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Transformations
What are they?What are they?
•• changing something to something else via ruleschanging something to something else via rules

•• mathematics: mapping between values in a range set mathematics: mapping between values in a range set 
and domain set (function/relation)and domain set (function/relation)

•• geometric: translate, rotate, scale, shear,geometric: translate, rotate, scale, shear,……

Why are they important to graphics?Why are they important to graphics?
•• moving objects on screen / in spacemoving objects on screen / in space

•• mapping from model space to world space to camera mapping from model space to world space to camera 
space to screen spacespace to screen space

•• specifying parent/child relationshipsspecifying parent/child relationships

•• ……



Translation

Moving an object is called a translation.  We translate a point Moving an object is called a translation.  We translate a point by by 
adding to the x and y coordinates, respectively, the amount the adding to the x and y coordinates, respectively, the amount the 
point should be shifted  in the x and y directions.  point should be shifted  in the x and y directions.  We translate We translate 
an object by translating each vertex in the object.an object by translating each vertex in the object.

xnew = xold + tx ; ynew = yold + ty

ty

tx



Scaling

Changing the size of an object is called a scale.  We scale an oChanging the size of an object is called a scale.  We scale an object by bject by 
scaling the x and y coordinates of each vertex in the object.scaling the x and y coordinates of each vertex in the object.

sx =wnew /wold sy =hnew /hold

xnew = sx xold ynew = sy yold

wold wnew

hold

hnew



Rotation about the origin

Consider rotation about the origin by q Consider rotation about the origin by q 
degreesdegrees
•• radius stays the same, angle increases by radius stays the same, angle increases by qq

x’=x cos θ
 

–y sin θ
y’ = x sin θ

 
+ y cos θ

x = r cos φ
y = r sin φ

x = r cos (φ + θ)
y = r sin (φ + θ)



Transformations as matrices

Scale:Scale:

xxnewnew = = ssxx xxoldold

yynewnew = = ssyy yyoldold

Rotation:Rotation:

xx22 = x= x11 coscosθθ -- yy11 sin sin θθ

yy22 = x= x11 sin sin θθ + y+ y11 cos cos θθ

Translation:Translation:

xxnewnew = = xxoldold + + ttxx

yynewnew = = yyoldold + + ttyy
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Homogeneous Coordinates

In order to represent a translation as a matrix multiplication In order to represent a translation as a matrix multiplication 
operation we use 3 x 3 matrices and pad our points to become 3 operation we use 3 x 3 matrices and pad our points to become 3 
x 1 matrices. This coordinate system (using three values to x 1 matrices. This coordinate system (using three values to 
represent a 2D point) is called homogeneous coordinates.represent a 2D point) is called homogeneous coordinates.
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Composite Transformations

Suppose we wished to perform multiple transformations on a pointSuppose we wished to perform multiple transformations on a point::

P2 = T3,1P1

P3 = S2, 2P2

P4 = R30P3

M = R30S2,2T3,1

P4 = MP1
Remember:
• Matrix multiplication is associative, not commutative!
• Transform matrices must be pre-multiplied
• The first transformation you want to perform will be at the far 
right, just before the point



Composite Transformations - 
Scaling

Given our three basic transformations we can create other Given our three basic transformations we can create other 
transformations.transformations.

Scaling with a fixed pointScaling with a fixed point

A problem with the scale transformation is that it also moves thA problem with the scale transformation is that it also moves the e 
object being scaled.  object being scaled.  

Scale a line between (2, 1)  (4,1) to twice its length.Scale a line between (2, 1)  (4,1) to twice its length.

0 1 2 3 4 5 6 7 8 9 10

Before After

0 1 2 3 4 5 6 7 8 9 10



Composite Transforms - 
Scaling (cont.)

If we scale a line between (0,0) & (2,0) to twice its length,  tIf we scale a line between (0,0) & (2,0) to twice its length,  the he 
leftleft--hand endpoint does not move.hand endpoint does not move.

(0,0) is known as a fixed point for the basic scaling transformation.  
We can use composite transformations to create a scale 
transformation with  different fixed points.

