CS 4204 Computer Graphics

2D Transformations

Yong Cao
 Virginia Tech

References:
"Introduction to Computer Graphics" course notes by Doug Bowman Interactive Computer Graphics, Fourth Edition, Ed Angle

Transformations

What are they?

- changing something to something else via rules
- mathematics: mapping between values in a range set and domain set (function/relation)
- geometric: translate, rotate, scale, shear, ...

Why are they important to graphics?

- moving objects on screen / in space
- mapping from model space to world space to camera space to screen space
- specifying parent/child relationships

Translation

Moving an object is called a translation. We translate a point by adding to the x and y coordinates, respectively, the amount the point should be shifted in the x and y directions. We translate an object by translating each vertex in the object.

Scaling

Changing the size of an object is called a scale. We scale an object by scaling the x and y coordinates of each vertex in the object.

$$
\begin{array}{ll}
\mathbf{s}_{\mathbf{x}}=\mathbf{w}_{\text {new }} / w_{\text {old }} & \mathbf{s}_{\mathbf{y}}=\mathbf{h}_{\text {new }} / \mathbf{h}_{\text {old }} \\
\mathbf{x}_{\text {new }}=\mathrm{s}_{\mathrm{x}} \mathbf{x}_{\text {old }} & \mathbf{y}_{\text {new }}=\mathrm{s}_{\mathbf{y}} \mathbf{y}_{\text {old }}
\end{array}
$$

Rotation about the origin

Consider rotation about the origin by q degrees

- radius stays the same, angle increases by q

$$
x=r \cos (\phi+\theta)
$$

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta \\
& y^{\prime}=x \sin \theta+y \cos \theta \\
& x=r \cos \phi \\
& y=r \sin \phi
\end{aligned}
$$

Transformations as matrices

Scale:

$$
\begin{aligned}
& x_{\text {new }}=s_{x} x_{\text {old }} \\
& y_{\text {new }}=s_{y} y_{\text {old }}
\end{aligned}
$$

$$
\left[\begin{array}{cc}
s_{x} & 0 \\
0 & s_{y}
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
s_{x} \cdot x \\
s_{y} \cdot y
\end{array}\right]
$$

Rotation:
$x_{2}=x_{1} \cos \theta-y_{1} \sin \theta$
$y_{2}=x_{1} \sin \theta+y_{1} \cos \theta$
$\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x \cos \theta-y \sin \theta \\ x \sin \theta+y \cos \theta\end{array}\right]$

Translation:
$x_{\text {new }}=x_{\text {old }}+t_{x}$

$$
\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]+\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
x+t_{x} \\
y+t_{y}
\end{array}\right]
$$

$y_{\text {new }}=y_{\text {old }}+t_{y}$

Homogeneous Coordinates

In order to represent a translation as a matrix multiplication operation we use 3×3 matrices and pad our points to become 3 x 1 matrices. This coordinate system (using three values to represent a 2D point) is called homogeneous coordinates.

$$
\begin{array}{ll}
P_{(x, y)}=\left[\begin{array}{l}
x \\
y \\
1
\end{array}\right] & R_{\theta}=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right] \\
S_{x, y}=\left[\begin{array}{ccc}
S_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] & T_{x, y}=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]
\end{array}
$$

Composite Transformations

Suppose we wished to perform multiple transformations on a point:

$$
\begin{aligned}
& P_{2}=T_{3,1} P_{1} \\
& P_{3}=S_{2,2} P_{2} \\
& P_{4}=R_{30} P_{3}
\end{aligned}
$$

$$
\begin{aligned}
& M=R_{30} S_{2,2} T_{3,1} \\
& P_{4}=M P_{1}
\end{aligned}
$$

Remember:

- Matrix multiplication is associative, not commutative!
- Transform matrices must be pre-multiplied
- The first transformation you want to perform will be at the far right, just before the point

Composite Transformations Scaling

Given our three basic transformations we can create other transformations.

Scaling with a fixed point
A problem with the scale transformation is that it also moves the object being scaled.

Scale a line between $(2,1)(4,1)$ to twice its length.

Before
After

Composite Transforms Scaling (cont.)

If we scale a line between $(0,0) \&(2,0)$ to twice its length, the left-hand endpoint does not move.

$(0,0)$ is known as a fixed point for the basic scaling transformation. We can use composite transformations to create a scale transformation with different fixed points.

