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Abstract—\We propose a real-time motion synthesis framework data (more than 80 dimensions) from a noisy and lower di-
to control the animation of 3D avatar in real-time. Instead &  mensional sensor signals (less than 25 dimensions). Wet adop
relying on motion capture device as the control signal, we s a data-driven approach that build a statistical mappingehod

low-cost and ubiquitously available 3D accelerometer sepss. . . . . . . .
The framework is developed under a data-driven fashion, whih between low dimensional input signal and high dimensional

includes two steps: model learning from existing high quaty ~Motion data by learning from a pre-captured sensor and motio
motion database, and motion synthesis from the control sigal. In  database. In our approach, the database consists of motions

the model learning step, we apply a non-linear manifold leaming  from various sport movements, such as tennis, basketball an
method to establish a high dimensional motion model which o4t etc. Global linear models have difficulties handlingsth

learned from a large motion capture database. Then, by takig .
3D accelerometer sensor signal as input, we are able to symtsize YP€ Of heterogeneous motion database [3], [13], [17]. Teeso

high-quality motion from the motion model we learned from the ~the limitation of linear models, we learn a strong nonlinear
previous step. The system is performing in real-time, whichmake = reduced-dimension models. We usecally Linear Embedding

it available to a wide range of interactive applications, seh as (LLE) to learn the nonlinear manifold in high dimensional
character control in 3D virtual environments and occupaticnal motion data. Our result shows that the nonlinear manifold
training. . ’ .

9 leaning model has better performance than linear models.

| INTRODUCTION We evaluate our system by comparing the synthesized results
with ground truth which is simultaneously captured by an
optical motion capture system. The evaluation shows that ou
system can accurately estimate full body motion using alsmal
réumber of low-cost and noisy accelerometer sensors.

Real-time character animation technique is critical in enbar
of interactive applications, such as avatar control in 3Rl
Environments (VE) and occupational training. As one of th
most popular automatic animation recording and playbagle remainding paper is organized as follows. Section II
techniques, optical motion capture systems, such as VICONqyides the background and describes the related work in
provide a real-time performance capture solution for obarapis area. Section Ill explains the system architecturelevhi
ter animation. Because its high-fidelity data quality, mptl Sections IV provides the detailed description of our apphoa
capture systems have been adopted as a standard anima§ioRlion v shows the experimental results and demonstiaes t
generation tool in animated-film and video game '”dUStrﬁccuracy of our approach numerically and visually. Sectibn

However, high cost and complex configuration place signifiynciudes the paper, discusses the limitations and futark w
cant constraints for its ubiquitous application and extemdn 5 5qdress the current limitations.

this paper, we propose a low-cost motion synthesis framewor

to control the animation of 3D avatar in real-time. Our frame

work takes control signals from low-cost 3D accelerometer

sensors as input and generate high quality human motion in Il. BACKGROUND
real-time by applying a statistical model learned from a pre

recorded motion database. Our system is low cost and easy to

set up since our proposed system only needs four Ninter@y" Proposed work can be categor_|zed into the research of
Wii controllers. performance capture for human motion, where human perfor-

mance can be recorded by sensors and re-generated in the
The main focus of our approach lies on the model learnirigrm of 3D animated avatars. In this section, we will deserib
from a prerecorded human motion database which it is ckitidhe existing work in this area, and then explain how we are
for the quality of synthesized motion. The challenge of thisotivated to use nonlinear manifold learning methods f&s th
research is to generate detailed and high dimensional moti@search.



