function valuesφ(r, c), andb is a nm vector, which is the
multiplication ofW

1

2 andwindow. BothA andb are needed
to rewrite Equation (4) as the least squares problemAa ≈ b.
ThenA is factored intoQ andR components, which are used
to find coefficient vectorsa with backward substitution. The
function ‘House’ returns the transformation vectorv, and the
Householder reflection matrixH is computed fromv. If x
is an arbitrary column vector of dimensionq ≤ nm, then
with α = −sgn(x1)‖x‖, the firstnm − q components ofv
are zero, and the remaining components ofv are given by

x−αe1

‖x−αe1‖
, wheree1 is the canonical vector (1, 0,. . ., 0)T and

‖ · ‖ is the Euclidean norm. Transforming sequentially each

column of A yields an upper triangular matrixR. Details
for the HouseholderQR decomposition algorithm can be
found in [6]. The robust fit quality measure is given by
the ‘FitQuality’ function of E, p, and scale. The process
is repeatedly performed until yielding a zero MAD (only for
a perfect fit) or reaching the maximum iteration limit.

Algorithm 1 k-th Degree Polynomial Fit for a Single Facet

Require: window[n][m] of image data,d[1 : nm] is vector
representation ofwindow, p is number of coefficients

Ensure: coefficient vectorak[p]
1: E = |window − Φk−1ak−1|
2: i = 0
3: while (scale! = 0 & i < MAXITERATION) do
4: W = WeightFunction(r, scale)
5: A = W

1

2 × Φk

6: b = W
1

2 × d
7: Q = I
8: for j = 1 to p do
9: v[1 : nm] = House(A[j : nm, j])

10: H = I − 2vvt

11: Qt = H × Qt

12: A = H × A
13: end for
14: R = A
15: ak[1 : p] = BackwardSubstitution(Rak = Qtb)
16: E = |window − Φkak|
17: scale = 1.4826 Median(E)
18: i = i + 1
19: end while
20: fit[k] = FitQuality(E, p, scale)
21: returnak[1 : p]

V. A PPROACH

This section introduces two different computation-to-core
mapping schemes when implementing the robust facet image
modeling algorithm, as described in Section IV, on GPUs.
These two mapping schemes exhibit different levels of par-
allelism, thread-level facet processing and block-level facet
processing. Each of the schemes has unique memory require-
ments, posing different hardware limitations with respectto
the size of input data and the order of the fitting function. As
a result, a substantial performance difference can be found
between these two GPU implementations.

Consider first the thread-level facet processing scheme,
since it is a straightforward choice for implementing image
processing algorithms. Why the memory requirement of the
thread-level mapping scheme is a limitation will be explained
by providing a detailed presentation of how the memory
resources in GPUs are allocated and shared between threads.
The explanation of the limitation of the thread-level mapping
scheme motivates the second mapping scheme, a block-level
facet processing scheme, which provides an intuitive solution
to the problem introduced by memory limitations of the
first scheme. Performance analysis of the second mapping

scheme, and the limitation of the scheme with a multiGPU
processing approach are addressed. Detailed performance
results for these two schemes can be found in Section VI.

A. Thread-level Facet Processing

As mentioned in Section II-A, the massive parallelism
of a GPU is achieved by organizing a large number of
concurrently executed threads, which are organized into
thread blocks and run on the multiprocessors of the GPU.
To determine the thread-block organization for a specific
algorithm, the overall computation is segmented into units
of operations that can be mapped onto each GPU thread.
Among various criteria used for computation segmentation,
independence is paramount. It is obvious that if two pro-
cessing units can be executed independently, they can be
scheduled to run in parallel without synchronization.

For Robust FIM, an independent computational unit is the
processing of the facet image model of a pixel. Thus an
input image withwidth× height pixels haswidth×heigh
independent computational units, each of which calculates
the facet model for a pixel. The first computation-to-core
mapping scheme, thread-level facet processing, is based on
such a computation segmentation—simply map the facet
processing of one pixel onto a GPU thread.

