
11

Curves and Surfaces in Curves and Surfaces in
OpenGLOpenGL

• OpenGL supports Bézier curves and surfaces
thourgh mechanisms called evaluators.

• These are used to compute values for the
Bernstein polynomials of any order.

• Evaluators do not require uniform spacing of
control points, and can be used to generate other
types of polynomial curves and surfaces.

Evaluators in OpenGLEvaluators in OpenGL
• The OpenGL evaluator functions allow you to use a

polynomial mapping to produce vertices, normals, texture
coordinates, and colors.

• These calculated values are then passed on to the
processing pipeline as if they had been directly specified.

• The evaluator functions are also the basis for the NURBS
(Non-Uniform Rational B-Spline) functions, which allow you
to define curves and surfaces

22

Evaluators in OpenGLEvaluators in OpenGL
• A one-dimensional evaluator is defined by:

• target defines the kind of values that are generated by the
evaluator, e.g.
– GL_MAP1_VERTEX_3: Each control point is three floating-point

values representing x, y, and z.
– GL_MAP1_NORMAL: Each control point is three floating-point values

representing the x, y, and z components of a normal vector.
– GL_MAP1_TEXTURE_COORD_X: Each control point holds the

texture coordinates.

glMap1f(type,u_min,u_max,stride,order,point_array)

Evaluators in OpenGLEvaluators in OpenGL
• u1, u2: defines the domain for parameter u.

• Stride: The number of floats or doubles between the
beginning of one control point and the beginning of the next
one in the data structure referenced in points. This allows
control points to be embedded in arbitrary data structures.
The only constraint is that the values for a particular control
point must occupy contiguous memory locations.

• Order: The number of control points. Must be positive.
• Points: A pointer to the array of control points.

33

BBéézierzier Curves in Curves in
OpenGLOpenGL

• For the one-dimensional evaluator:

• Example:

glMap1f(type,u_min,u_max,stride,order,point_array)

GLfloat pts[4][3] = {{-2.0, -2.0, -1.0},
{-1.0, 2.0, 1.0},
{1.0, -2.0, -2.0},

{2.0, 2.0, 3.0}};
glMap1f(GL_MAP1_VERTEX_3,0.0,1.0,3,4, &pts[0][0]);
glEnable(GL_MAP1_VERTEX_3); //enable evaluator

BBéézierzier Curves in OpenGLCurves in OpenGL

• Once an evalutor has been set up, we generate the values
from the active evaluator as follows with glEvalCoord1f(u):

• Alternatively, if the values of u are equally spaced, we can
use:

glBegin(GL_LINE_STRIP);
for (i = 0; i <= NUM_STEPS; i++)

glEvalCoord1f((GLfloat)i/NUM_STEPS);
glEnd();

glMapGrid1f(NUM_STEPS,0,1);
glEvalMesh1(GL_LINE,0,NUM_STEPS);

44

BBéézierzier Surfaces in OpenGLSurfaces in OpenGL
• Surfaces are generated in a manner similar to curves, using

the functions glMap2, glEvalCoord2, glMapGrid2f and
glEvalMesh2 instead.

• For example, set it up with:

• then render with:

glMapGrid2f(8, 0.0, 1.0, 16, 0.0, 1.0);

glEvalMesh2(GL_LINE,0,NUM_S_STEPS,0,NUM_T_STEPS);

glMap2f(GL_MAP2_VERTEX_3, 0, 1, 3, 4,

0, 1, 12, 4, &ctrlpoints[0][0]);

glEnable(GL_MAP2_VERTEX_3);

NURBS functionsNURBS functions
• Evaluators can be used to generate non-uniform

spacing of points also.
• Any polynomial form can be converted to Bezier

form by proper generation of control points.
• The OpenGL GLU library simplifies these steps

by providing a set of NURBS functions.
• These allow finer control of the shape and

rendering of the surface.