0 1 2 3 4 5 6 7 8 9 10

Before After

0 1 2 3 4 5 6 7 8 9 10



Fixed Point Scaling

Scale by 2 with fixed point = (2,1)Scale by 2 with fixed point = (2,1)

Translate the point (2,1) to the originTranslate the point (2,1) to the origin

Scale by 2Scale by 2

Translate origin to point (2,1)Translate origin to point (2,1)

0 1 2 3 4 5 6 7 8 9 10

0 1 2 3 4 5 6 7 8 9 10

Before

After
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Example of 2D transformation

Rotate around an arbitraty point O:Rotate around an Rotate around an arbitratyarbitraty point O:point O:

x

y
P

O



Rotate around an arbitraty point

x

y
P

O

P’

90



Rotate around an arbitraty point

We know how to rotate around the originWe know how to rotate around the originWe know how to rotate around the origin

x

y
P

O



Rotate around an arbitraty point

…but that is not what we want to do!……but that is not what we want to do!but that is not what we want to do!

x

y
P

O

P’
90

P’



So what do we do?

x

y
P

A



Transform it to a known case

Translate(-Ox,-Oy)Translate(Translate(--Ox,Ox,--OyOy))

x

y

P’

O’

P

O



Second step: Rotation

Translate(-Ox,-Oy)
Rotate(-90)

Translate(Translate(--Ox,Ox,--OyOy))

Rotate(Rotate(--90)90)

x

y

P’’

O’

P

O

P’



P’

Final: Put everything back

Translate(-Ox,-Oy)
Rotate(90)
Translate(Ox,Oy)

Translate(Translate(--Ox,Ox,--OyOy))

Rotate(90)Rotate(90)

Translate(Ox,OyTranslate(Ox,Oy))

x

y

P’’’

O’

P

O

P’’



P’

Rotation about arbitrary point

IMPORTANT!: Order
M = T(Ox,Oy)R(-90)T(-Ox,-Oy)

IMPORTANT!: OrderIMPORTANT!: Order

M = T(Ox,Oy)R(M = T(Ox,Oy)R(--90)T(90)T(--Ox,Ox,--Oy)Oy)

x
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Rotation about arbitrary point

Rotation Of Rotation Of θθ Degrees About Point (Degrees About Point (x,yx,y))

Translate (Translate (x,yx,y) to origin) to origin

RotateRotate

Translate origin to (Translate origin to (x,yx,y))

(x,y) (x,y)

yxyx T
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Shears

Original DataOriginal Data y Sheary Shear x Shearx Shear
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Reflections

Reflection about the yReflection about the y--axisaxis Reflection about the xReflection about the x--axisaxis
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More Reflections

Reflection about the originReflection about the origin Reflection about the line y=xReflection about the line y=x
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Transformations as a change in 
coordinate system

All transformations we have looked at 
involve transforming points in a fixed 
coordinate system (CS). 
Can also think of them as a transformation 
of the CS itself 

All transformations we have looked at All transformations we have looked at 
involve transforming points in a fixed involve transforming points in a fixed 
coordinate system (CS).coordinate system (CS).

Can also think of them as a transformation Can also think of them as a transformation 
of the CS itselfof the CS itself



Transforming the CS - examples

Translate(4,4)

Rotate(180°)



Why transform the CS?

Objects often defined in a “natural” or 
“convenient” CS 

To draw objects transformed by T, we could:
• Transform each vertex by T, then draw

• Or, draw vertices in a transformed CS

Objects often defined in a Objects often defined in a ““naturalnatural”” or or 
““convenientconvenient”” CSCS

To draw objects transformed by T, we could:To draw objects transformed by T, we could:
•• Transform each vertex by T, then drawTransform each vertex by T, then draw

•• Or, draw vertices Or, draw vertices in a transformed CSin a transformed CS

(2,2)



Drawing in transformed CS

Tell system once how to draw the object, 
then draw in a transformed CS to transform 
the object 

Tell system once how to draw the object, Tell system once how to draw the object, 
then draw in a transformed CS to transform then draw in a transformed CS to transform 
the objectthe object

House drawn in a CS 
that’s been translated, 
rotated, and scaled

M = Sx,y Rd Tx,y



Mapping between systems

Given:
• The vertices of an object in CS2 

• A transformation matrix M that transforms CS1 to CS2 

What are the coordinates of the object’s 
vertices in CS1 ? 

