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ABSTRACT

Social interaction and group coordination are important factors in the simulation of human crowd behavior.
To date, few simulation methods have been informed by models of human group behavior from the social
science studies. In this paper we advance a computational model informed by Common Ground (CG)
Theory that both inherits the social realism provided by the CG model and is computationally tractable
for a large number of groups and individuals. The task of navigation in a group is viewed as performing
a joint activity among agents, which requires effective coordination among group members. Our model
includes both macro and micro coordination, addressing the joint plans, and the actions for coordination
respectively. These coordination activities and plans inform the high-level route and walking strategies
of the agents. We demonstrate a series of studies to show the qualitative and quantitative differences in
simulation results with and without incorporation of the CG model.

1 INTRODUCTION

In the simulation of human crowd behavior including evacuation planning, transportation management,
and safety engineering in architecture design, the development of pedestrian model for higher behavior
fidelity is an important issue. Simulations should exhibit human behaviors for navigation, pedestrian
decision-making, collision avoidance, and social behaviors such as grouping and crowding. To date, few
simulation models have been informed by models of human group behavior from the social sciences. In
this paper, we will advance a model that is founded on sound social science that we have formulated into
a computable framework.

One common approach to the simulation of mass flow involves the application of fluid dynamics (Hughes
2002; Narain, Golas, Curtis, and Lin 2009). To the degree that humans are physical entities, and exhibit
some particle-like behavior in crowds, fluid dynamics-based models are able to model such behavior.
However, humans are autonomous deciders, and these decisions result in complexity that simple fluid
dynamics modeling cannot address. Agent-based models allow for each pedestrian to be modeled as
an autonomous entity capable of perceiving its environment and interacting with other agents. Several
approaches to pedestrian simulation have adopted an agent-based modeling to incorporate the impact of
cognitive, psychological, emotional, and cultural factors in the simulation of virtual agents (Rao and Georgeff
1995; Hoogendoorn and Bovy 2004; Antonini, Bierlaire, and Weber 2006; Endrass, André, Rehm, Lipi,
and Nakano 2011), however these have focused on the behavior of individual agents and not the overall
coordination among agents in groups, and do not scale to a large number of groups.

Social science field studies inform us that crowds are not made up of a mass of isolated individuals.
Up to 70% of observed pedestrians are walking in groups (James 1953; Coleman and James 1961), and
hence one component of the complexity of crowd dynamics emerges from the presence of various patterns
of social interactions within groups that make up the crowd. Therefore pedestrian interaction should be
modeled by taking a perspective of mindful agents as group members. Some attempts have been made
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to reproduce group dynamics such as cohesive movements and spatial group structures by manipulating
agents only at a reactive motion planning level (Reynolds 1987; Qiu and Hu 2010; Moussaı̈d, Perozo,
Garnier, Helbing, and Theraulaz 2010). However, the ongoing communication and coordination among
group members may affect how the agents value a particular action, path, and location. For a simulation
of human-like crowd behavior, we must account for social interactions not just at a reactive level, but at a
higher level for making route choices over time.

A dominant model of human coordinated behavior was advanced by Herbert Clark (Clark 1996; Clark
and Brennan 1991). A key contribution of this paper is that we devised a computational model informed
by Clark’s Common Ground (CG) model that both inherits the social realism provided by the CG model
and is computationally tractable for a large number of groups and individuals. In our approach, the task of
navigation in a group is viewed as performing a joint activity with involved agents, which requires effective
coordination among group members. Each agent’s high-level choices on the route and walking strategies
are affected by the group coordination result.

Since CG is a well-researched interaction model, any significant differences will provide insight
concerning the effect of employing such a model into a large scale simulation may be important. For
example, if we find a non-CG simulation to always ‘out-perform’ a CG-based model in terms of time-to-
goal for agents, and level of congestion, this might indicate that models that do not consider the cost of
coordination may fail to capture the real crowd effects. This can be significant if we were designing a mall
with certain target number and placement of shops for a target number of visitors. Such underestimations
of crowd complexity may, for example, cause designers to be overly optimistic about the size of corridors
or of evacuation rates in an emergency.

