
Large Scale Crowd Simulation
Using A Hybrid Agent Model

Seung In Park1, Yong Cao1, Francis Quek1

1Department of Computer Science, Virginia Polytechnic Institute and State
University, Blacksburg, Virginia, USA
{spark80,yongcao,quek}@vt.edu

Abstract. We present a hybrid model for large-scale crowd simulation
by augmenting continuum dynamics under an agent based perspective.
Our model supports both group behaviors and complex behaviors driven
by individual decisions of agents. Our simulation system is implemented
on the parallel architecture of graphics processing units (GPUs), and
scales very well with respect to the size of the virtual environment. In
our experiments, tens of thousands of characters can be simulated on a
large grid, 4, 096 × 4, 096, at interactive rates.

1 Introduction

Realistic crowd simulation has become increasingly important in computer games,
entertainment, architecture design, and numerous other applications. Real-time
crowd simulation remains challenging because it should reflect essential features
of crowd dynamics as well as support computational efficiency. A promising re-
cent direction based on continuum dynamics was proposed by Hughes [7] and
extended by Treuille et al. [18]. Continuum crowd model integrates global naviga-
tion with local collision avoidance as a single optimization problem, and achieves
computational efficiency. In addition, a simulation created with the approach
shows smooth flow of thousands of characters and produces emergent behav-
iors such as lane formation. However it sacrifices the individual variability in
behaviors for reduced computational cost, and the simulations are limited to
unrealistic cases where a group of homogeneous people share an identical goal
and regular patterns of behavior. Furthermore, the computational efficiency of
the continuum dynamics requires a compromise in the scale of the grid that can
be simulated because of the complexity of solving the related Eikonal equations.

Agent-based methods are good alternatives to capture such a complex pedestrian
interaction and movement with regard to individual characteristics. In order to
provide more sophisticated control over agents, the agent-based systems include
the reasoning process of path planning, steering and congestion planning sepa-
rately for each agent. The drawback of such sophisticated simulation is that the
computation cost is too high to support real-time simulation of a large crowd.

2 Seung In Park, Yong Cao, Francis Quek

In this paper, we propose a hybrid model for large crowds by augmenting con-
tinuum dynamics under an agent based perspective, thus the crowd exhibits
complex behavior driven by individual decisions of agents while the simulation
achieves an efficient performance. The model is capable of driving tens of thou-
sands of characters in large and high-resolution environments at interactive rates
on current desktops. The specific contributions of this paper are: 1. We propose
a hybrid crowd model to support individual behavior of agents and cost effec-
tive simulation by integrating agent-based modeling and continuum dynamics;
2. Our model supports a scalable crowd simulation of continuum model in large
and high resolution environments at interactive rates; 3. Our model is highly
parallel and amenable to GPGPU computing.

The remainder of this paper is organized as follows: Section 2 provides a brief
overview of the related work in crowd simulation. We introduce our model of
virtual environment in Section 3. Section 4 presents our hybrid approach for
crowd navigation. We demonstrate and evaluate the approach both qualitatively
and quantitatively in Section 5. We summarize the conclusions drawn from our
studies, and provide possible future research directions in Section 6.

2 Related Work

A primary task in crowd simulation is to steer each agents towards its goal while
avoiding collisions with other agents and obstacles. A popular global method to
navigate agents to their goal positions is the A* algorithm, and several deriva-
tives are proposed [19, 17]. The roadmap approach represents the connectivity of
the free configuration space [16] that may be searched using different algorithms.
In the various ‘potential fields’ approaches, a global field is used to represent the
entire landscape with obstacles, and crowd elements move under the influence
of these fields [1, 3]. Global path planning alone cannot model real crowds where
each agent needs to react to dynamic factors for collision avoidance. Various
techniques of the local planning for agent-based methods have been proposed,
including rule based methods [14, 9], social force model [6, 11], and velocity mod-
els [2, 5], to just name a few. Generating sophisticated human reactive behaviors
is of interest as well. Several studies mainly focused on psychological and emo-
tional effects on individual behavior [13, 12, 20]. Some researches modeled the
human cognition process in navigation [4, 8, 16].