Fixed Point Scaling

Scale by 2 with fixed point $=(2,1)$
Translate the point $(2,1)$ to the origin
Scale by 2
Translate origin to point $(2,1)$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
2 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
T_{2,1} \\
S_{2,1} \\
\left.\begin{array}{ccc}
T_{-2,-1} & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
1
\end{array}\right] \quad\left[\begin{array}{ccc}
2 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
4 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
6 \\
1 \\
1
\end{array}\right]
\end{gathered}
$$

Before

Example of 2D transformation

Rotate around an arbitraty point O:

Rotate around an arbitraty point

Rotate around an arbitraty point

We know how to rotate around the origin

Rotate around an arbitraty point

...but that is not what we want to do!

So what do we do?

Transform it to a known case

Translate(-Ox,-Oy)

Second step: Rotation

Translate(-Ox,-Oy)

 Rotate(-90)

Final: Put everything back

Translate(-Ox,-Oy)

 Rotate(90)

Translate(Ox,Oy)

Rotation about arbitrary point

IMPORTANT!: Order
$M=T(O x, O y) R(-90) T(-O x,-O y)$

Rotation about arbitrary point

Rotation Of θ Degrees About Point (x, y)
Translate (x, y) to origin
Rotate
Translate origin to (x, y)

$$
C=\left[\begin{array}{ccc}
1 & 0 & x \\
0 & 1 & y \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & 0 \\
\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -x \\
0 & 1 & -y \\
T_{x, y} & 0 & 1
\end{array}\right]
$$

Shears

Reflections

Reflection about the y-axis
Reflection about the x-axis

$$
\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

More Reflections

Reflection about the origin
Reflection about the line $y=x$

$$
\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

?

Transformations as a change in coordinate system

All transformations we have looked at involve transforming points in a fixed coordinate system (CS).
Can also think of them as a transformation of the CS itself

Transforming the CS - examples

Translate(4,4)

Rotate(180$)$

Why transform the CS?

Objects often defined in a "natural" or "convenient" CS

To draw objects transformed by T, we could:

- Transform each vertex by T, then draw
- Or, draw vertices in a transformed CS

Drawing in transformed CS

Tell system once how to draw the object, then draw in a transformed CS to transform the object

House drawn in a CS that's been translated, rotated, and scaled
$M=S_{x, y} R_{d} T_{x, y}$

Mapping between systems

Given:

- The vertices of an object in CS_{2}
- A transformation matrix M that transforms CS_{1} to CS_{2}

What are the coordinates of the object's vertices in CS $_{1}$?

Mapping example

Translate(4,4)

Point P is at $(0,0)$ in the transformed CS
$\left(\mathrm{CS}_{2}\right)$. Where is it in CS_{1} ?
Answer: $(4,4)$
*Note: $(4,4)=T_{4,4} P$

Mapping rule

In general, if $C S_{1}$ is transformed by a matrix M to form CS_{2}, a point P in CS_{2} is represented by MP in CS_{1}

Another example

Where is P in CS_{3} ?
Where is P in CS_{2} ?
Where is P in CS_{1} ?

Translate(4,4), then Scale(0.5, 0.5)
*Note: to go directly from CS_{3} to CS_{1} we can calculate $T_{4,4} S_{0.5,0.5}(2,2)=(5,5)$

General mapping rule

If CS_{1} is transformed consecutively by M_{1}, M_{2}, \ldots, M_{n} to form CS $_{n+1}$, then a point P in CS_{n+1} is represented by

$$
M_{1} M_{2} \ldots M_{n} P \text { in } C S_{1} .
$$

To form the composite transformation between CSS, you postmultiply each successive transformation matrix.

OpenGL Transformations

Learn how to carry out transformations in OpenGL

- Rotation
- Translation
- Scaling

Introduce OpenGL matrix modes

- Model-view
- Projection

OpenGL Matrices

In OpenGL matrices are part of the state Multiple types

- Model-View (GL_MODELVIEW)
- Projection (GL_PROJECTION)
- Texture (GL_TEXTURE) (ignore for now)
- Color(GL_COLOR) (ignore for now)

Single set of functions for manipulation
Select which to manipulated by

- gIMatrixMode(GL_MODELVIEW);
- gIMatrixMode(GL_PROJECTION);

Current Transformation Matrix (CTM)

Conceptually there is a 4×4 homogeneous coordinate matrix, the current transformation matrix (CTM) that is part of the state and is applied to all vertices that pass down the pipeline
The CTM is defined in the user program and loaded into a transformation unit