A. Performance capture for human motion Yin and Pai [19] synthesizes full-body motion within one
second by using a foot pressure sensor. However, it can only

There exist a variety of performance capture systems fgenerate a small range of behaviors and cannot producemotio

human motion, which are widely used in animated film$or complex upper body movements. Oore et al. [11] use six

education, training, sports, and video games. Depending degree-of-freedom tracking devices to interactively oalrthe

the technique used, current systems can be classified ioto tacomotive animations. Dontcheva et al. [7] also use a tzlagi

groups: optical systems and non-optical systems. user interface in their puppetry system to control the nmmstio

. . L divided into several different layers.
1) Optical systemsOptical systems utilize image data cap- y

tured from a number of cameras to track special markeRecently, Vlasic et al. [16] combined accelerometer, inkrt
attached to a subject, or to recognize surface featuresifieen and acoustic sensors to capture high-fidelity motions that a
dynamically for each particular subject. Marker-basedoapt comparable to the motions captured from marker based vision
systems can generate high-fidelity animation data withlsubsystems. The system removes the restriction of constrained
details of human motions. These systems perform best motion capture environments, and allows the user to beddhck
the applications that mostly play back the original motjonalmost “everywhere”. However, the cost of the systems dfe st
e.g., animated movies. However, most popular optical motitigh and, due to the necessary post-processing time, ittis no
capture systems, such as VICON or Motion Analysis, agereal-time system.

costly and, then, can not be widely deployed for interacti

v - - .
motion capture and motion control. Safonova et al. [13] utilize an existing motion capture bate

and proposed a optimization algorithm in low-dimensional
In order to lower the cost of performance capture, reseaschepaces to synthesize human motion. Principle Component
explored the possibility of using standard video cameray-coAnalysis (PCA) is used on motion with similar behavior
pared with expensive professional camera. Chai et al. [#] reduce data dimensionality thus the subject behavior has
implemented a vision based system that requires only ti@ be specific. The limitation results from dimensionality
inexpensive video cameras. Using only six markers attachedluction technique used because for a global linear method
to a body, the system can synthesize a wide variety of humsuch as PCA, it is hard to model a heterogeneous database
movement without a long suit-up time. The synthesized mu¢hich is possibly nonlinear. Global linear models might be
tions are very detailed because a data-driven approacteds ugppropriate for Safonova’s application which is synthesdis

to query a high quality motion capture database. Similarlgpotion without a continuous control signals, however, it is
Liu et al. [10] applied a linear regression model to estimat@t a best choice for us. Similarly, Carvalho et al. [3] pre-
human motions from a reduced marker set. However, thessnted a low-dimensional optimization framework that used
systems require a restrictive motion capture environmedt aa Prioritized Inverse Kinematics (PIK) strategy. Two local
suffer from the occlusion problem of a vision based trackingotion models, i.e. PCA and Probabilistic PCA, are used to
system. reduce dimensionality and their performances are compared

for solving the optimization problem. However, the appitoac

Recently, Aguiar et al. [6] presented a markerless approaghyy jimited to specific behavior, i.e., golf swing, suffey
for video-based performance capture. This approach re@Jirfrom the model problem.

cameras of high resolution and produces feature-rich human

motion, comprising of high-quality geometry, life-like tian ] ] ] ) . )

data and surface texture of recorded subjects. This migii-v B- Nonlinear dimension reduction for motion synthesis
stereo approach support people wearing a wide variety of _ . ) ) )
everyday apparel and performing fast motion. As the featur Order to estimate and synthesize high-quality humananoti
rich output format, this method supplements and excee@M NOiSy input signal, we adopted a widely used data-drive
the capabilities of marker-based optical capturing System’a\pproach where a statistical model is learned from motion