Hughes proposed continuum dynamics based approach which handles global path
finding and local collision avoidance as a single optimization problem [7]. In-
stead of computing each individual motion separately, crowds are represented
as density fields, and individuals are guided toward goal by an evolving poten-
tial function on the density field. Treuille et al. brought the approach into a
discretized particle representation, and provided compelling results for crowd
phenomena [18]. Other works using continuum theory followed to generate an

Large Scale Crowd Simulation Using A Hybrid Agent Model 3

aggregate motion of crowds [10], and traffic simulation [15]. Compared to pre-
vious works on continuum based crowd models, our system supports individual
behaviors of heterogeneous agents, and the performance is not bounded by the
grid size of environment.

3 Virtual Environment Model

In our approach we divide the navigation into two major parts: global path
planning and local steering. The global and local planning require a model of
the environment that permits both planning modes to interact. We first intro-
duce the model of virtual environment in this section.Our virtual environment
is composed of a collection of 2D spaces, including a map field (§3.1), a world
field (§3.2), and a set of local perception fields of agents (§3.3).

G

S

A1 Local perception field

A2 Local perception field

A1

A2

High density area by A2

G

S

(a) (b) (c) (d)

Fig. 1: Environment model consists of (a) a map field, (b) a world field, and (c)
local perception fields. (d) Combination of the three fields is shown.

3.1 Map field

A map field (MF) models terrain as a 2D grid, and static objects and topographic
properties are encoded into cells of the grid. High level routing information is
generated on the MF using a global path planning method and further details
will be given in Section 4.1. Compared to world and local perception fields which
will be discussed in following subsections, a relatively coarse grid is used because
we only need overall connectivity information from point to point at this level
of the map. Note that the simulation is not confined to use a 2D grid for the
MF. Any form of maps can be used as long as we can perform a path planning
algorithm on it and produce the geographic coordinates of paths and junctions.
Therefore the simulation system can be augmented with other forms of maps,
such as graph-based maps and roadmaps. Figure 1(a) illustrates a MF where
static obstacles are represented as grey rectangles, and start and goal positions
are marked with blue and yellow triangles, respectively. Planned paths that avoid
the obstacles are drawn as a set of green squares.

4 Seung In Park, Yong Cao, Francis Quek

3.2 World Field

i i+1 i+2 i+3 i+4
j

j+1

j+2

j+3

j+4 A1

A2

A3

A1 Influence A2 Influence

A3 Influence

Fig. 2: Density values of cells with respect to location of agents

A world field (WF) is defined to handle agents and other dynamic objects.
We represent a crowd in terms of density and flow velocity, as is standard for
modeling pedestrian flow in continuum dynamics based crowd simulations. The
WF is discretized as a regular 2D grid, and the continuous values of density and
velocity are stored within the grid. An agent influences the density value ρ of the
four closest cells to it. Figure 2 illustrates how density values are accumulated
for each cell. Three agents A1, A2, and A3 each have a 4-cell zone of influence
(e.g. A1 influencing cells ((i+ 1, j+ 3), (i+ 2, j+ 3), (i+ 1, j+ 4), (i+ 2, j+ 4))).
The ρ quantity accumulated in a cell owing to an agent is determined by the
distance of the center of that cell from the location of the agent. The distance
effect of agent A is modeled using a 2D Gaussian function. The density influence
of A at (xa, ya) on a cell centered at (x, y) is:

ρa(x, y) = Ke
−((x−xa)2

2σ2x
+

(y−ya)2

2σ2y
)

where coefficient K is the amplitude, and σx, σy are the x and y spreads of the
blob. K, σx and σy can be controlled depending on a cell size, to generate an
appropriate influence of an agent to the cell. The total density in cell (x, y) is
then ρ(x, y) = Σiρi(x, y), where ρi denotes the density value of ith nearby agent.
The velocity value v̄(x, y) is the sum of each agent’s velocity scaled by its density
and normalized by ρ(x, y):

v̄(x, y) =
Σiρi(x, y)vi
ρ(x, y)

.