The remainder of this paper is organized as follows. Section 2 gives a short overview of foundational
research to our work. Section 3 presents the design of our pedestrian model. The development of simulation
based on the proposed pedestrian model is described in Section 4. Section 5 provides the results of simulation
and performance. We draw conclusions and provide possible future research directions in Section 6.

2 FOUNDATION

Our model addresses both high level (route choice, activity planning) and low level (steering, reaction)
navigation tasks towards the simulation of social group interaction. The former aspect is managed by
incorporating Clark’s CG theory into the pedestrian model, and the latter is derived using a Velocity
Obstacle (VO) model (Fiorini and Shillert 1998).

2.1 Common Ground Theory

People engage in a joint activity when they act in coordination with others to pursue a common goal. The
concept common ground is established as a mechanism by which participants involved in a joint activity
coordinate their actions. It considers the mutual knowledge, beliefs, and assumptions among individuals
in a collaborative process. According to Clark, p is common ground for members of group G if and only
if (Clark 1996)):

1. members of G know that p;
2. members of G know that members of G know that p;
3. members of G know that members of G know that members of G know that p.

Suppose that A and B are heading to the seats in a football stadium. As they pass a concession stand,
A decides to get some refreshments. A informs B of his plan to visit the stand and to return to their current
location, x. We denote the plan to split up and reunite at x as P. For the plan to succeed, A needs to know
that B knows the plan P. This, however, is insufficient for coordinate. B needs to know that A knows that
she is privy to P, otherwise she might think A would be left looking for her. Furthermore, if the agreement
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ends here, A may not know that B knows that he knows the plan, and may, therefore not be confident to
execute the plan. Hence, A needs to know that B knows that he knows the plan.

This common ground may be communicated verbally, or may be enacted through action. In our
example, A may signal his intention by pointing toward the concession stand and pointing to their current
location x. This requires that B be within the range of sight and be looking at A. A needs to see that B
is looking at A, and has signaled agreement (e.g., by nodding). B needs to see that A sees her nodding.
Finally A needs to see that B sees that he has seen and acknowledged the plan.

The CG model has two distinct strengths: (1) It is scientifically validated model on human behaviors.
(2) It consists of logical components that support an explicit representation of coordination process, so
lends itself to a direct implementation. Clark’s CG model allows us to simulate the coordination process at
a higher macro-level without actually modeling the negotiation process from the level of ‘communicative
intent’, which coordination-naive systems need to do. This makes the simulation tractable while still
maintaining realism.

The CG model has become the basis of a large volume of work in the domain of Computer-Supported
Cooperative Work (CSCW) (Monk 2003; Neale, Carroll, and Rosson 2004; Convertino, Mentis, Rosson,
Carroll, Slavkovic, and Ganoe 2008), AI agents (Klein, Feltovich, Bradshaw, and Woods 2005), and
robotics (Kirby, Simmons, and Forlizzi 2009) for coordination-related problems.

2.2 Velocity Obstacle Model

A low-level reactive steering for collision-free and cohesive motion of agents are generated based on a VO
model (Fiorini and Shillert 1998), using a publicly available RVO2 Library (van den Berg, Guy, Snape,
Lin, and Manocha 2011). A VO of an agent A is a set of all velocities that will eventually cause collisions
with others, assuming that the other agents keep their current velocities. Hence, it is guaranteed that no
collision occurs if A chooses a velocity outside the VO. The VO of agent A induced by agent B with velocity
vB is defined as:

VOB
A(vB) = {vA|∃t > 0 : (vA− vB)t ∈ D(xB− xA,rA + rB)},

where A and B have position xA and xB, and radius rA and rB, respectively. D(x,r) represents a disc of
radius r centered at x. The RVO2 Library computes velocities for each agent taking into account the
reactive behavior of the other agents by implicitly assuming that the other agents draw a similar collision
avoidance reasoning. Therefore, it chooses a new velocity that is the average of its current velocity and a
velocity that lies outside the other agents VO (van den Berg, Lin, and Manocha 2008; Guy, Curtis, Lin,
and Manocha 2012).

3 PEDESTRIAN MODEL

We distinguish pedestrian navigation tasks at the following three levels: global path planning, coordinated
activity planning, and reactive local planning. Our focus in this paper is on modeling pedestrian behaviors
at the second (Section 3.2) and third levels (Section 3.3).