1) Implementation of Kernel Function:We implement the
overall algorithmRobust FIM in one kernel function that
executes Algorithm 1 four times, once for each degree of
the fitting function (from constant fit,k = 0, to cubic fit,
k = 3). The implementation is straightforward since the
computation within a CUDA kernel is sequential.All the
CPU code, written in C, is simply copied for Algorithm 1 to
this CUDA kernel function, using the GPU’s device memory
instead of the host CPU memory.

Table I lists all the required variables and their memory
requirements in Algorithm 1, with two additional temporary
variablesT and t. The matrixT is used to store the result
of matrix-matrix multiplication (at line number 11 and 12
in Algorithm 1), and the vectort is used to store the
result of matrix-vector multiplication (at line number 6 in
Algorithm 1). The matrixR shares the same memory space
with A (A is not used afterR). The nm × nm diagonal
weight matrixW only requiresn× m elements of memory
space.pk is the number of coefficients for thek-th degree
polynomial model, e.g.,p3 = 10 for a cubic fit. SinceRobust
FIM calculates four fits, the vectora must hold all the
coefficients from all fits. Therefore the space needed fora is
q =

∑3
i=0 pi = 1 + 3 + 6 + 10 = 20. Fit quality is evaluated

for each polynomial model,k = 4. Table I also lists memory
requirements for two window sizes,5 × 5 and 7 × 7. Note
that each element in the vectors and matrices has data type
float.

Accessing shared memory is two orders of magnitude
faster than global memory, so as many variables as possible
should be allocated to shared memory space before reaching
the space limit, which is16K for each multiprocessor.
The rest of the variables, mostly matrices, must use global
memory.

Variable Memory (bytes) 5× 5 7 × 7

a q × 4 80 80
window n × m × 4 100 196

E n × m × 4 100 196
W n × m × 4 100 196
b n × m × 4 100 196
v n × m × 4 100 196
t n × m × 4 100 196
Φ nm × p × 4 1,000 1,960

A(R) nm × p × 4 1,000 1,960
H nm × nm × 4 2,500 9,604
Qt nm × nm × 4 2,500 9,604
T nm × nm × 4 2,500 9,604
fit k × 4 16 16

Total 10,196 34,004

TABLE I

MEMORY REQUIREMENT FOR EXECUTING THERobust FIMALGORITHM

FOR A SINGLE FACET.

 M = BlockHeight

 N = BlockWidth

 K = Height/M

 L = Width/N

Thread (1,1)

Thread (M,N)

Block

(1,1)

Block

(1,2)

Block

(2,1)

Block

(2,2)

Block

(3,1)

Block

(3,2)

Block

(K,1)

Block

(K,2)

Block

(1,L)

Block

(2,L)

Block

(3,L)

Block

(K,L)

Width

H
e
ig

h
t

Fig. 3. Thread-Block configuration for thread-level facet processing.

2) Thread-Block Configuration:Since all threads in a
block share the same shared memory space in a multiproces-
sor, there can only be a minimal number of threads in a block
if each thread is to use as much of the shared memory space
as possible for the variables listed in Table I. A 32-thread
warp is the minimum thread set that can fully utilize the
computational resources in a multiprocessor. Therefore, the
thread-level facet processing approach generates 32 threads
per block, andwidth×height

32 blocks in total as our thread-
block configuration, as shown in Figure 3.

3) Limitations: In the thread-level processing scheme,
each thread requires a large amount of global memory space.
For a 5 × 5 window, 8.7K of global memory is allocated
for each thread for the variablesv, t, A(R), H, Qt, and T
(the rest of the variables listed in Table I are allocated in
shared memory). All threads are executed in parallel on the
GPU, and global memory is pre-allocated for all threads
before calling the CUDA kernel function. Each thread runs
one instance of the algorithm on a single pixel, and the
whole input image is processed with many instances of the
algorithm running concurrently in their own global memory

space. The required global memory for a large input image,
therefore, can exceed the hardware limit. To run the thread-
level processing implementation for a5× 5 window size on
the GTX280 GPU, which has 1GB of global memory, the
input image can not be larger than351 × 351, a significant
limitation for the application ofRobust FIM.