Since the world field contains the information of dynamic factors, it is updated
at each frame through the simulation. To keep track of each agent’s position in
reasonably fine detail, a relatively high resolution grid is used. Figure 1(a) and
(b) show that both MF and WF covers the entire environment, however they
are at different resolutions. In our experiment, we set a cell size of map field to
be eight times that of the WF. The unit size of static obstacles and characters
are considered to determine the cell size of map and world fields, respectively.

Large Scale Crowd Simulation Using A Hybrid Agent Model 5

3.3 Local Perception Field

Local perception field (LPF) contains the measurement of cost for the locomo-
tion action of an agent in a 2D grid form. We model the individual differences
across agents by maintaining a LPF for each agent, and by allowing different
agents to evaluate the cost by different criteria. In the real world, people interact
with the surrounding environment but not with the whole world. Similar to this,
an LPF only conveys the information of the immediate surrounding environ-
ment of each agent. Thus the perceivable range of an agent determines the size
of the field. As an agent changes its position, the LPF moves along with it, keep-
ing the center of the grid at the location of the agent, to reflect the immediate
environment information.

The cost is quantified as a measure of discomfort arising from the density of the
area and time-space factors. To measure discomfort σi for an agent Ai because
of the proximity of other agents, all agents Aj within Ai’s perception range are
advanced by their velocity and transferred into density values as if the agents
were there, over pre-defined amount of time steps τ . At each frame, density
value ρj is accumulated into the four closest cells of Aj ’s location in Ai’s local
perception field: σi(x, y) = Σk+τ

t=k Σjρj(x, y).

An example of arising discomfort for A1 due to A2’s being within A1’s perception
range at time step k is represented by dark blue cells in Figure 1(c). Similarly,
discomfort aroused at A1’s location in A2’s local perception field is represented
with grey cells. Time-space factors for the cost consists of path length, estimated
travel time, and existence of static obstacles. Path length, travel time, and dis-
comfort felt are linearly combined and weights for the terms are varied to reflect
different individual principles in cost measurement. Finally, if a certain area is
occupied by a static obstacle, its cost is set to infinity since agent cannot step
into the area. The cost value Cx→p of a cell at p measured by an agent at location
x is calculated as following:

C = min(α

∫
p

1ds+ β

∫
p

1dt+ γ

∫
p

σdt, δ), (1)

where α, β and γ are weights for path length, travel time, and discomfort felt,
respectively. δ is set to infinity for unavailable cells due to the static obstacles,
otherwise set to 0. Figure 1 (d) shows a stack of three fields. As they move around
the environment, agents collect information on the path, density, and velocity
according to their current positions, and use these to decide final movement.

4 Crowd Navigation

Our hybrid approach of crowd navigation is decomposed into two levels. The first
deals with the global path planning towards the goal, and the second addresses
steering and local collision avoidance. We first describe them separately in §4.1
and §4.2, and show how these are integrated in a single framework in §4.3.

6 Seung In Park, Yong Cao, Francis Quek

4.1 Global Path Planning

We perform global path planning using the A* algorithm in the MF to provide
an agent with the preferred moving direction. Note that any global planners can
replace the use of the A* algorithm as long as the geographic coordinates of
paths and junctions are provided. For static features such as obstacles that do
not change over time, the path planning is performed only once per agent at the
beginning of the simulation. If crowd density is taken into consideration (as will
be discussed later) and agent density is represented in the higher-resolution WF
we need a way to compute the dynamic crowd density information in the MF
for planning. We do this by aggregating the agents in the WF area covered by
a MF cell. This aggregation includes both a count of the agents and an average
of their directional vectors. In this case the A* algorithm will be invoked again
as density conditions affect the planned path.