3.1 Notation and Overview

Our model assumes that the group memberships and goal of groups are known a priori and not subject
to change throughout the simulation. Goals are specific and definable geographic points in a given virtual
environment. An agent with its personal identifier j and group membership i is represented as Ai j. The set
of all members of group i, denoted Gi, have the common initial position p0

i and final goal gi. A leader agent
Li is selected per group. Each agent Ai j might insert a sub-goal si while traveling with group members.

Figure 1 shows the relationship among the three navigation levels. A collision free route among static
obstacles toward gi is precomputed for each group i. This produces a sequence of waypoints from p0

i to
gi. From these, a set of velocities are generated to connect the waypoints. We shall denote these coarse
global-level velocities as guiding velocities to distinguish them from other velocity values in this paper.
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Figure 1: Three steps of planning in our pedestrian model.

Note that a global path does not specify how exactly an agent should move from one waypoint to the
next one along the planned path. While adhering to the global path plan of its group from a long-term
perspective, an agent determines its short-term activity plans by interacting with other group members at
the coordinated activity planning level (Section 3.2). As a result, a set of preferred velocities are derived.
Then an agent considers the maintenance of appropriate proximity to its group members as well as the
presence of other agents and moving obstacles to determine its immediate steering in the reactive local
planning step (Section 3.3).

3.2 Group Coordination Model

One of advantages of our model is that it can handle sub-goals that may be generated stochastically or
through interaction between agents and the environment. For example, a members of groups may have to
visit the restroom (stochastically generated sub-goal), or a member of a group may see a store that sells
something he is interested in (sub-goal generated through interaction with the environment). This allows
some agent Ai j traveling to a final goal gi with Gi to insert a sub-goal si (e.g., go to shoe store) that is
expressed as a new sub-goal location. When a sub-goal is introduced for an agent, this necessitates the
generation of activity plan for its accomplishment. We call the activity plan a sub-plan. While adjusting
its activities for si, Ai j should maintain the CG with the rest of members to ensure the group coordination.
We introduce a Group Coordination Model (CGM) into a pedestrian architecture to address this aspect.
The CGM is expressed in the form of the set:

CGM : [Gi,gi,SPn,Prm],

where Gi is the set of members of group i, gi is a goal of the group, SPn is a sub-plan, and Prm is a list
of ordered preference probability for possible sub-plans. Note that we are not simulating the process of
CG negotiation, and agents do not plan their courses of activities from ‘first-principles’. Rather, group
behaviors are selected at run-time from a set of pre-designed sub-plans that are grounded in CG theory.

3.2.1 Group Coordination Sub-plans

Sub-plans relate to sub-goals and methods to achieve group coordination. We divide the sub-plans into two
parts: macro-coordination strategy (macroCS) and micro-coordination strategy (microCS). The macroCS
defines a macro-level action plan. For instance, if the Divide-and-Wait macroCS is selected, Ai j splits up
from a group and pursues its sub-goal si while the rest of Gi maintain their positions until Ai j returns. The
microCS defines a selection of communicative acts to activate a specific macroCS. For example, Ai j can use
a physical act (e.g., pointing at si) to express its interest of visiting si and initiate the choice of macroCS.
After the macroCS is selected, members of Gi will act out their microCS acknowledgement actions (e.g.,
nodding). Detailed descriptions of macroCS and microCS are given in Sections 3.2.2 and 3.2.3.
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We define a sub-plan SPn in the form of the set:

SPn : [k,r,si,Mβ ,µγ ],

where k is a sub-plan identifier, r is a set of roles for members of Gi in a sub-plan, si is a proposed sub-goal
by any member Ai j, Mβ is macro-coordination strategy, and µγ is a micro-coordination strategy. Roles
specify which agent does what with respect to a specific sub-plan. For example, Ai j takes a role of initiator
if it proposes a sub-goal, and other members become respondents to Ai j.

