
CS 4204 Computer Graphics

Meshes, Vertex Array and Meshes, Vertex Array and DisplaylistDisplaylist

Yong CaoYong Cao

Virginia TechVirginia Tech

Objectives

Introduce simple data structures forIntroduce simple data structures for

building polygonal modelsbuilding polygonal models

•• Vertex listsVertex lists

•• Edge listsEdge lists

OpenGL vertex arraysOpenGL vertex arrays

Display List in OpenGLDisplay List in OpenGL

Wavefront Wavefront OBJ and GLM library (Demo)OBJ and GLM library (Demo)

Mesh (Triangle meshes)

Why Triangles?
GeneralityGenerality

•• AAny planar polygon can be triangulatedny planar polygon can be triangulated

•• WWhen you give OpenGL a different polygon, it may well end up getting triangulatedhen you give OpenGL a different polygon, it may well end up getting triangulated
somewhere in the pipelinesomewhere in the pipeline

SimplicitySimplicity

•• TTriangles have a nice mathematical structure we can exploitriangles have a nice mathematical structure we can exploit

•• IImpossible to specify a non-planar trianglempossible to specify a non-planar triangle

•• IImpossible to specify a non-convex trianglempossible to specify a non-convex triangle

EfficiencyEfficiency

•• BBy picking a standard primitive, we can design custom graphics hardware to bey picking a standard primitive, we can design custom graphics hardware to be
blisteringly fastblisteringly fast

•• CConvexity makes onvexity makes rasterization rasterization much less complexmuch less complex

Representing a Mesh

Consider a meshConsider a mesh

There are 8 nodes and 12 edgesThere are 8 nodes and 12 edges

•• 5 interior polygons5 interior polygons

•• 6 interior (shared) edges6 interior (shared) edges

Each vertex has a location Each vertex has a location vvii = (x = (xii yyii z zii))

v1
v2

v7

v6

v8

v5

v4

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

Simple Representation

Define each polygon by the geometric locations of itsDefine each polygon by the geometric locations of its

verticesvertices

Leads to OpenGL code such asLeads to OpenGL code such as

Inefficient and unstructuredInefficient and unstructured

•• Consider moving a vertex to a new locationConsider moving a vertex to a new location

•• Must search for all occurrencesMust search for all occurrences

glBegin(GL_POLYGON);

 glVertex3f(x1, x1, x1);

 glVertex3f(x6, x6, x6);

 glVertex3f(x7, x7, x7);

glEnd();

Geometry vs Topology

Generally it is a good idea to look for dataGenerally it is a good idea to look for data

structures that separate the geometry fromstructures that separate the geometry from

the topologythe topology

•• Geometry: locations of the verticesGeometry: locations of the vertices

•• Topology: organization of the vertices and edgesTopology: organization of the vertices and edges

•• Example: a polygon is an ordered list of vertices withExample: a polygon is an ordered list of vertices with

an edge connecting successive pairs of vertices andan edge connecting successive pairs of vertices and

the last to the firstthe last to the first

•• Topology holds even if geometry changesTopology holds even if geometry changes

Vertex Lists

Put the geometry in an arrayPut the geometry in an array

Use pointers from the vertices into this arrayUse pointers from the vertices into this array

Introduce a polygon listIntroduce a polygon list x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5.

x6 y6 z6

x7 y7 z7

x8 y8 z8

P1

P2

P3

P4

P5

v1
v7

v6

v8
v5

v6

topology geometry

Shared Edges

Vertex lists will draw filled polygons correctly but ifVertex lists will draw filled polygons correctly but if

we draw the polygon by its edges, shared edgeswe draw the polygon by its edges, shared edges

are drawn twiceare drawn twice

Can store mesh by Can store mesh by edge listedge list

Edge List

v1
v2

v7

v6

v8

v5

v3

e1

e8

e3

e2

e11

e6

e7

e10

e5

e4

e9

e12

e1

e2

e3

e4

e5

e6

e7

e8

e9

x1 y1 z1

x2 y2 z2

x3 y3 z3

x4 y4 z4

x5 y5 z5.

x6 y6 z6

x7 y7 z7

x8 y8 z8

v1

v6

Note polygons are

not represented

Modeling a Cube

GLfloat GLfloat vertices[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},vertices[][3] = {{-1.0,-1.0,-1.0},{1.0,-1.0,-1.0},