4.2 Local Planning and Steering

We now proceed to describe how the LPF is used for local steering to avoid
collision with other agents. By definition, pedestrians prefer terrain with low
cost while moving towards a destination. Therefore, agents will move in the
direction perpendicular to the estimated cost, as there will be no advantage of
moving along a line of constant cost. A potential function φ, which is a function
to determine the optimal path, is found based on the cost C in LPF : C =
‖∇φ(x)‖. The potential field φ is assigned with the value of 0 inside a goal,
and the other grid cell values are approximated by solving a finite difference
approximation to the above equation outwards from the goal position. Note
that the goal position inside the local perception field, called local goal, may not
correspond to a final destination for an agent since the local perception field
covers only a small portion of the environment. The way of identifying local goal
will be described in the next subsection. Assuming a local goal is located, the
final velocity v of an agent is decided by Equation 2, where nθ = [cos(θ), sin(θ)]
is the unit vector moving in direction θ, and rnθ denotes an offset distance from
the agent’s location. The offset is given to have agents consider the velocity of
the area in which they are moving into, but not of where they are currently at.

v = −v̄(x+ rnθ) · nθ ·
∇φ(x)

∇‖φ(x)‖
. (2)

The work of [18] is significantly bounded by the size and resolution of an envi-
ronment grid, because the computation load grows proportionally to O(N logN)
whereN is the number of grid points. A common strategy for computation reduc-
tion is to employ a coarse grid to achieve real-time performance. The drawback of
this approach is that with the concomitant increase in cell-size, multiple agents
can reside in the same cell. This necessitates the use of pairwise comparison
methods to check for collisions between agents, and the computation becomes a

Large Scale Crowd Simulation Using A Hybrid Agent Model 7

potential bottleneck in the simulation. An advantage of our approach is that it
only solves the Eikonal equation on an LPF of small fixed size grid, the perfor-
mance is not subject to the resolution and size of the environment. Since this
LPF is represented at a high resolution grid, only one agent can occupy a cell
and minimum distance enforcement becomes unnecessary.

4.3 Integration of Global and Local Planning

The integration of the global path planning and the local planning proceeds
as follows. First, we perform the global path planning for each agent at the
beginning of the simulation. As a result of this step, each agent is given the
list of geometric coordinates of paths from its initial position to the final goal
location. Second, each agent identifies a local goal within the range of its LPF
with the given path information. Agent A1 looks for the closest cell coordinates
of the paths from its current position, which we call a waypoint. In Figure 3
the current waypoint for agent A1 in the MF is shown as a green square. In
the higher resolution LPF the local goal is set to the closest point to the center
to the MF waypoint. Third, given the local goal for each agent, the continuum
equation is solved to obtain the potential field for each LPF grid, and the final
velocity for the agent motion is determined.

S

GA1 Waypoint

Local goal

Fig. 3: Local goal selection on the paths.

Individualized behavior Step two of our above model is where behavioral
variability is encoded with respect to individual agents. We provide three classes
of different behaviors. The first class concerns an agent’s preference on the path
selection. Specifically, some agents may have greater aversion to congestion while
the other may plan for the shortest path at the expense of other valuations
for traversability, such as tolerance for going through a congested area. The
second class takes into consideration the different levels of knowledge about
the environment possessed by the agents. Some agents may know the entire
map very well while the other may not. The third class of behaviors relates to
group membership. Membership in specific groups may induce agents to behave
differently than they would when isolated. For example, if one of their companion

8 Seung In Park, Yong Cao, Francis Quek

left behind, the rest tend to slow down or even stop to allow that agent to catch
up. Individuals who do not belong to a group will travel only by their own
decision. Details on the modeling of the three classes of behavior follows.

Path preference If dynamic factors like crowd density influence path choice
of an agent, the global path has to be updated as needed. In such cases, if
a waypoint is determined to be in congested area, the path finding algorithm
described in Section 4.1 is recomputed using the agent’s current position as the
starting point. To determine the density at a particular waypoint at the MF
scale, the system aggregates the corresponding WF occupancy information in
the vicinity of the waypoint.

