
CS 4204 Computer Graphics

Window based Window based
programming and GLUTprogramming and GLUT

Yong CaoYong Cao
Virginia TechVirginia Tech

References:References:
Interactive Computer Graphics, Fourth Edition, Ed AngleInteractive Computer Graphics, Fourth Edition, Ed Angle

Objectives

Introduce the basic input devices
• Physical Devices

• Input Modes

Event-driven input
Introduce double buffering for smooth
animations
Programming event input with GLUT

Introduce the basic input devicesIntroduce the basic input devices
•• Physical DevicesPhysical Devices

•• Input ModesInput Modes

EventEvent--driven inputdriven input

Introduce double buffering for smooth Introduce double buffering for smooth
animationsanimations

Programming event input with GLUTProgramming event input with GLUT

Project Sketchpad

Ivan Sutherland (MIT 1963) established the
basic interactive paradigm that characterizes
interactive computer graphics:
• User sees an object on the display

• User points to (picks) the object with an input device
(light pen, mouse, trackball)

• Object changes (moves, rotates, morphs)

• Repeat

Ivan Sutherland (MIT 1963) established the Ivan Sutherland (MIT 1963) established the
basic interactive paradigm that characterizes basic interactive paradigm that characterizes
interactive computer graphics:interactive computer graphics:
•• User sees an User sees an objectobject on the displayon the display

•• User points to (User points to (pickspicks) the object with an input device) the object with an input device
(light pen, mouse, trackball)(light pen, mouse, trackball)

•• Object changes (moves, rotates, morphs)Object changes (moves, rotates, morphs)

•• RepeatRepeat

Graphical Input

Devices can be described either by
• Physical properties

– Mouse

– Keyboard

– Trackball

• Logical Properties

– What is returned to program via API

• A position
• An object identifier

Modes
• How and when input is obtained

– Request or event

Devices can be described either byDevices can be described either by
•• Physical propertiesPhysical properties

–– MouseMouse

–– KeyboardKeyboard

–– TrackballTrackball

•• Logical PropertiesLogical Properties

–– What is returned to program via APIWhat is returned to program via API

•• A positionA position
•• An object identifierAn object identifier

ModesModes
•• How and when input is obtainedHow and when input is obtained

–– Request or eventRequest or event

Physical Devices

mouse trackball light pen

data tablet joy stick space ball

Input Modes

Input devices contain a trigger which can be used
to send a signal to the operating system
• Button on mouse

• Pressing or releasing a key

When triggered, input devices return information
(their measure) to the system
• Mouse returns position information

• Keyboard returns ASCII code

Input devices contain a Input devices contain a triggertrigger which can be used which can be used
to send a signal to the operating systemto send a signal to the operating system
•• Button on mouseButton on mouse

•• Pressing or releasing a keyPressing or releasing a key

When triggered, input devices return information When triggered, input devices return information
(their (their measuremeasure) to the system) to the system
•• Mouse returns position informationMouse returns position information

•• Keyboard returns ASCII codeKeyboard returns ASCII code

Request Mode

Input provided to program only when user
triggers the device
Typical of keyboard input
• Can erase (backspace), edit, correct until enter

(return) key (the trigger) is depressed

Input provided to program only when user Input provided to program only when user
triggers the devicetriggers the device

Typical of keyboard inputTypical of keyboard input
•• Can erase (backspace), edit, correct until enter Can erase (backspace), edit, correct until enter

(return) key (the trigger) is depressed(return) key (the trigger) is depressed

Event Mode

Most systems have more than one input
device, each of which can be triggered at an
arbitrary time by a user
Each trigger generates an event whose
measure is put in an event queue which can
be examined by the user program

Most systems have more than one input Most systems have more than one input
device, each of which can be triggered at an device, each of which can be triggered at an
arbitrary time by a userarbitrary time by a user

Each trigger generates an Each trigger generates an eventevent whose whose
measure is put in an measure is put in an event queueevent queue which can which can
be examined by the user programbe examined by the user program

Event Types

Window: resize, expose, iconify
Mouse: click one or more buttons
Motion: move mouse
Keyboard: press or release a key
Idle: nonevent
• Define what should be done if no other event is in

queue

Window: resize, expose, Window: resize, expose, iconifyiconify

Mouse: click one or more buttonsMouse: click one or more buttons

Motion: move mouseMotion: move mouse

Keyboard: press or release a keyKeyboard: press or release a key

Idle: noneventIdle: nonevent
•• Define what should be done if no other event is in Define what should be done if no other event is in

queuequeue

Callbacks

Programming interface for event-driven
input
Define a callback function for each type of
event the graphics system recognizes
This user-supplied function is executed
when the event occurs
GLUT example: glutMouseFunc(mymouse)

Programming interface for eventProgramming interface for event--driven driven
inputinput