{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0},{1.0,1.0,-1.0}, {-1.0,1.0,-1.0}, {-1.0,-1.0,1.0},

 {1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};{1.0,-1.0,1.0}, {1.0,1.0,1.0}, {-1.0,1.0,1.0}};

GLfloat colors[][3] = {{0.0,0.0,0.0},{1.0,0.0,0.0},

{1.0,1.0,0.0}, {0.0,1.0,0.0}, {0.0,0.0,1.0},

 {1.0,0.0,1.0}, {1.0,1.0,1.0}, {0.0,1.0,1.0}};

Model a color cube for rotating cube program

Define global arrays for vertices and colors

Drawing a polygon from a list of

indices

Draw a quadrilateral from a list of indices into theDraw a quadrilateral from a list of indices into the

array array verticesvertices and use color corresponding to first and use color corresponding to first

indexindex void polygon(int a, int b, int c

, int d)

{

 glBegin(GL_POLYGON);

 glColor3fv(colors[a]);

 glVertex3fv(vertices[a]);

 glVertex3fv(vertices[b]);

 glVertex3fv(vertices[c]);

 glVertex3fv(vertices[d]);

 glEnd();

 }

Draw cube from faces

void void colorcubecolorcube()()

{{

 polygon(0,3,2,1); polygon(0,3,2,1);

 polygon(2,3,7,6); polygon(2,3,7,6);

 polygon(0,4,7,3); polygon(0,4,7,3);

 polygon(1,2,6,5); polygon(1,2,6,5);

 polygon(4,5,6,7); polygon(4,5,6,7);

 polygon(0,1,5,4); polygon(0,1,5,4);

}}

0

5 6

2

4
7

1

3

Note that vertices are ordered so that

we obtain correct outward facing normals

Efficiency

The weakness of our approach is that we areThe weakness of our approach is that we are
building the model in the application and must dobuilding the model in the application and must do
many function calls to draw the cubemany function calls to draw the cube

Drawing a cube by its faces in the most straightDrawing a cube by its faces in the most straight
forward way requiresforward way requires

•• 6 6 glBeginglBegin, 6 , 6 glEndglEnd

•• 6 6 glColorglColor

•• 24 24 glVertexglVertex

•• More if we use texture and lightingMore if we use texture and lighting

Vertex Arrays

OpenGL provides a facility called OpenGL provides a facility called vertex arraysvertex arrays that allows that allows

us to store array data in the implementationus to store array data in the implementation

Six types of arrays supportedSix types of arrays supported

•• VerticesVertices

•• ColorsColors

•• Color indicesColor indices

•• NormalsNormals

•• Texture coordinatesTexture coordinates

•• Edge flagsEdge flags

We will need only colors and verticesWe will need only colors and vertices

Vertex Arrays

Pass arrays of vertices, colors, etc to OpenGL in aPass arrays of vertices, colors, etc to OpenGL in a
large chunklarge chunk

glVertexPointerglVertexPointer(3,GL_FLOAT,0,(3,GL_FLOAT,0,coordscoords))

glColorPointerglColorPointer(4,GL_FLOAT,0,colors)(4,GL_FLOAT,0,colors)

glEnableClientStateglEnableClientState(GL_VERTEX_ARRAY)(GL_VERTEX_ARRAY)

glEnableClientStateglEnableClientState(GL_COLOR_ARRAY)(GL_COLOR_ARRAY)

glDrawArraysglDrawArrays(GL_TRIANGLE_STRIP,0,(GL_TRIANGLE_STRIP,0,numVertsnumVerts););

All active arrays are used in renderingAll active arrays are used in rendering

•• On: On: glEnalbleClientStateglEnalbleClientState()()

•• Off: Off: glDisableClientStateglDisableClientState()()

Vertex Arrays

Vertex ArraysVertex Arrays allow vertices, and their attributes to beallow vertices, and their attributes to be
specified in chunks,specified in chunks,

•• Not sending single vertices/attributes one call at a time.Not sending single vertices/attributes one call at a time.

Three methods for rendering using vertex arrays:Three methods for rendering using vertex arrays:

•• glDrawArraysglDrawArrays(): render specified primitive type by processing(): render specified primitive type by processing
nV nV consecutive elements from enabled arrays.consecutive elements from enabled arrays.