We follow a format of the distributed Multi-Agent Reasoning System (dMARS) specification (D’Inverno,
Luck, Georgeff, Kinny, and Wooldridge 2004; Hoogendoorn and Soumokil 2010) and specify the sub-plan
by means of four elements: (1) Invocation condition which defines under what conditions a plan should
be considered. (2) Context of the plan which specifies the environment and situation under which the plan
is executable. (3) Body of the plan which describes the course of actions using three constructs. QUERY
allows an agent to check whether it currently meets a necessary condition to take a particular action.
EXECUTE directs the execution of an action. ASSERT updates a status of the sub-plan. (4) Internal action
which directs what should be executed in case a plan succeeds or fails.

3.2.2 Macro-Coordination Strategy

A macro-coordination strategy (macroCS) refers to the macro-level action plan that is adopted by a group
based on the group members’ preferences. Examples of macroCS for navigation are listed in Table 1. The
set of macro-behavior plans are not limited to the given list. A simulator can add any kind of macro-behavior
strategies if they format it for the dMARS specification.

Table 1: A list of MacroCSs.
Name Role Action Description
Lead-and-Follow Initiator Leads other members towards a sub-goal si

Respondent Follows an initiator
Divide-and-Proceed Initiator Proceeds to a sub-goal si, and

If the sub-goal is accomplished, proceed to a goal gi
Respondent Proceeds to a goal gi

Divide-and-Wait Initiator Proceeds to a sub-goal si, and
If the sub-goal is accomplished, returns to its group members

Respondent Stay and wait until an initiator agent returns

The general form of the sentence of a plan consists of predicates, their parameters, and a pair of action
directions:

< predicate > (< parameters >) [x,y].

The predicate is a function over parameters. A pair [x,y] specifies the resulting actions of the predicate
depending on its success. Line x is executed if an expression in the predicate is positive, and line y is
executed otherwise.

The Divide-and-Wait plan for an initiator agent Ai j is shown in Table 2. The invocation condition
signifies that an event “RecivedAckFrom Gi” should be present to activate the plan; the plan is executable
only in case Ai j received an acknowledgment for the proposal of visiting si from its group members. This
condition ensures that all the group members are on common ground for the new activity plan of Ai j. The
process through which an agent acquires an acknowledgment is framed as a microCS, and detailed in a
following section. A context describes that the plan is valid only when Ai j is attracted by a sub-goal si.
When these conditions are met, a series of actual physical movements can be taken. Firstly, Ai j queries if
it has arrived at the sub-goal (HasArrivedAt si). Line 9 is executed on success of (HasArrivedAt si), and
line 5 is executed otherwise. If Ai j has not reached si, it keeps moving towards the sub-goal (MoveTowards
si). A success of activity is declared when Ai j arrives at si. This invokes the execution of next step activity
for Ai j to return to its group Gi (MoveTowards Gi). Thereafter, Ai j is moving towards the rest of Gi and
the whole plan is terminated when the group is reunited.
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Table 2: Example macroCS: Divide-and-Wait plan for Ai j with a role initiator.

line no. @DivideAndWait Activity Name
1 RecivedAckFrom Gi Invocation condition
2 AttractedBy si Context

4 QUERY HasArrivedAt si [9,5] Plan body
5 EXECUTE MoveTowards si [4]
6 QUERY isReunitedWith Gi [10,7]
7 EXECUTE MoveTowards Gi [6]

9 ASSERT ArrivedAt si [6]
10 ASSERT Reunited [11] Internal action for success
11 ASSERT ∼DivideAndWait

3.2.3 Micro-Coordination Strategy

A micro-coordination strategy (microCS) defines a set of communicative actions that simulate how group
members get each other to understand what they intend, and initiate a particular macroCS. The kind of
information and communicative acts exchanged among agents, and the physical configuration that permits
the communication to function are included in a microCS definition. In our model, a range of microCSs
may be defined with different environment conditions. For example, different kinds of non-verbal microCSs
may support visual coordination using gestures. In a sparse crowd, longer-range gestures may be used
with greater tolerance for gaze-direction specificity for CG maintenance. In a denser crowd, the microCS
initiator may first have to gain attention verbally (speech coordination) before employing gestures. In a
very dense crowd, agents may have to employ speech-only coordination, requiring that the communicating
agents be much closer together.