B. Block-Level Facet Processing

To address the limitation of the thread-level mapping
scheme, a novel computation-to-core mapping scheme is pro-
posed. This mapping scheme seeks block-level parallelism
where the estimation of a facet model is executed on ablock
of threads instead of only one thread. All the threads in a
block work collaboratively to accelerate the linear algebra,
such as matrix multiplication.

This block-level mapping scheme allows more variables of
Robust FIMto fit into the shared memory space because only
one instance of the algorithm is executed in a multiprocessor.
Consequently, no or little global memory is required for each
thread, obviating the limitation associated with the thread-
level mapping scheme.

1) Implementation of Kernel Function:In Algorithm 1,
each matrix and vector operation is segmented into compu-
tational units. These units are mapped onto different threads
in a block and executed in parallel. For example, in matrix-
matrix multiplication, a unit is defined as the calculation
of an element in the resulting matrix, which is the inner
product between a row vector from the first matrix and a
column vector from the second matrix. For matrix-vector
multiplication, a unit is defined as the calculation of an ele-
ment in the resulting vector, which is also an inner product.
All the other operations in Algorithm 1 are segmented into
units of computation in a similar fashion—a block of threads
covers the computation of all the units in the operation.
In this implementation, each matrix/vector operation can be
computed in parallel.

 M = BlockHeight

 N = BlockWidth

Thread (1,1)

Thread (M,N)

Width

H
e
ig

h
t

Block

(1,1)

Block

(Height,

Width)

Fig. 4. Thread-Block configuration for block-level facet processing

For this block-level mapping scheme, all the variables
in Algorithm 1 fit in high speed shared memory in mul-
tiprocessors. There is no global memory allocation for the

computation. At the beginning of the kernel function, we
load the image data in shared memory and allocate shared
memory space for the variables. During theIRLS iteration,
all threads in the same block operate on the data in shared
memory. Finally, the result is written back to global memory.

2) Thread-Block Configuration:The block-level mapping
scheme generates one threadblock for each pixel/facet,
as shown in Figure 4. The block threads cover all the
computational units of each matrix/vector operation. Among
these operations, matrix-matrix multiplication has the largest
number of units. For example, for a5 × 5 window, the
largest matrix is25 × 25, which will result in 625 units
of computation. Since the maximum number of threads per
block is set to 512 as a hardware limitation, each thread has
more than one unit to complete.

In CUDA, the 32-threadwarp is the atomic resource
unit that is scheduled by the GPU thread manager. The
number of threads in a block should be a multiple of
32. Our experiments show that the thread block with size
16× 26 yields the best performance in the block-level facet
processing implementation.

3) Advantages over Thread-level Mapping Scheme:The
proposed block-level mapping scheme has no global memory
constraint and can be applied to any size image. This
advantage over thread-level parallelism derives from the fact
that the GPU manages global memory and shared memory
differently.

Figure 5 illustrates this difference, wheren thread blocks,
TB1, . . ., TBn, are scheduled to execute onm stream
multiprocessors,SM1, . . ., SMm. On the top half of the
figure, CUDA first schedulesm thread blocks,TB1 to TBm,
assuming that only oneTB can execute on aSM . On the
bottom half of the figure, the secondm TBs are scheduled,
after the firstm TBs are completed. Focusing on global
memory and shared memory usage, notice that the shared
memory space inSMi is used by bothTBi and TBm+i.
Therefore, if the amount of shared memory in aSM is
enough for a thread block, no additional memory is needed.
In terms of global memory usage, however, no space can be
shared between differentTBs, because the scheduled order
of the TBs is indeterminate. AllTBs have to pre-allocate
global memory space. If the image sizen >> m, n is limited
by the hardware constraint on global memory size.