Define a Define a callback functioncallback function for each type of for each type of
event the graphics system recognizesevent the graphics system recognizes

This userThis user--supplied function is executed supplied function is executed
when the event occurswhen the event occurs
GLUT example: GLUT example: glutMouseFunc(mymouseglutMouseFunc(mymouse))

mouse callback function

GLUT callbacks
GLUT recognizes a subset of the events
recognized by any particular window system
(Windows, X, Macintosh)
• glutDisplayFunc

• glutMouseFunc

• glutReshapeFunc

• glutKeyboardFunc

• glutIdleFunc

• glutMotionFunc, glutPassiveMotionFunc

GLUT recognizes a subset of the events GLUT recognizes a subset of the events
recognized by any particular window system recognized by any particular window system
(Windows, X, Macintosh)(Windows, X, Macintosh)
•• glutDisplayFuncglutDisplayFunc

•• glutMouseFuncglutMouseFunc

•• glutReshapeFuncglutReshapeFunc

•• glutKeyboardFuncglutKeyboardFunc

•• glutIdleFuncglutIdleFunc

•• glutMotionFuncglutMotionFunc, , glutPassiveMotionFuncglutPassiveMotionFunc

GLUT Event Loop
glutMainLoop();

which puts the program in an infinite event
loop
In each pass through the event loop, GLUT
• looks at the events in the queue

• for each event in the queue, GLUT executes the
appropriate callback function if one is defined

• if no callback is defined for the event, the event is
ignored

glutMainLoopglutMainLoop();();

which puts the program in an infinite event which puts the program in an infinite event
looploop
In each pass through the event loop, GLUT In each pass through the event loop, GLUT
•• looks at the events in the queuelooks at the events in the queue

•• for each event in the queue, GLUT executes the for each event in the queue, GLUT executes the
appropriate callback function if one is definedappropriate callback function if one is defined

•• if no callback is defined for the event, the event is if no callback is defined for the event, the event is
ignoredignored

The display callback
The display callback is executed whenever GLUT
determines that the window should be refreshed,
for example
• When the window is first opened
• When the window is reshaped
• When a window is exposed
• When the user program decides it wants to change the display

• glutDisplayFunc(mydisplay) identifies the function to be
executed

• Every GLUT program must have a display callback

The display callback is executed whenever GLUT The display callback is executed whenever GLUT
determines that the window should be refreshed, determines that the window should be refreshed,
for examplefor example
•• When the window is first openedWhen the window is first opened
•• When the window is reshapedWhen the window is reshaped

•• When a window is exposedWhen a window is exposed

•• When the user program decides it wants to change the displayWhen the user program decides it wants to change the display

•• glutDisplayFunc(mydisplayglutDisplayFunc(mydisplay)) identifies the function to be identifies the function to be
executedexecuted

•• Every GLUT program must have a display callbackEvery GLUT program must have a display callback

Posting redisplays
Many events may invoke the display callback
function
• Can lead to multiple executions of the display callback on a

single pass through the event loop

We can avoid this problem by instead using
glutPostRedisplay();

which sets a flag.
GLUT checks to see if the flag is set at the end
of the event loop
If set then the display callback function is
executed

Many events may invoke the display callback Many events may invoke the display callback
functionfunction
•• Can lead to multiple executions of the display callback on a Can lead to multiple executions of the display callback on a

single pass through the event loopsingle pass through the event loop

We can avoid this problem by instead usingWe can avoid this problem by instead using
glutPostRedisplayglutPostRedisplay();();

which sets a flag. which sets a flag.
GLUT checks to see if the flag is set at the end GLUT checks to see if the flag is set at the end
of the event loopof the event loop
If set then the display callback function is If set then the display callback function is
executedexecuted

Animating a Display

When we redraw the display through the display
callback, we usually start by clearing the window
• glClear()

then draw the altered display
Problem: the drawing of information in the frame
buffer is decoupled from the display of its
contents
• Graphics systems use dual ported memory

Hence we can see partially drawn display

When we redraw the display through the display When we redraw the display through the display
callback, we usually start by clearing the windowcallback, we usually start by clearing the window
•• glClear()glClear()

then draw the altered displaythen draw the altered display
Problem: the drawing of information in the frame Problem: the drawing of information in the frame
buffer is decoupled from the display of its buffer is decoupled from the display of its
contents contents
•• Graphics systems use dual ported memoryGraphics systems use dual ported memory

Hence we can see partially drawn displayHence we can see partially drawn display

Double Buffering
Instead of one color buffer, we use two
• Front Buffer: one that is displayed but not written to

• Back Buffer: one that is written to but not displayed

Program then requests a double buffer in main.c
• glutInitDisplayMode(GL_RGB | GL_DOUBLE)