However, it is still a high cost approach and is limited by@@. In our previous work [17], the statistical model we
the capture environment. used is a piece-wise linear model which results from a global

clustering and linear model learning for each local cluster
2) Non-optical systemsiNon-optical systems use acousticHowever, we find the approach is limited by the clustering
inertial, magnetic sensors or combinations of these sensagesult when operates on linearly dimension-reducted {&/g.
which are usually low-cost. The sensors signals, providing PCA) data.
digital representation of the motion, are used as contgoias

to synthesize human motion. To solve the limitation of linear dimensionality reductjon

a new class of nonlinear dimensionality reduction techaiqu
Badler et al. [1] proposed a system that reconstructs fadlyb have been developed. These algorithms are designed taexplo
motion using four magnetic sensors and a real-time inverghe nonlinear structure for high dimensional data. Isonigp-a
kinematic algorithm to control a standing character in a VEithm [15] is a nonlinear generalization of MDS [5]. Isomap
The system introduced a data-driven approach to addressithelesigned to preserve the geodesic distance between pairs
kinematic redundancy problem. Another system developed biymultivariate data point, instead of simply taking Euelih



distance. The geodesic distance can present the distdoogs a - el iodel Loatrine

the manifold. Roweis et al. [12] and Saul et al. [14] propose ‘/ """"""""""""""""""""""""""""
LLE, an unsupervised learning algorithm that computes lov o R —
dimensional embedding with neighborhood relationship- pre  smessen fam -
serving of high dimensional data. LLE is able to discove |
nonlinear structure in high dimensional data by optimally |
preserving the local configurations of nearest neighbong. T
advantage of LLE over linear dimension reduction technique i”mvg;g::;‘;:z
such as PCA and MDS, is that LLE is able to correctly detec |
the nonlinear structure and project the multivariate data &

single global coordinate system of low dimension.

earn clusters mapping
'om motion capture data
ito accelerometer data

—E

signals i

Yeasin et al. [18] discussed the performances of severdiin
and nonlinear dimensionality reduction techniques ingias
fying universal facial expressions, i.e., PCA, Non-negati
Matrix Factorization (NMF) and LLE. Their results show LLE Fig. 1: Our system work flow
has highest recognition accuracy.

Motion synthesis

Elgammal et al. [8] employed LLE to find the low dimen-. . . :
. : . . . linear models enable us to learn the nonlinear manifold én th
sional embeddings of silhouette manifold. Given sequentes
. . database.
silhouette from monocular uncalibrated camera, a sequeince
human 3D poses are produced by RBF interpolations from thftion synthesis: During the motion synthesis phase, the
silhouette manifold to 3D pose in body joint space. Likewiseiser performs actions using only 3D acceleration sensoiis (W
Jaeggli et al. [9] proposed a body pose estimation systemntrollers) attached to the body. Using this sensor data as
using video sequence as input. The pose is synthesized frioput, we synthesize high quality motion data by the local
a statical model of 3D pose, dynamics, activity transitiolinear model built from the motion database captured in the
and silhouette using sparse kernel regressors. Both of firevious phase. For each frame of the input sensor data, we
approaches are offline. Our approach is partly similar tpply the RBF interpolation function of the cluster asstaza
Elgammal’s, however, our goal is different. We focus on+ealith the input data. The result is a 3D pose with the same
time animation driven by accelerometer sensors. quality as the one of the motion capture data.

IIl. SYSTEM OVERVIEW IV. APPROACH

We describe a novel approach that uses low-cost 3D ag-this section, we describe how we learn our model first,

celerometer sensors for full-body motion synthesis. Tlyhi and then we discuss how to use the learned model for motion
quality motion is synthesized using a statistic model ledrnsynthesis.

from a motion capture database. There are three major phases
of our approach — data collection, model learning and moti% Model Learning
synthesis. Figure 1 shows the work flow of our system. '

Data collection and preprocessingWe first perform a series N our data-driven framework, a variety of dataset can be
of off-line motion capture sessions using simultaneously &PpPlied. Our current database consists of two types of syn-
optical motion capture system and accelerometer sensdrs (fironized data: one is obtained from a high quality motion
controllers). Both motion capture data and sensor datarare (FaPture system (Vicon), and the other from low-cost sensors
processed to reduce noise. We then synchronize the moti§ |ess accurate signals (accelerometers). These twestyp
data with the sensor data in order to get a precise frame-@i-data should be synchronized before modeling since the
frame mapping. All the data is then stored in a database {gf\me rates of device 5|gnal from various resources arellysua
motion synthesis. The part will be explained in the Section ifferent. The synchronized database is represented as