VI. RESULT AND DISCUSSION

To test the accuracy and efficiency of our GPU imple-
mentation, we perform experiments on a machine equipped
with an Intel Core 2 Quad 2.33 GHz CPU, 4GB system
memory, and a NVIDIA GTX280 GPU, which has 240
processor cores with 1.3 GHz clock for each core, and 1GB
of device memory. To evaluate the performance on a multi-
GPU system, we also use a system with 4 NIVIDA GTX 295
cards, each of which has 2 GPUs with the similar hardware
specifications with GTX 280 card.

We have chosen 5 example images as our test cases. They
are the canonicalLena picture and 4 other noisy images
downloaded from the internet:Cell, Airplane, Moon,and

SM 1 SM 2 SM m
GPU Hardware

TB 1 Space

TB 1 Space

…...

Thread Blocks

TB m TB n…...TB

m+1
TB 1 TB 2 …...

TB 1 TB 2 TB m

TB 2 Space

TB 2 Space

TB m Space

TB m Space

T
B

 1

T
B

 2

T
B

 m

T
B

 m
+

1

T
B

 2
m…... …...

Register

Shared

Memory

Global

Memory

SM 1 SM 2 SM m
GPU Hardware

TB m+1

TB m+1

…...

Thread Blocks

TB n…...TB

m+1

TB

m+1

TB

m+2

TB

2m

TB m+2

TB m+2

TB 2m

TB 2m

T
B

 n…...

T
B

 1

T
B

 2

T
B

 m

T
B

 m
+

1

T
B

 2
m…... …...

T
B

 n…...

Active Global Memory

Active Global Memory

Fig. 5. CUDA Thread Block Scheduling. Top half: execution offirst m

thread blocks. Bottom half: execution of nextm thread blocks.

Fig. 6. Noisy input image (right), the processed images fromboth CPU
implementation (middle) and GPU implementation (left).

Fingerprint. With a size of2, 048 × 2, 048, Lena image is
also used for performance experiments with different image
sizes, where a portion of the image is used.

A. Accuracy of the GPU Implementation

We shall first demonstrate the accuracy of our GPU
implementation of the Robust FIM algorithm. In Figure 6,
we show a noisy input image and two processed images
resulting from CPU and GPU implementations of the al-
gorithm. In this experiment, we use theLena image with
artificially added impulse noise. In Figure 6 the two resulting
images are visually identical. For quantitive comparison,we
calculated the normalized Root Mean Square (RMS) distance
between processed images resulting from our CPU and GPU
implementations. The results from all five test images are
listed In Table II.

Image RMS CPU time (sec) GPU time (sec)
Lena 0.0014 120.696 7.009
Cell 0.0028 142.301 7.009

Airplane 0.0014 138.882 7.003
Moon 0.0035 142.459 7.006

Fingerprint 0.0008 101.313 5.641

TABLE II

COMPARISON BETWEENCPUAND GPU IMPLEMENTATION .

B. Comparison Between Two Mapping Schemes

Figure 7 shows the performance speedup of the block-
level processing scheme over thread-level processing. The
block-level mapping scheme greatly out-preforms thread-
level scheme. For the image size of256 × 256, block-level
scheme runs32.01 times faster than thread-level processing,
largely due to the performance gain from accessing high
speed shared memory instead of global memory.

32.23

31.86

32.30

31.83 31.83

31.89

32.01

31.5

31.6

31.7

31.8

31.9

32

32.1

32.2

32.3

32.4

64x64 96x96 128x128 160x160 192x192 224x224 256x256

s
p

e
e

d
u

p

Fig. 7. Speedup of block-level processing over thread-level processing.

C. Performance Gain Over CPU

To demonstrate the performance gain of our proposed
GPU approach over the standard CPU implementation, we
developed a sequential version (single thread) of theRobust
FIM algorithm on the CPU of our test machine. The CPU
implementation is written in C++ and is compiled with high-
est optimization level (-O3 in gcc to include SSE options).
Compared with the performance of the CPU implementation,
our GPU algorithm exhibits a significant speedup, as shown
in Figure 8. The block-level mapping scheme on a single
GPU shows a speedup of 20 times for a2, 048 × 2, 048
image. As the number of GPUs increase, GPU performance
increases linearly; a 4-GPU implementation shows a speedup
of 79.99, and a 8-GPU shows a speedup of 159.86.