• At the end of the display callback buffers are swapped

Instead of one color buffer, we use twoInstead of one color buffer, we use two
•• Front BufferFront Buffer: one that is displayed but not written to: one that is displayed but not written to

•• Back BufferBack Buffer: one that is written to but not displayed: one that is written to but not displayed

Program then requests a double buffer in main.cProgram then requests a double buffer in main.c
•• glutInitDisplayMode(GL_RGBglutInitDisplayMode(GL_RGB | GL_DOUBLE)| GL_DOUBLE)

•• At the end of the display callback buffers are swappedAt the end of the display callback buffers are swapped

void mydisplay()
{

glClear(GL_COLOR_BUFFER_BIT|….)
.
/* draw graphics here */
.

glutSwapBuffers()
}

Using the idle callback
The idle callback is executed whenever there are no events
in the event queue
• glutIdleFunc(myidle)

• Useful for animations

The idle callback is executed whenever there are no events The idle callback is executed whenever there are no events
in the event queuein the event queue
•• glutIdleFunc(myidleglutIdleFunc(myidle))

•• Useful for animationsUseful for animations
void myidle() {
/* change something */

t += dt
glutPostRedisplay();

}

Void mydisplay() {
glClear();

/* draw something that depends on t */
glutSwapBuffers();

}

Using globals
The form of all GLUT callbacks is fixed
• void mydisplay()
• void mymouse(GLint button, GLint state,

GLint x, GLint y)

Can use globals to pass information to
callbacks

The form of all GLUT callbacks is fixedThe form of all GLUT callbacks is fixed
•• void void mydisplaymydisplay()()

•• void void mymouse(GLintmymouse(GLint button, button, GLintGLint state, state,
GLintGLint x, x, GLintGLint y)y)

Can use Can use globalsglobals to pass information to to pass information to
callbackscallbacks

float t; /*global */

void mydisplay()
{
/* draw something that depends on t
}

The mouse callback

glutMouseFunc(mymouse)

void mymouse(GLint button, GLint
state, GLint x, GLint y)

Returns
• which button (GLUT_LEFT_BUTTON,
GLUT_MIDDLE_BUTTON, GLUT_RIGHT_BUTTON)
caused event

• state of that button (GLUT_UP, GLUT_DOWN)

• Position in window

glutMouseFunc(mymouseglutMouseFunc(mymouse))

void void mymouse(GLintmymouse(GLint button, button, GLintGLint
state, state, GLintGLint x, x, GLintGLint y)y)

Returns Returns
•• which button (which button (GLUT_LEFT_BUTTONGLUT_LEFT_BUTTON, ,
GLUT_MIDDLE_BUTTONGLUT_MIDDLE_BUTTON, , GLUT_RIGHT_BUTTONGLUT_RIGHT_BUTTON))
caused event caused event

•• state of that button (state of that button (GLUT_UPGLUT_UP, , GLUT_DOWNGLUT_DOWN))

•• Position in windowPosition in window

Positioning
The position in the screen window is usually measured in The position in the screen window is usually measured in
pixels with the origin at the toppixels with the origin at the top--left cornerleft corner
•• Consequence of refresh done from top to bottomConsequence of refresh done from top to bottom

OpenGL uses a world coordinate system with origin at the OpenGL uses a world coordinate system with origin at the
bottom leftbottom left
•• Must invert Must invert yy coordinate returned by callback by height of coordinate returned by callback by height of

windowwindow
•• y = h y = h –– y;y;

(0,0) h

w

Obtaining the window size

To invert the y position we need the window height
• Height can change during program execution

• Track with a global variable

• New height returned to reshape callback that we will look at in
detail soon

• Can also use query functions

– glGetIntv

– glGetFloatv

to obtain any value that is part of the state

To invert the To invert the yy position we need the window heightposition we need the window height
•• Height can change during program executionHeight can change during program execution

•• Track with a global variableTrack with a global variable

•• New height returned to reshape callback that we will look at in New height returned to reshape callback that we will look at in
detail soondetail soon

•• Can also use query functions Can also use query functions

–– glGetIntvglGetIntv

–– glGetFloatvglGetFloatv

to obtain any value that is part of the stateto obtain any value that is part of the state

Using the mouse position
In the next example, we draw a small square In the next example, we draw a small square
at the location of the mouse each time the at the location of the mouse each time the
left mouse button is clickedleft mouse button is clicked

This example does not use the display This example does not use the display
callback but one is required by GLUT; We callback but one is required by GLUT; We
can use the empty display callback functioncan use the empty display callback function
mydisplaymydisplay(){}(){}

Drawing squares at cursor
location
void mymouse(int btn, int state, int x, int y)

{

if(btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)

exit(0);

if(btn==GLUT_LEFT_BUTTON && state==GLUT_DOWN)

drawSquare(x, y);

}

void drawSquare(int x, int y)