CTM operations

The CTM can be altered either by loading a new CTM or by postmutiplication

Load an identity matrix: $\mathbf{C} \leftarrow \mathbf{I}$
Load an arbitrary matrix: $\mathbf{C} \leftarrow \mathbf{M}$
Load a translation matrix: $\mathbf{C} \leftarrow \mathbf{T}$
Load a rotation matrix: $\mathbf{C} \leftarrow \mathbf{R}$
Load a scaling matrix: $\mathbf{C} \leftarrow \mathbf{S}$
Postmultiply by an arbitrary matrix: $\mathbf{C} \leftarrow \mathbf{C M}$
Postmultiply by a translation matrix: $\mathbf{C} \leftarrow \mathbf{C T}$
Postmultiply by a rotation matrix: $\mathbf{C} \leftarrow \mathbf{C} \mathbf{R}$
Postmultiply by a scaling matrix: $\mathbf{C} \leftarrow \mathrm{C} \mathrm{S}$

Rotation about a Fixed Point

Start with identity matrix: $C \leftarrow I$
Move fixed point to origin: $C \leftarrow C T$
Rotate: $C \leftarrow C R$
Move fixed point back: $C \leftarrow C T^{-1}$

Result: $C=T R T^{-1}$ which is backwards.

This result is a consequence of doing postmultiplications.
Let's try again.

Reversing the Order

We want $C=T^{-1} R T$
so we must do the operations in the following order
$C \leftarrow I$
$C \leftarrow C T^{-1}$
$C \leftarrow C R$
$C \leftarrow C I$

Each operation corresponds to one function call in the program.

Note that the last operation speciffed is the first executed in the program

CTM in OpenGL

OpenGL has a model-view and a projection matrix in the pipeline which are concatenated together to form the CTM
Can manipulate each by first setting the correct matrix mode

Rotation, Translation, Scaling

Load an identity matrix:

glLoadIdentity()

Multiply on right:
glRotatef(theta, vx, vy, vz)
theta in degrees, ($\mathbf{v x}, \mathbf{v y}, \mathbf{v z}$) define axis of rotation glTranslatef(dx, dy, dz) glScalef(sx, sy, sz)

Each has a float (f) and double (d) format (glScaled)

Example

Rotation about z axis by 30 degrees with a fixed point of (1.0, 2.0, 3.0)
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);

Remember that last matrix speciffed in the program is the first applied

Arbitrary Matrices

Can load and multiply by matrices defined in the application program

glLoadMatrixf(m) glMultMatrixf(m)

The matrix m is a one dimension array of 16 elements which are the components of the desired 4×4 matrix stored by columns
In glMultMatrixf, m multiplies the existing matrix on the right

Transformations in OpenGL

OpenGL makes it easy to do transformations to the CS, not the object
Sequence of operations:

- Set up a routine to draw the object in its "base" CS
- Call transformation routines to transform the CS
- Object drawn in transformed CS

OpenGL transformation example

```
drawHouse(){
    glBegin(GL_LINE_LOOP);
    glVertex2i(0,0);;
    glVertex2i(0,2);;
    gliEnd(();;
}
        \cdots..
```

Draws basic house

```
drawTransformedHouse(){
    glMatrixMode(GL_MODELVIEW);
    glTranslatef(4.0,, 4.0), 0.0));
    g1Scalef(0.5%, 0.5;, 1.0);;
    drawHouse(();;
}
drawTransformedHouse() \{
gIMatrixMode(GL_MODELVIEW); ;
glitranslatef \((4.0,4.0), 0.0)\); ;
gIScalef( \(0.5,5,0.5,1,1.0)\) );
drawHouse() );
\}
```


Matrix Stacks

In many situations we want to save transformation matrices for use later

- Traversing hierarchical data structures
- Avoiding state changes when executing display lists

OpenGL maintains stacks for each type of matrix

- Access present type (as set by gIMatrixMode) by

glPushMatrix() glPopMatrix()

OpenGL matrix stack example

glioadM atrixf(m0); glPushM atrix(); glMultMatrixf(m1); glPushMatrix(); gl.MultMatrixf(m4); render chair2; glPop Matrix(); glPushMatrix(); gl.MultMatrixf(m3); render chairl; glPop M atrix() ; render table; glPop Matrix() ; glPushMatrix(); glMultMatrixf(m2); render rug; glPop M atrix() render room;