Model learning: To build a statistical model of the captured {(e,a)t=1,....N}
motion database, we udecal linear embeddingLLE) to
learn a nonlinear manifold in a reduced dimensional spa
lo segment he low cimensional noninear maniold data infh ' 116 D dimensional data of high qualiy data at tie

. . = 24 andD = 88 in our current database.
a number of clusters. The clustering result provides us a
better understanding of the structure of motion data in $err®nce the database is synchronized, it is ready to be used to
of data feature similarity. Finally we build ®adial Basis learn the local models. To improve the performance of the
Function(RBF) interpolation model for each cluster. The locadignal recognition and reduce computation cost, we perform

é/vhereN is the total number of frames ardis ad dimensional
it of sensors representing the low quality signal at time



classification on the high quality dataset, which means ocost function:

model describe the relationship between the low-dimergion N K

database and the high-dimensional database with the same oY) = zl|yi - ZWijyij|2. (2
clustering information. Since the two data sets (high dyali i= =1

and less accurate data set) are synchronized before, the MR embedding cost function is calculated based on the

dat?( sets haved exactly the sr?me cla55|gcat|on. fln ourl pmv!%éevious locally linear reconstruction errors, and theghei
work [17], we demonstrate that we need to perform clusteri ; is fixed when optimizingyi. In this procedure, the high-

algorithm on the high quality motion capture dataset be@au&imentional vector data; is one-to-one mapping to the low-

of the accuracy reason. However, the high quality data is Uimentional vectoy;. So, we can perform a simpler clustering

ally quite high dimension and contains a bunch of redundagithm on this low-dimentional data set, and get theipey
features which do not help recognition. If the classificati® data set the same clusters as this low-dimentional data.
applied directly onto the original high dimensional datades

performance is lower than our expectation. Thus we empl@y Database Clustering and Clusters Mappintnt our clus-
dimensionality reduction strategy to remove the redundabeting algorithm, we model the high quality motion database
features in the original database. We use PCA in our previdog the Gaussian mixture model (GMM), which is defined as:
work [17] but we found that linear dimensionality reduction K

technique are not the best way .to repr.esent our databadesfor t p(x|8) = Z mn (x|, %) ©)
complex nonlinear structure. Sint&E is a excellent way for =1

nonlinear manifold learning, therefore, we UdeE for better

. When we perform LLE on the original high-quality database,
representation of our data.

we employ the GMM on the processed database to obtain the
cluster seCi(i =1,...,k). So, we have different clusters for

1) Non-linear Dimension Reductiorl.LE is introduced for L
the original database.

the problem of nonlinear dimensionality reduction. Given
input vectors {xy,Xz,...,xn},% € RY, LLE calculates new Since the high- and low-quality databases are synchronized
vectors {y1,y2,...,yn},¥i € R™, andm < d. Normally, LLE when capturing, we apply the same clustering result to the

consists three steps in its algorithm: low quality database, which means for @By it has the same
_ _ members in high and low quality database, which represented
« Find thek nearest neighbors for eash as Qj. And we havek different clusters in the low quality

« Measure reconstruction error resulting from the approgatabase too. This cluster distribution information isrtiedel
imation of each point by its neighbors and calculate thge learnt for the motion synthesis.
reconstruction weights;; which minimize the error. ) ] . . ]

. Compute the low-embedding vectoys by minimizing 3) Radial Basis Function:Now we can build a local linear

the embedding function with the reconstruction Weight@‘)del for each cluster. For th& cluster, we can build a local
W linear model using Radial Basis Functions (RBF) [2] to learn

the mapping function frone! to g/, wherec! € Cj = {c/|i =

In the first stage, we finé nearest neighbors for af ¢ R 1,2, Pj}, of € Qj={q/[i=1,2,...pj} andpj is the number
in the d-dimensional space. The Euclidean distance is wusedf frames in clusterj. Given a new input sensor data potpt

measure the geodesic distance between two vectors. at the time frama, if this data is classified as thi#" cluster,
the mapping function can be expressed using Equation 4 as:

In the second stage, we calculate reconstruction error by: D

| ) G = Fj(&) = qj +A| _Zwij(o(nét_cijn)v 4

1=

5(W):Szl|xi—zwijxij|2a 1) - : : :
= = where( is the high quality pose we want to synthesing,

are unknown weights}| - || denotes a metric — in our case
wherex;j is thek nearest neighbors of, andw;; is the weight Euclidian distance, ang() is a continuous kernel function.

of the neighbor. Here, we should notice that = 0 whenx;

- : - There are several choices f@f), including Gaussian, multi-
s not count as the neighbor &f, and for all the neighbors of : . ) T
! K . '9 . '9 guadratic, or thin plate spline. We chose the Gaussianifumct

Xi, wi; = 1. As the design of LLEw;; reflects the intrinsic
2" ’ o) ="/, (5)
geometric properties of the original data, and we can find a

linear mapping to be a approximate representation of the ddiecause it is n_on—Iinear and provides good results wherneappl
locally. The widtha, determines the amount of area covered

In the final stage, we are going to compute the embeddibyg Gaussian function on the data. Since data points are not
vectorsy; of the original vector data; in the low-dimentional uniformly distributed in the data space, in order to improve
embedding space. To preserve the locally geometric priegeriquality of output we implemented a dynanic[2] dependent

of the original space, we minimize the following embeddingn the density of local data.



By using the local cluster dat@cij,qij}, we can solve for
unknown weightswi; to complete the local linear model
(Equation 4).

B. Motion Synthesis

1) Cluster Detection:When receiving a on-line low quality
signals, which has the samé dimension as the low quality
database, we classify this signal by existing clusters  lo
quality database first. As we use GMM to do classification,
we present our clusters by their mean valugs =1,...,k).

We compute the likelihood based on the Euclidean distance:

1
= Zd— (s — M.)z' © Fig. 2: Data collection: an optical motion capture system and
J=13 . a 3D acceleration sensor based data acquisition system are
Hsed in parallel. There are 45 retro-reflective markers and
eight sensors (four Wit'Nintendo controllers) attached to the

performer.

Because of the Gaussian distribution of our model, we raek t
likelihood and choose the top three clusters as our intatjool
database.

2) Radial Basis Function InterpolationGiven the new input

sensor dat&;,1 <t <N, with N frames, we apply the local 1) Data Capture and RepresentatioAs we discussed in the
linear model learned from the previous step to synthesiee fhrevious section, we use the Vicon optical motion captuse sy
new high quality motiorfj,1 <t <N. tem to capture the high quality database, and Wii contrsller

For the input sensor dafa at framet, we identify the cluster &€ used for low quality motion capture database. In ourVico

it belongs to by calculating the closest distance against thYStem, we have 8 Vicon MX series cameras at a capturing
mean values of all clusters in sensor dajal < j <K. If it rate of 60 frames per second, and we place 45 retro-reflective

is classified as clustef, we use RBF mapping functiof() markers on the performer to collect motion signals. The Wii

defined in Equation 4 to synthesize new motion data frgme controllers play a role of 3D accelerometers with a range of
interface for data transmission at a peak rate of 100 frames

3) Estimation and Smoothing3ecause the low-quality input per second, and we attach 4 Wii remotes and 4 Wii nunchucks
has its limitation of accuracy, we employ a least square awthto the performer.

for estimation. Suppose we have historical series of motion

datamy_;. We fit the data to a cure: In our database, there are five different types _of full-body
motions: tennis forehand (1121 frames), tennis backhand
f(X) = ax’ + bx+c. (7) (1004 frames), basketball shot (1300 frames), golf swing