Knowledge level Agents in our system can have two levels of knowledge – full
knowledge of a system-wide MF, and the naive case where the MF is ignored.
The knowledgeable agent functions as described earlier with global MF -level
path planning and LPF -level route planning. Naive agents that only have general
goal positions have two choices for navigation: follow an authority figure which
we call leader agent, or follow a crowd. Such agents use the MF to locate a
leader or group to follow. Knowledgeable agents register their locations in the
shared MF, and naive agents can query the MF to locate a leader nearby in
the MF to follow. For crowd-following, the system employs the agent-density
information described in §4.1. If a density value of a certain cell is higher than
some threshold and those agents who contributed to the high density have similar
moving orientation, this indicates that there is a coherent crowd to follow. For
realism the agents only query nearby areas for leader or a crowd to follow.
After targeting a leader or a group, following behavior of a dependent agent is
simulated by setting its waypoint at the leader location or a center of the group.

Cohesive group movement The group aggregation factor, ε
∫ p
m

1ds is intro-
duced to equation 1 for the cohesive group movement. A center of mass m for
a group is calculated and serves as a reference point for the group members to
check their level of isolation from the group. As the value of m increases (it is
far from its group), the cost of the path increases.

Ca = max(α

∫
p

1ds+ β

∫
p

1dt+ γ

∫
p

%dt+ ε

∫ p

m

1ds, δ), (3)

and ε is a weight for the group aggregation factor.

5 Implementation and Results

In this section, we discuss our system implementation and evaluation. Our crowd
simulation is tested on a desktop with an Intel i7 2.67 GHz CPU, 12GB system
memory, and a NVIDIA GTX295 graphics card.

Large Scale Crowd Simulation Using A Hybrid Agent Model 9

5.1 Simulation Evaluation

A set of scenarios are used to test the system. The scenarios range from basic
cases, testing the ability of the simulator to handle frequently encountered cases
including congestion and oncoming threats, to large scale environment cases
evaluating overall performance of the system. The scenarios include:
Congestion avoidance - A small number of agents start their navigation to-
wards goal locations. While turning at a corner they confront unexpected con-
gestion, a large number of agents block their optimal path to the goals.
Evacuation - A medium number of agents evacuate from an area. Some of them
know where the exit is, and the rest of them are uninformed of the environment.
Cohesive movement - Several groups which consist of a small number of agents
travel around a field. As a member of a group, each agent coordinates with other
agents in the same group and show an aggregated motion as they move together.
Crossing individuals - From 1,000 to 20,000 agents with random goals cross
a large flat area. The grid size is varied for the simulated environment, ranging
from 1, 024× 1, 024 to a very high resolution, 4096× 4096.
People naturally steer around each other for collision avoidance without arti-

(a) (b)

Fig. 4: (a) All agents select the shortest path. (b) Each agent moves by its own
preference on the paths.

ficial enforcement of a minimum distance between each other (see Section 4.2).
Figure 4 shows our results for the Congestion Avoidance scenario. In Figure 4(a),
all agents were set to prefer the shortest path by setting α to a high value in
Equation 1. As can be seen, they surge into the same area without considera-
tion to congestion. In Figure 4(b), in addition to shortest path preference, some
agents were set to avoid congestion. As a result, some agents walk through the
crowd while others circumnavigate the crowd as still moving toward their goal.
Figure 5 (a) and 5(b) show the Cohesive Movement example. In Figure 5(a),
eight groups of four-members each (color-coded for identification) move in clear
clusters. The group cohesion behavior is excised, and no discernible grouping can
be seen in Figure 5(b). Figure 5(c) is an example of our results running 10, 000
characters on a 2, 048× 2, 048 grid. Smooth motion of the agents demonstrates
that solving the Eikonal equation only on the immediate regions to the agent is
sufficient to avoid collisions.

10 Seung In Park, Yong Cao, Francis Quek

(a) (b) (c)

Fig. 5: (a) Agents show aggregate motion. (b) Agents move individually without
concerning its membership. (c) A crowd of 10, 000 characters simulated on a
2, 048× 2, 048 grid.

Table 1: The performance of our method on various configurations.