{

y=w-y; /* invert y position */

glColor3ub((char) rand()%256, (char) rand)%256, (char) rand()%256);
/* a random color */

glBegin(GL_POLYGON);

glVertex2f(x+size, y+size);

glVertex2f(x-size, y+size);

glVertex2f(x-size, y-size);

glVertex2f(x+size, y-size);

glEnd();

}

void void mymouse(intmymouse(int btnbtn, , intint state, state, intint x, x, intint y)y)

{{

if(btnif(btn==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)==GLUT_RIGHT_BUTTON && state==GLUT_DOWN)

exit(0);exit(0);

if(btnif(btn==GLUT_LEFT_BUTTON && state==GLUT_DOWN)==GLUT_LEFT_BUTTON && state==GLUT_DOWN)

drawSquare(xdrawSquare(x, y);, y);

}}

void void drawSquare(intdrawSquare(int x, x, intint y)y)

{{

y=wy=w--y; /* invert y position */y; /* invert y position */

glColor3ub((char) rand()%256, (char) rand)%256, glColor3ub((char) rand()%256, (char) rand)%256, (char) rand()%256); (char) rand()%256);
/* a random color *//* a random color */

glBegin(GL_POLYGON);glBegin(GL_POLYGON);

glVertex2f(x+size, y+size);glVertex2f(x+size, y+size);

glVertex2f(xglVertex2f(x--size, y+size);size, y+size);

glVertex2f(xglVertex2f(x--size, ysize, y--size);size);

glVertex2f(x+size, yglVertex2f(x+size, y--size);size);

glEnd();glEnd();

}}

Using the motion callback

We can draw squares (or anything else)
continuously as long as a mouse button is
depressed by using the motion callback
• glutMotionFunc(drawSquare)

We can draw squares without depressing a
button using the passive motion callback
• glutPassiveMotionFunc(drawSquare)

We can draw squares (or anything else) We can draw squares (or anything else)
continuously as long as a mouse button is continuously as long as a mouse button is
depressed by using the motion callbackdepressed by using the motion callback
•• glutMotionFunc(drawSquareglutMotionFunc(drawSquare))

We can draw squares without depressing a We can draw squares without depressing a
button using the passive motion callbackbutton using the passive motion callback
•• glutPassiveMotionFunc(drawSquareglutPassiveMotionFunc(drawSquare))

Using the keyboard
glutKeyboardFunc(mykey)

void mykey(unsigned char key,

int x, int y)

• Returns ASCII code of key depressed and mouse
location

glutKeyboardFunc(mykeyglutKeyboardFunc(mykey))

void void mykey(unsignedmykey(unsigned char key, char key,

intint x, x, intint y)y)

•• Returns ASCII code of key depressed and mouse Returns ASCII code of key depressed and mouse
locationlocation
void mykey()
{

if(key == ‘Q’ | key == ‘q’)
exit(0);

}

Special and Modifier Keys
GLUT defines the special keys in glut.h
• Function key 1: GLUT_KEY_F1

• Up arrow key: GLUT_KEY_UP

– if(key == ‘GLUT_KEY_F1’ ……

Can also check of one of the modifiers
• GLUT_ACTIVE_SHIFT

• GLUT_ACTIVE_CTRL

• GLUT_ACTIVE_ALT

is depressed by
glutGetModifiers()

• Allows emulation of three-button mouse with one- or two-button mice

GLUT defines the special keys in GLUT defines the special keys in glut.hglut.h

•• Function key 1: Function key 1: GLUT_KEY_F1GLUT_KEY_F1

•• Up arrow key: Up arrow key: GLUT_KEY_UPGLUT_KEY_UP

–– if(key == if(key == ‘‘GLUT_KEY_F1GLUT_KEY_F1’’ …………

Can also check of one of the modifiersCan also check of one of the modifiers
•• GLUT_ACTIVE_SHIFTGLUT_ACTIVE_SHIFT

•• GLUT_ACTIVE_CTRLGLUT_ACTIVE_CTRL

•• GLUT_ACTIVE_ALTGLUT_ACTIVE_ALT

is depressed byis depressed by
glutGetModifiersglutGetModifiers()()

•• Allows emulation of threeAllows emulation of three--button mouse with onebutton mouse with one-- or twoor two--button micebutton mice

	Slide Number 1
	Objectives
	Project Sketchpad
	Graphical Input
	Physical Devices
	Input Modes
	Request Mode
	Event Mode
	Event Types
	Callbacks
	GLUT callbacks
	GLUT Event Loop
	The display callback
	Posting redisplays
	Animating a Display
	Double Buffering
	Using the idle callback
	Using globals
	The mouse callback
	Positioning
	Obtaining the window size
	Using the mouse position
	Drawing squares at cursor location
	Using the motion callback
	Using the keyboard
	Special and Modifier Keys