(1201 frames), and karate middle block (456 frames). In
this procedure, there are totally 5082 frames of data in our
database, represented as

Then, we use this curve to estimate current motion
Meanwhile, we get the current motion synthesis signalVe
fuse these two signals with sum-to-one weights:

i = WdetectM + Westimatd , (8) {(e, )t =1,...,5082
while Wyetect+ Westimate= 1. The fusion result reduces the errowherec; is a 24-dimensional data of sensors representing the
and smoothes our motion results at the same time. 3D acceleration measures of the four pairs of sensors on the
body at timet. g; is the 88-dimensinal data of optical motion
V. EXPERIMENT AND NUMERICAL COMPARISON capture data and it represents a pose at time

In this section, we explain the process for our databadé Data Synchronizationit is a necessity to synchronize the
construction during the experiment. We then give our resufiata from the accelerometers to the optical motion capture
relying on the database and show visual and quantitati§¥stem to obtain the mapping between and qj. This is
accuracy of our system. Compared with the linear approachGitical because the independent transmission of eaclosens
our previous paper [17], the improved results show the bendfloreover, data from each sensor is received with variable

of nonlinear manifold learning. frame-rate owing to packet loss in the wireless environment
To solve these two issues, all data received from the sensors
A. Data Collection and Preprocessing are marked with the sensor ID and placed in a common buffer.

A snapshot of the buffer is taken each frame and the data of
In this section we describe data used in our system, inojudigensor is constructed with the most recently received data.
data capture, synchronization and pre-processing. After a snapshot is taken, the buffer is overwritten if nevada



arrives. Typically, there should be only one sensor frame is able to measure the error of degree of freedom per angle.
the buffer when taking snapshots. However, if the terminal R 5
failed to receive data from an ing this ti i - i g = ) 2=t(Gki — Gk

y sensor during this time merio e=RMSqy,qx) = |/ Z (9)
(or the buffer is empty), then the previously received frame n
is considered again. If there are more than one sensor frafyfierek is the frame indexgy is the synthesize motiorgy
we use the average of all frames in the buffer. This way the the ground truth motion andy; is the it" dimension of
sensors can be synchronized at a constant frame-rate of 6@4izThe unite ofe is degree of freedom per angle. Figure 5
to match the frame rate of the motion capture system.  shows a numerical comparison of the synthesized motiofirs wit

The next step is to synchronize the motion capture data WHPF corres_pondmg groun.d-truth motion. The results of afisu
the sensor data. For this step, we ask a performer to strike f%nd quantltatwg comparisons shqw that_ our low cost system
before and after performing any action. We use this striki nerates motions W'.th the quality equivalent to that of an
event to synchronize the sensor data and motion capture d ensive optical motion capture systems.

by aligning the spike in the sensor readings with the frame in Frame | Average

motion capture data when two fists touch each other. Actions Number | RMS
Tennis Forehand| 256 0.062

3) Data Pre-ProcessingBefore the synchronized data can be Tennis Backhand| 206 0.057

used as our animation database, we need to do a pre-prapesgilg| g |:  Normalized RMS distance is used to compare,

for model learning and motion synthesis. We use quatemiops each action, the synthesized motion with the grounchtrut
for joint rotation representatlon_so that congruent a_nmg. motion captured directly by the optical motion capture eyst
0° and 360) are represented using the same numerical values.