The general form of the body of a microCS, µγ , is described in Table 3. This action body may be
activated, for example, if Ai j is within some range d′ from the respondent agent, where d′ is greater than
distance d that is necessary for the success of signaling action S . In this case, line 1 of the action plan is
for Ai j to move within distance d of the respondent before performing S in line 2. If Ai j is further than
d′ from the respondent, then µγ will not apply.

Table 3: Body of a microCS.

line no. Action Specification
1 Ai j acts to satisfy conditions (physical configurations) for µγ

2 Ai j performs the signaling action, S
3 Select the appropriate macroCS Mβ

4 Aik,k 6= j ∈ Gi signifies acknowledgement for µγ

Table 4: Example microCS: Visual coordination.

line no. @GetVisualCoordination Activity Name
1 AttractedBy si AND IsWithinDistance(d′) of Li Invocation condition
2 TravelWith Gi Context

4 QUERY IsWithinDistance d [7,5] Plan body
5 EXECUTE MoveTowards Li [4]
6 QUERY RecivedAckFrom Li [9,10]
7 EXECUTE ProposeMacroPlan Mβ [6]

9 ASSERT ActivateMacroPlan Mβ [11] Internal action for success
10 ASSERT FailToGetAcknowledgment [11] Internal action for fail
11 ASSERT ∼GetVisualCoordination

An example of visual coordination is shown in Table 4. When Ai j is attracted by si and within some
range d′ from the group members while traveling together, it launches the visual coordination mode. If
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Ai j and the rest of Gi are within a given distance range (IsWithinDistance d), Ai j suggests a particular
macroCS Mβ to achieve si (ProposeMacroPlan Mβ ). The macroCS Mβ is selected as considering the
group preference Prm. If the distance constraint is not met, Ai j approaches the group until they are close
enough so that Ai j can retry the proposal of using Mβ . If group members give acknowledgments for
the proposal, Mβ is activated and group members perform a sequence of activities described in Mβ . An
indication of acknowledgment could be a head nod in a visual coordination mode. Not receiving a signal
for an acknowledgment means that Ai j failed to get coordinated with its group members for pursuing si. A
failure of activity is declared, and then Ai j may suggest other available microCS considering the situation.

3.3 Reactive Local Planning Model

VO models do not provide support for group-based movement. In order to simulate a cohesive movement
pattern among group members such as walking together, we incorporate the velocity matching into members.
We use a group leader’s forward velocity vector Vleader as a base for the velocity matching. For each group
member Ai j, a distance to leader Li projected on Vleader is computed:

Vleader ·distance(Li,Ai j).

A distance greater than a higher threshold (1.5m in our simulation) implicates Ai j is far behind Li, therefore
Ai j accelerates while Li decelerates. A distance less than a lower threshold (-1.5m in our simulation) means
Ai j is far ahead Li, therefore Li accelerates and Ai j decelerates.

4 DEVELOPMENT OF PEDESTRIAN SIMULATION

In this section we discuss the development of crowd simulation framework based on our pedestrian model.

4.1 Environment Model

In our system, a virtual simulation space containing interest points is represented as a roadmap in which
overall connectivity information is represented as a graph. Interest points serve as potential sub-goals to
agents. Given the initial position, p0

i , and final goal, gi, of group i, the A* algorithm is used to generate a
global path. Any type of global path planners can replace the use of A* algorithm as long as it generates
a collision-free route around static obstacles.

4.2 Sub-goal Selection

We classify sub-goals into two categories. The first type are stochastically generated sub-goals, and agents
are triggered to visit in this type of sub-goals using a random event generator. An example of this type
of sub-goal is a restroom visit. The second type is a sub-goal generated through interaction with the
environment. Let the set of possible sub-goal destinations be Wα , α = 1, ··,K. Each agent would have a
vector of interests I j,α , α = 1, ··,K, denoting its interest in Wα . Interest values range from 0 to 1.0. If Ai j
passes within a pre-specified distance from some Wα , and if I j,α exceeds some likelihood-of-visit threshold
LH j, Wα would be selected as a potential sub-goal. The value of LH j ranges from 0 to 1.0, and is generated
randomly per agent. If a Wα is selected, Ai j initiates a microCS to introduce it as a sub-goal to the group
members. In a shopping-mall scenario, Wα , α = 1, ··,K would be a list of K shops in the mall.