Number of Grid Resolution

characters 1, 024 × 1, 024 2, 048 × 2, 048 4, 096 × 4, 096

5, 000 Time/frame(ms) 20.77 28.87 47.82
Fps 43 32 20

10, 000 Time/frame(ms) 38.83 46.27 63.14
Fps 23 20 14

15, 000 Time/frame(ms) 57.3 65.68 86.87
Fps 16 14 11

5.2 Parallel Implementation and Performance Results

We choose the NVIDIA’s CUDA programming framework to be the target plat-
form of our parallel implementation.

GPU-based Parallel Implementation Recall that our simulation has three
levels of field, map, world and local perception field. Computation is decom-
posed following the fields organization. At the beginning of simulation, CPU-
based computation is used to set up the initial positions and goal positions of
the agents, and the topographical information of the environment. Global path
planning for each agent is then performed on the CPU. All the information is
passed to GPU, and a number of CUDA threads are created and they collabora-
tively compute the density and velocity values to fill the grid cells in WF. Once
the global information is computed, the simulation is partitioned by agent such
that one block of threads is assigned to build the LPF of each agent and to solve
the related Eikonal equation.

Performance Results Our model runs at interactive rates up to 10, 000 char-
acters on a 4, 096 × 4, 096 grid as shown in Table 1. Each character is assigned
with a random initial and goal positions, and individual path preference with the
Crossing individuals scenario in the experiment. The execution time per frame
with various number of agents and grid cells is shown in Figure 6. The total exe-
cution time is linear both with the number of simulated characters and the size of

Large Scale Crowd Simulation Using A Hybrid Agent Model 11

0	

20	

40	

60	

80	

100	

120	

512x512	 1024x1024	 2048x2048	 4096x4096	

1,000	

5,000	

10,000	

15,000	

20,000	

ms

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

512x512	 1024x1024	 2048x2048	 4096x4096	

1,000	

5,000	

10,000	

15,000	

20,000	

0	

5	

10	

15	

20	

25	

30	

512x512	 1024x1024	 2048x2048	 4096x4096	

1,000	

5,000	

10,000	

15,000	

20,000	

(a) (b) (c)

Fig. 6: (a) Simulation time per frame. (b) LPF time remains constant wrt. the
size of grid. (c) WF time increases wrt. the size of grid.

environment grid (Figure 6(a)). Figure 6(b) shows LPF execution time remains
approximately constant with the environment size. Since we solve the Eikonal
equation on the fixed size of LPF, the execution is independent of the size of the
environment. However, Figure 6(c) shows WF execution time to populate the
density and velocity values for the environment increases exponentially to the
size of environment grid, and becomes a potential bottleneck to the simulation.

6 Conclusion and Future Work

We present a hybrid crowd simulation system which leverages the benefits of
both continuum-based and agent-based approaches. By modeling time-space in-
formation of surrounding environment of an agent as a local perception field, an
agent’s perception is linked to its evaluation of the cost of a particular terrain
for traversal. The model captures the group dynamics in a large crowd as well
as individual behaviors of each agents. From the performance results we show
that our approach scales well on a large and high resolution simulated environ-
ment. Another possible advantage of our approach is that the simulation could
be linked to any variety of options for the map field construction so that the
continuum based simulation can be augmented with non-grid based paths.

We will continue our work in the following directions. First, we want to build
a new global path planning components which can be implemented on GPUs.
The current A* algorithm is designed for sequential execution. It might be the
performance bottleneck of our system if many agents choose to dynamically
update their global optimal path. Second, dynamic scoping of visual perception
field could be applied. For the large relatively open environments, the agents
would see further and this could have an effect on their behaviors. By using the
dynamic size of local perception field, the load balancing among thread blocks
will be an important issue on the parallel implementation as well. Third, we
are currently working to simulate real world crowd scenarios, such as emergency
evacuation. We plan to model a large region of a city and generate realistic agent
behaviors for the simulation.