Noise in optical motion capture data due to marker occluision ) )
removed, and the synchronized accelerometer sensor'ssfatg- Numerical Comparison
removed at the same time, since this noise reduction isalru

for the animation quality. Qi'he performance of the system rely on the ability to represen

human motion in a low-dimensional space. Without this low
Noise also happens in the sensor data because of the wiretgtensional representation, the clustering algorithmditis
environment we use. To maintain a high bandwidth, we usalty to cluster high dimensional data. Our previous work][1
Bluetooth receivers which are very sensitive, and it is ndepends on PCA to reduce data dimensionality, however, as we
unusual to find a few arbitrary values beyond the range discussed in Section I, a global linear method, such as PCA
what we expect to get from the sensors. This kind of noissd MDS, it is hard to model a heterogeneous database which
is automatically detected and replace by quantities whieh ds possibly nonlinear. In comparison, nonlinear dimenaiioy
estimated (by least square function) from the neighboratg.d reduction, e.g. LLE and Isomap, compute low dimensional
Even using this automatic method, the outlier in a motiogmbedding with neighborhood relationship preserving ghhi
still exists. We also need to remove the noise as well as #tinensional data.

synthesized optical motion data. In this section, we compare the performance of our nonlinear

manifold learning algorithm with our previous work [17] ogi
B. Result and evaluation linear models. Figure 3 plots the RMS errors of synthesized
motion for both methods. It shows that our method creates
Relying on the database built in the data collection, we tg®tore accurate results than the previous work and demoestrat
the performance of our system with two subjects performirid-E is a more appropriate technique to understand our data.
various actions. The sensors signals are used as input in our
system to produce our on-line animation. The synthesized mo VI. DiscussioN
tion are visually compared with the recorded video. Figure 4 _ . .
shows the results for two synthesized actions, tennis &oréh In this paper, we presgnt a_nonlmear mamfol_d Iearnmg ram
and backhand. The results clearly show that our system éﬁﬁrk to control the animation of 3D avatar in real-time. We

clearly capture the poses of the subjects with the sensoalsig I1z€ IQW'COSt _3D accelerometer SENsors as control $igna
as control signals. and a high quality database consisting of prerecorded human

motion and sensors data. Our data-driven approach includes
We also perform an end-to-end evaluation to numericaltwo steps: offline model learning from existing high quality
measure the accuracy of our system. During the subjects waretion database, and online motion synthesis from the abntr
doing actions with Wii controllers, their high quality motis signal. The model learning step enable us to explore the
were recorded using a Vicon optical motion capture systes. Aonlinear structure of motion data and build piecewise rtwde
ground truth motions , the recorded high quality motions amn variety of clusters with different features. The learned
compared against the synthesized motion frame by frame. Wiedels are later used to produce a realistic motion in real-
then use the normalized Root Mean Square (RMS) distancéme. We have shown the effectiveness of our framework by
to quantitatively measure the differenee.as defined below, performing an End-to-End evaluation.
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Fig. 3: Comparison of construction RMS errors of synthe-
sized tennis backhand motions from low-dimensional contrgs]
signals. The average RMS error for PCA is 0.078 degree/joint
per frame while average error of LLE is 0.057 degree/joint
per frame. All the test motions are not in the database. -

In our experiments, we find our approach can't guarantee 100
percentage of correct cluster detection. This problemlt®su
partly from the noise in the wireless sensor signal. Anoth&#l
possibility is that our database is not dense enough that dat
in a cluster can't form a perfect Gaussian distribution. In
addition, the sparse database also result in limitatiorypé t [11]
of behaviors that can be synthesized. However, our design is
scalable and can handle larger databases without perfeeman
degradation. Using a sufficient number of examples we can]
synthesize a larger variety of human motions.

Like most of the piecewise model based motion synthesis, (;1113;]
approach suffers from the non-smoothness problem durirg mo
tion synthesis. Our algorithm mainly learn spatial knovged [14]
for the models while ignore the temporal relationship among
data pointers. To Learn sufficient knowledge from the dagaba
should help us improve the smoothness of synthesized motiqs)
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Fig. 4: Four different actions (one in each row) synthesized by gstesn. Each frame shows on the left side the actual pose
and on the right side the synthesized pose.

Fig. 5: motion compared to the ground truth. Each frame shows ondfieside the ground truth motion and on the right side
the synthesized motion.