Given:Given:
•• The vertices of an object in CSThe vertices of an object in CS22

•• A transformation matrix M that transforms CSA transformation matrix M that transforms CS11 to CSto CS22

What are the coordinates of the objectWhat are the coordinates of the object’’s s 
vertices in CSvertices in CS11 ??



Mapping example

Translate(4,4)

Point P is at (0,0) in the transformed CS 
(CS2 ). Where is it in CS1 ?

Answer: (4,4)

*Note: (4,4) = T4,4 P

P



Mapping rule

In general, if CS1 is transformed by a matrix 
M to form CS2 , a point P in CS2 is 
represented by MP in CS1 

In general, if CSIn general, if CS11 is transformed by a matrix is transformed by a matrix 
M to form CSM to form CS22 , a point P in CS, a point P in CS22 is is 
represented by MP in CSrepresented by MP in CS11



Another example

Translate(4,4), then 
Scale(0.5, 0.5)

Where is P in CS3 ? (2,2)
Where is P in CS2 ? S0.5,0.5 (2,2) = (1,1)
Where is P in CS1 ? T4,4 (1,1) = (5,5)

*Note: to go directly from CS3 to CS1 we can 
calculate T4,4 S0.5,0.5 (2,2) = (5,5) 

P



General mapping rule

If CS1 is transformed consecutively by M1 , 
M2 , …, Mn to form CSn+1 , then a point P in 
CSn+1 is represented by 

M1 M2 … Mn P in CS1 .
To form the composite transformation 
between CSs, you postmultiply each 
successive transformation matrix. 

If CSIf CS11 is transformed consecutively by is transformed consecutively by MM11 , , 
MM22 , , ……, , MMnn to form CSto form CSn+1n+1 , then a point P in , then a point P in 
CSCSn+1n+1 is represented by is represented by 

MM11 MM22 …… MMnn PP in CSin CS11 ..

To form the composite transformation To form the composite transformation 
between between CSsCSs, you , you postmultiplypostmultiply each each 
successive transformation matrix.successive transformation matrix.



OpenGL Transformations

Learn how to carry out transformations in 
OpenGL 
• Rotation

• Translation 

• Scaling

Introduce OpenGL matrix modes
• Model-view

• Projection

Learn how to carry out transformations in Learn how to carry out transformations in 
OpenGLOpenGL
•• RotationRotation

•• Translation Translation 

•• ScalingScaling

Introduce OpenGL matrix modesIntroduce OpenGL matrix modes
•• ModelModel--viewview

•• ProjectionProjection



OpenGL Matrices
In OpenGL matrices are part of the state
Multiple types
• Model-View (GL_MODELVIEW)
• Projection (GL_PROJECTION)
• Texture (GL_TEXTURE) (ignore for now)
• Color(GL_COLOR) (ignore for now)

Single set of functions for manipulation
Select which to manipulated by
• glMatrixMode(GL_MODELVIEW);

• glMatrixMode(GL_PROJECTION);

In OpenGL matrices are part of the stateIn OpenGL matrices are part of the state
Multiple typesMultiple types
•• ModelModel--View (View (GL_MODELVIEWGL_MODELVIEW))

•• Projection (Projection (GL_PROJECTIONGL_PROJECTION))

•• Texture (Texture (GL_TEXTUREGL_TEXTURE) (ignore for now)) (ignore for now)

•• Color(Color(GL_COLORGL_COLOR) (ignore for now)) (ignore for now)

Single set of functions for manipulationSingle set of functions for manipulation
Select which to manipulated bySelect which to manipulated by
•• glMatrixMode(GL_MODELVIEW);glMatrixMode(GL_MODELVIEW);

•• glMatrixMode(GL_PROJECTION);glMatrixMode(GL_PROJECTION);