12 Seung In Park, Yong Cao, Francis Quek

References

1. Arkin, R.C.: Integrating behavioral, perceptual, and world knowledge in reactive
navigation. Robot. Auton. Syst. 6, 105–122 (June 1990)

2. van den Berg, J., Lin, M., Manocha, D.: Reciprocal velocity obstacles for real-time
multi-agent navigation. In: Robotics and Automation, 2008. ICRA 2008. IEEE Int.
Conf. on. pp. 1928 –1935 (May 2008)

3. Chenney, S.: Flow tiles. In: Proc. of the 2004 ACM SIGGRAPH/Eurographics
symposium on Computer animation. pp. 233–242. SCA ’04, Switzerland (2004)

4. Funge, J., Tu, X., Terzopoulos, D.: Cognitive modeling: knowledge, reasoning and
planning for intelligent characters. In: Proc. of ACM SIGGRAPH. pp. 29–38 (1999)

5. Guy, S.J., Chhugani, J., Kim, C., Satish, N., Lin, M., Manocha, D., Dubey, P.:
Clearpath: highly parallel collision avoidance for multi-agent simulation. In: Proc.
of the 2009 ACM SIGGRAPH/Eurographics Symposium on Computer Animation.
pp. 177–187. SCA ’09, ACM, USA (2009)

6. Helbing, D., Molnar, P.: Social force model for pedestrian dynamics. PHYSICAL
REVIEW E 51, 4282 (1995)

7. Hughes, R.L.: A continuum theory for the flow of pedestrians. Transportation
Research Part B: Methodological 36(6), 507 – 535 (2002)

8. Kapadia, M., Singh, S., Hewlett, W., Faloutsos, P.: Egocentric affordance fields in
pedestrian steering. In: Proc. of the 2009 symposium on Interactive 3D graphics
and games. pp. 215–223. I3D ’09, ACM, USA (2009)

9. Loscos, C., Marchal, D., Meyer, A.: Intuitive crowd behavior in dense urban envi-
ronments using local laws. In: Theory and Practice of Computer Graphics, 2003.
Proc. pp. 122–129 (2003)

10. Narain, R., Golas, A., Curtis, S., Lin, M.C.: Aggregate dynamics for dense crowd
simulation. ACM Trans. Graph. 28, 122:1–122:8 (December 2009)

11. Pelechano, N., Allbeck, J.M., Badler, N.I.: Controlling individual agents in high-
density crowd simulation. In: Proc. of the 2007 ACM SIGGRAPH/Eurographics
symposium on Computer animation. pp. 99–108. SCA ’07, Switzerland (2007)

12. Pelechano, N., Badler, N.: Modeling crowd and trained leader behavior during
building evacuation. Computer Graphics and Applications, IEEE 26(6), 80–86
(2006)

13. Pelechano, N.: Crowd simulation incorporating agent psychological models, roles
and communication. In: First Int. Wksp. on Crowd Simulation. pp. 21–30 (2005)

14. Reynolds, C.: Steering Behaviors for Autonomous Characters. In: Game Developers
Conf. 1999 (1999)

15. Sewall, J., Wilkie, D., Merrell, P., Lin, M.C.: Continum traffic simulation. Com-
puter Graphics Forum 29(2), 439–448 (2010)

16. Shao, W., Terzopoulos, D.: Autonomous pedestrians. Graphical Models 69(5-6),
246 – 274 (2007)

17. Sun, X., Koenig, S., Yeoh, W.: Generalized adaptive a*. In: Proc. of the 7th int.
joint conf. on Autonomous agents and multiagent systems. vol. 1, pp. 469–476
(2008)

18. Treuille, A., Cooper, S., Popović, Z.: Continuum crowds. ACM Trans. Graph. 25(3),
1160–1168 (2006)

19. Trovato, K.I., Dorst, L.: Differential a*. IEEE Trans. on Knowl. and Data Eng. 14,
1218–1229 (November 2002)

20. Yeh, H., Curtis, S., Patil, S., van den Berg, J., Manocha, D., Lin, M.: Compos-
ite agents. In: Proc. of the 2008 ACM SIGGRAPH/Eurographics Symposium on
Computer Animation. pp. 39–47. SCA ’08, Switzerland (2008)