4.3 Sub-plan Selection

Two kinds of sub-plan selection are needed for microCS and macroCS, respectively. The selection of some
microCS µi could be dependent on the state of the environment, and the state of the agents. For example,
a visual gestural microCS requires that the recipient agent must be within some range of, and looking at
the signaling agent. If more than one µi fits the conditions, one is selected randomly. As shown in Tables 3
and 4, a body of each µi further specifies a set of actions to be performed by the agents. Some of these
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actions may actually help to satisfy the trigger conditions of a microCS. For example, the requirement that
the recipient agent be looking at the signaling agent may be satisfied by having the signaling agent move
within the field of view of the recipient.

An initiator agent Ai j suggests a selection of Mβ and should receive acknowledgement of the choice
by other members of Gi. Given a potential sub-goal Wα , an average interest Ii,α in Wα of group members
is used to make a decision:

Ii,α =
∑k(6= j,k∈Gi) Ik,α

n−1
,

where n is the number of members of group i. Using the list of Prm, a particular region where the Ii,α
value falls is determined, and a corresponding Mβ to the region is selected.

5 EXPERIMENT AND RESULTS

We conducted a series of studies to show the qualitative and quantitative differences in simulation results
with and without incorporation of the Common Ground model. We use three simulation configurations
and compare the arrival rate at a designated destination and congestion levels at key points to show the
impact of coordinated groups in the simulation. Six-hundred agents in total are organized as (1) 600 of
solely individual agents, (2) 150 simple groups of 4 members without considering the CG model, and (3)
150 groups of 4 members with incorporating the CG model. We shall call each of the three configurations
CI (for individuals), CnCG (non-CG), and CCG (CG model), respectively. All the results in this section
have been averaged over 10 independent simulations.

5.1 Scenario

A shopping mall scenario has been designed for the experiments. Our shopping mall model contains 4
restrooms (green squares labeled as R1, R2, R3, and R4) and 9 shops (orange squares) as potential sub-goals
as shown in Figure 2. Each cell in the 2D grid denotes a 5m×5m area. For all the individual agents in CI
and agents of groups in CnCG and CCG, an exit E is given as a final goal. Initial positions of agents are
randomly distributed in a shopping mall, taking care that members within groups are collocated. Though
agents in CI are all individuals, we initialized the simulation with agents clustered in groups of 4 to have
the same initial conditions as CnCG and CCG. Starting from initial positions, agents walk around the
shopping mall and eventually proceed to the exit. A random event generator triggers agents to visit a nearby
restroom. In case no nearby restroom is within a distance range (25m×25m in our implementation), they
do not take any special actions and resume their original navigation plans. As agents pass by shops, they
might be attracted to some shop within a range (15m×15m in our implementation).

E

R1 R2

R4R3

Figure 2: A snapshot of the shopping mall.
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5.2 Simulation Parameter Choices

For our studies, we implemented two microCS models: a visual and a verbal coordination model. For
simplicity, we specify a distance among agents as the only trigger condition for these microCSs. Specifically,
the verbal coordination mode requires the agents must be within a short distance (a distance constraint d′u
is set to 3m), whereas the visual coordination mode is effective in a larger range of area (d′v = 5m). When
the agents are within the range of d′u, the choice of microCS is made randomly because both conditions, d′u
and d′v, are satisfied. If none of distance constraints is met, an initiator agent approaches to the respondents
and retry the microCS up to three times.

We use two values of Prm (P1=0.4 and P2=0.7) to select among the three macroCSs defined in Table 1
(i.e., M1 for Ii,α < P1, M2 for P1 < Ii,α < P2, M3 for Ii,α > P2). M1, M2, and M3 represent the Divide-
and-Proceed, the Divide-and-Wait, and the Lead-and-Follow macroCSs respectively. To simulate simple
groups in CnCG, we set group members to always follow an initiator agent of a sub-goal (i.e., all group
members will satisfy all sub-goals together, before proceeding to the final goal).