Current Transformation Matrix 
(CTM)

Conceptually there is a 4 x 4 homogeneous 
coordinate matrix, the current transformation 
matrix (CTM) that is part of the state and is applied 
to all vertices that pass down the pipeline 

The CTM is defined in the user program and loaded 
into a transformation unit 

Conceptually there is a 4 x 4 homogeneous Conceptually there is a 4 x 4 homogeneous 
coordinate matrix, the coordinate matrix, the current transformation current transformation 
matrixmatrix (CTM) that is part of the state and is applied (CTM) that is part of the state and is applied 
to all vertices that pass down the pipelineto all vertices that pass down the pipeline

The CTM is defined in the user program and loaded The CTM is defined in the user program and loaded 
into a transformation unitinto a transformation unit

CTMvertices vertices
p p’=Cp

C



CTM operations

The CTM can be altered either by loading a new 
CTM or by postmutiplication 
The CTM can be altered either by loading a new The CTM can be altered either by loading a new 
CTM or by CTM or by postmutiplicationpostmutiplication

Load an identity matrix: C ← I
Load an arbitrary matrix: C ← M

Load a translation matrix: C ← T
Load a rotation matrix: C ← R
Load a scaling matrix: C ← S

Postmultiply by an arbitrary matrix: C ← CM
Postmultiply by a translation matrix: C ← CT
Postmultiply by a rotation matrix: C ← C R
Postmultiply by a scaling matrix: C ← C S



Rotation about a Fixed Point

Start with identity matrix:Start with identity matrix: CC ←← II
Move fixed point to origin: Move fixed point to origin: CC ←← CTCT
Rotate: Rotate: CC ←← CRCR
Move fixed point back: Move fixed point back: CC ←← CT CT --11

ResultResult:: C = TR T C = TR T ––11 which is which is backwardsbackwards. . 

This result is a consequence of doing This result is a consequence of doing postmultiplicationspostmultiplications..
LetLet’’s try again.s try again.



Reversing the Order
We want C = T –1 R T 
so we must do the operations in the following order

C ← I
C ← CT -1
C ← CR
C ← CT

Each operation corresponds to one function call in the 
program. 

Note that the last operation specified is the first executed 
in the program 

We wantWe want C = T C = T ––11 R T R T 
so we must do the operations in the following orderso we must do the operations in the following order

CC ←← II
CC ←← CT CT --11

CC ←← CRCR
CC ←← CTCT

Each operation corresponds to one function call in the Each operation corresponds to one function call in the 
program.program.

Note that the last operation specified is the first executed Note that the last operation specified is the first executed 
in the programin the program



CTM in OpenGL 

OpenGL has a model-view and a projection 
matrix in the pipeline which are 
concatenated together to form the CTM 
Can manipulate each by first setting the 
correct matrix mode 

OpenGL has a modelOpenGL has a model--view and a projection view and a projection 
matrix in the pipeline which are matrix in the pipeline which are 
concatenated together to form the CTMconcatenated together to form the CTM

Can manipulate each by first setting the Can manipulate each by first setting the 
correct matrix modecorrect matrix mode



Rotation, Translation, Scaling

glRotatef(theta, glRotatef(theta, vxvx, , vyvy, , vzvz))

glTranslatef(dx, dy, dz)

glScalef( sx, sy, sz)

glLoadIdentity()

Load an identity matrix:

Multiply on right:

theta in degrees, (vx, vy, vz) define axis of rotation

Each has a float (f) and double (d) format (glScaled)



Example

Rotation about z axis by 30 degrees with a fixed 
point of (1.0, 2.0, 3.0) 

Remember that last matrix specified in the program 
is the first applied 

Rotation about z axis by 30 degrees with a fixed Rotation about z axis by 30 degrees with a fixed 
point of (1.0, 2.0, 3.0)point of (1.0, 2.0, 3.0)

Remember that last matrix specified in the program Remember that last matrix specified in the program 
is the first appliedis the first applied