VII. C ONCLUSION AND FUTURE WORK

This paper propose a novel computation-to-core mapping
scheme for the robust facet image modeling algorithm on
GPUs. This mapping scheme shows a significant perfor-
mance gain over the standard pixel-based mapping scheme.
From the experience we have gained in this experiment,
the following two principles should be considered when
optimizing an application for the GPU platform.

Firstly, when considering the level of parallelism for im-
plementation on a GPU, we will choose the level that results

0

20

40

60

80

100

120

140

160

180

32x32 64x64 128x128 256x256 512x512 1024x1024 2048x2048

sp
e
e
d
u
p

BLFP BLFP(4GPU) BLFP(8GPU)

18.84

72.66

112.94

19.71

72.34

135.89

19.84

77.59

152.11

20.01

78.48

157.41

19.93

79.50

157.40

19.90 20.00

79.56 79.99

158.76 159.86

Fig. 8. Performance Gain Over CPU with process degree k=3

in simple and compact kernel functions, so that each thread
can work efficiently with limited hardware resources, such
as shared memory. In theRobust FIMalgorithm, estimating
a local facet model for a pixel is too much work for a thread,
which makes the execution inefficient.

Secondly, GPU memory resources are allocated and used
differently in a thread block for global memory and for
shared memory. It’s important to consider memory con-
straints when deciding on the level of parallelism for the
application. In theRobust FIMalgorithm, a large amount of
global memory is required for thread level parallelism, which
makes large input images impossible.

In the future, we plan to address memory limitation
problems associated with a larger window-size, such as
7 × 7. In this case, the shared memory is not enough for
the computation of a single facet even in our block-level
processing scheme. The solution of this problem can be
found in other computation-to-core mapping schemes, e.g.
multiple blocks per facet.

REFERENCES

[1] NVIDIA’s Compute Unified Device Architecture. http://
developer.nvidia.com/object/cuda.html/.

[2] P.J. Besl, J.B. Birch, and L.T. Watson. Robust window operators.
Machine Vision and Applications, 2(4):179–191, 1989.

[3] P. Bui and J. Brockman. Performance analysis of accelerated image
registration using GPGPU. InGPGPU-2: Proceedings of 2nd Workshop
on General Purpose Processing on Graphics Processing Units, pages
38–45, New York, NY, USA, 2009. ACM.

[4] G.H. Golub and C.F. Van Loan.Matrix Computations (3rd ed.). Johns
Hopkins University Press, Baltimore, MD, USA, 1996.

[5] R.M. Haralick and L.T. Watson. A facet model for image data.
Computer Graphics Image Processing, 15(2):113–129, 1981.

[6] A.S. Householder. Unitary triangularization of a nonsymmetric matrix.
J. ACM, 5(4):339–342, 1958.

[7] Y. Mizukami and K. Tadamura. Optical flow computation on compute
unified device architecture. InICIAP ’07: Proceedings of the 14th
International Conference on Image Analysis and Processing, pages
179–184, Washington, DC, USA, 2007. IEEE Computer Society.

[8] J. Nickolls, I. Buck, M. Garland, and K. Skadron. Scalable parallel
programming with CUDA.Queue, 6(2):40–53, 2008.

[9] M. Smelyanskiy, D. Holmes, J. Chhugani, A. Larson, D.M. Carmean,
D. Hanson, P. Dubey, K. Augustine, D. Kim, A. Kyker, V.W. Lee,
A.D. Nguyen, L. Seiler, and R. Robb. Mapping high-fidelity volume
rendering for medical imaging to CPU, GPU and many-core architec-
tures. IEEE Transactions on Visualization and Computer Graphics,
15(6):1563–1570, 2009.