5.3 Arrival Rate

Figure 3(a) shows a comparison of arrival rates among the three configurations. The x-axis represents
time steps and the y-axis is the percentage of agents who have arrived at the exit E. This percentage will
increase over time and the slope of the line signifies the current rate at which agents reached an exit. For
example, after 2.2k time steps we see that all the agents have arrived at the exit in CI, whereas 92% and
96% of agents have reached in CnCG and CCG, respectively. At the beginning of the simulation up to 400
time steps, a similar increases in the arrival rate are observed in all of the three settings, as those agents
who have been located relatively close to an exit arrive at the exit quickly.

For agents in a group, either CnCG or CCG, the arrival rates are slower than that of CI. This is due to
a multitude of factors. In CnCG and CCG, group members maintain group cohesion by velocity matching,
and result in taking longer time to complete the travel. For example, if some of the members in a group
are stuck in a congestion, the rest of members slow down their speeds to walk with them. Another factor
affecting the arrival rate in our coordinated group model (CCG) is the use of Divide-and-Proceed strategy
in macroCSs. The strategy allows some member agents to proceed towards an exit while their member
with a sub-goal is visiting the place, hence results in faster arrivals at the exit.

Simulations on individual agents (CI) and simple groups (CnCG) yield best- and worst-case scenar-
ios respectively and suggest good first-order approximations. However, the simulation with our group
coordinated model captures a more realistic group navigation pattern.
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Figure 3: (a) Arrival rates of CI, CnCG and CCG. (b) Congestion levels measured as the number of agents
in unit areas of CI, CnCG, and CCG.
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5.4 Congestion Level

In order to compare the congestion levels, we examined the accumulated number of agents for 200 time
steps which have been in 15×15m2 ranges centered at the stochastic sub-goal locations (R1, R2, R3, and
R4). Figure 3(b) shows the congestion levels at the four areas from 600 to 799 time steps in CI, CnCG, and
CCG simulations. Comparing to R2 and R4, R1 and R3 are located along the main path towards an exit
E, and higher congestion levels in those areas are observed in all the three configurations. Since simple
group members in CnCG always follow an initiator and visit a sub-goal, the highest degree of congestion
is observed.

We see more local congestion in CCG than CI. For agents of CCG, the coordination activities to
establish and maintain common ground incur costs at the level of entire simulation. For example, a pathway
is blocked by some initiator agents who are retrying the micro-coordination with group members at a
failure of receiving an acknowledgment. An execution of some macro-level actions also adds the cost;
when executing the Divide-and-Wait plan, those respondent agents holding their positions might cause a
congestion.
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Figure 4: Frames per second measured in the CI, CnCG and CCG configurations.

5.5 Scalability

We evaluated the scalability of our approach with respect to the number of groups and total agents. The
simulation was tested on a desktop with an Intel i7 3.20 GHz CPU, and 4GB system memory. Frames per
second are measured in the CI, CnCG and CCG configurations. As shown in Figure 4, the computation
overhead for group coordination simulation in CCG is not significant. Taking 15 fps as the minimum
interactive rate, the simulation with our group coordination model runs at an interactive rate up to 1,200
of agents of 300 groups.

6 CONCLUSION

In this paper, we presented a pedestrian model founded on the well-researched CG Theory to incorporate
the impact of social interaction among group members in the crowd simulation. In particular, consideration
of how each agent evaluates a particular action, path, and location depends on the ongoing communication
and coordination among group members allowed us to reproduce realistic group dynamics in a pedestrian
simulation. A series of experiment results showed the qualitative and quantitative differences in simulation
results with and without incorporation of the CG model. In addition, our model is computationally efficient
in that the negotiation process from the cognitive and reasoning levels of agents are not necessary to
simulate the coordinated group behaviors. A set of performance tests demonstrated that our approach does
not introduce a significant computational overhead into a simulation.
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Our future research direction is in extending the micro-coordination specifications towards further
sophistication. In our current model, we only consider a distance between initiator and respondent agents to
trigger a specific micro-coordination strategy. Employing the state of the environment conditions including
the level of crowdedness, and the state of agents including the gaze direction and body orientation as trigger
conditions for micro-coordination selection will bring more realistic pedestrian dynamics and provide a
valuable insight concerning the effect of social interaction and coordination in a pedestrian simulation.
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