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glTranslatef(1.0, 2.0, 3.0);
glRotatef(30.0, 0.0, 0.0, 1.0);
glTranslatef(-1.0, -2.0, -3.0);



Arbitrary Matrices
Can load and multiply by matrices 
defined in the application program 

The matrix m is a one dimension array of 
16 elements which are the components 
of the desired 4 x 4 matrix stored by 
columns 
In glMultMatrixf, m multiplies the 
existing matrix on the right 

Can load and multiply by matrices Can load and multiply by matrices 
defined in the application programdefined in the application program

The matrix The matrix mm is a one dimension array of is a one dimension array of 
16 elements which are the components 16 elements which are the components 
of the desired 4 x 4 matrix stored by of the desired 4 x 4 matrix stored by 
columnscolumns
In In glMultMatrixfglMultMatrixf, , mm multiplies the multiplies the 
existing matrix on the rightexisting matrix on the right

glLoadMatrixf(m)
glMultMatrixf(m)



Transformations in OpenGL

OpenGL makes it easy to do transformations 
to the CS, not the object 
Sequence of operations:
• Set up a routine to draw the object in its “base” CS

• Call transformation routines to transform the CS

• Object drawn in transformed CS

OpenGL makes it easy to do transformations OpenGL makes it easy to do transformations 
to the CS, not the objectto the CS, not the object

Sequence of operations:Sequence of operations:
•• Set up a routine to draw the object in its Set up a routine to draw the object in its ““basebase”” CSCS

•• Call transformation routines to transform the CSCall transformation routines to transform the CS

•• Object drawn in transformed CSObject drawn in transformed CS



OpenGL transformation example
drawHouse(){

glBegin(GL_LINE_LOOP);

glVertex2i(0,0);

glVertex2i(0,2);

...

glEnd();

}

drawHouse(){

glBegin(GL_LINE_LOOP);

glVertex2i(0,0);

glVertex2i(0,2);

...

glEnd();

}

drawTransformedHouse(){

glMatrixMode(GL_MODELVIEW);

glTranslatef(4.0, 4.0, 0.0);

glScalef(0.5, 0.5, 1.0);

drawHouse();

}

drawTransformedHousedrawTransformedHouse(){(){

glMatrixMode(GL_MODELVIEWglMatrixMode(GL_MODELVIEW););

glTranslatef(4.0, 4.0, 0.0);glTranslatef(4.0, 4.0, 0.0);

glScalef(0.5, 0.5, 1.0);glScalef(0.5, 0.5, 1.0);

drawHousedrawHouse();();

}}

Draws basic house Draws transformed house



Matrix Stacks
In many situations we want to save 
transformation matrices for use later 
• Traversing hierarchical data structures 

• Avoiding state changes when executing display lists

OpenGL maintains stacks for each type of matrix
• Access present type (as set by glMatrixMode) by

In many situations we want to save In many situations we want to save 
transformation matrices for use latertransformation matrices for use later
•• Traversing hierarchical data structures Traversing hierarchical data structures 

•• Avoiding state changes when executing display listsAvoiding state changes when executing display lists

OpenGL maintains stacks for each type of matrixOpenGL maintains stacks for each type of matrix
•• Access present type (as set by Access present type (as set by glMatrixModeglMatrixMode)) byby

glPushMatrix()
glPopMatrix()



OpenGL matrix stack 
example

room

table rug

chair1 chair2

M1 M2

M4M3

M0

M0

M0 *M1

M0 *M1 *M4

glLoadMatrixf(m0);
glPushMatrix();
gl

 

M

 

ultMatrixf(m1);
glPushMatrix();
gl

 

M

 

ultMatrixf(m4);
render chair2;
gl

 

P

 

o

 

p

 

M

 

atrix();
glPushMatrix();
gl

 

M

 

ultMatrixf(m3);
render chair1;
gl

 

P

 

o

 

p

 

M

 

atrix();
render table;
gl

 

P

 

o

 

p

 

M

 

atrix();
glPushMatrix();
gl

 

M

 

ultMatrixf(m2);
render rug;
gl

 

P

 

o

 

p

 

M

 

atrix()
render room;
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