•• glDrawElementsglDrawElements(): indirect indexing of data elements in the(): indirect indexing of data elements in the
enabled arrays. (shared data elements specified once in theenabled arrays. (shared data elements specified once in the
arrays, but accessed numerous times)arrays, but accessed numerous times)

•• glArrayElementglArrayElement(): processes a single set of data elements from(): processes a single set of data elements from
all activated arrays. As compared to the two above, mustall activated arrays. As compared to the two above, must
appear between aappear between a glBeginglBegin()()/glEnd/glEnd() pair.() pair.

Vertex Arrays

glDrawArraysglDrawArrays(): draw a sequence(): draw a sequence

glDrawElementsglDrawElements(): methodically hop around(): methodically hop around

glArrayElementglArrayElement(): randomly hop around(): randomly hop around

glInterleavedArraysglInterleavedArrays(): advanced call(): advanced call

•• can specify several vertex arrays at once.can specify several vertex arrays at once.

•• also enables and disables the appropriate arraysalso enables and disables the appropriate arrays

Read Chapter 2 in Redbook for details of using vertex arrayRead Chapter 2 in Redbook for details of using vertex array

Initialization

Using the same color and vertex data, first we enableUsing the same color and vertex data, first we enable

glEnableClientStateglEnableClientState(GL_COLOR_ARRAY);(GL_COLOR_ARRAY);

glEnableClientStateglEnableClientState(GL_VERTEX_ARRAY);(GL_VERTEX_ARRAY);

Identify location of arraysIdentify location of arrays

glVertexPointer(3, GL_FLOAT, 0, vertices);glVertexPointer(3, GL_FLOAT, 0, vertices);

glColorPointer(3, GL_FLOAT, 0, colors);glColorPointer(3, GL_FLOAT, 0, colors);

3d arrays stored as floats data contiguous

data array

Mapping indices to faces

••Form an array of face indicesForm an array of face indices

••Each successive four indices describe aEach successive four indices describe a

face of the cubeface of the cube

••Draw through Draw through glDrawElementsglDrawElements whichwhich

replaces all replaces all glVertexglVertex and and glColorglColor calls in thecalls in the

display callbackdisplay callback

GLubyte cubeIndices[24] = {0,3,2,1,2,3,7,6

 0,4,7,3,1,2,6,5,4,5,6,7,0,1,5,4};

Drawing the cube

Method 1:Method 1:

Method 2:Method 2:

for(i=0; i<6; i++) glDrawElements(GL_POLYGON, 4,

 GL_UNSIGNED_BYTE, &cubeIndices[4*i]);

format of index data start of index data

what to draw
number of indices

glDrawElements(GL_QUADS, 24,

 GL_UNSIGNED_BYTE, cubeIndices);

Draws cube with 1 function call!!

Immediate Mode vs Display Lists

Immediate Mode GraphicsImmediate Mode Graphics

•• Primitives are sent to pipeline and display right awayPrimitives are sent to pipeline and display right away

•• No memory of graphical entitiesNo memory of graphical entities

Display Listed GraphicsDisplay Listed Graphics

•• Primitives placed in display listsPrimitives placed in display lists

•• Display lists kept on graphics serverDisplay lists kept on graphics server

•• Can be redisplayed with different stateCan be redisplayed with different state

•• Can be shared among OpenGL graphics contexts (in XCan be shared among OpenGL graphics contexts (in X

windows, use thewindows, use the glXCreateContextglXCreateContext()()routine)routine)

Immediate Mode vs Retained Mode

In immediate mode, primitives (vertices, pixels) flow through theIn immediate mode, primitives (vertices, pixels) flow through the

system and produce images. These data are lost. New images aresystem and produce images. These data are lost. New images are

created bycreated by reexecuting reexecuting the display function and regenerating the the display function and regenerating the

primitives.primitives.

In retained mode, the primitives are stored in a display list (inIn retained mode, the primitives are stored in a display list (in

““compiledcompiled”” form). Images can be recreated by form). Images can be recreated by ““executingexecuting”” the the

display list. Even without a network between the server and client,display list. Even without a network between the server and client,

display lists should be more efficient than repeated executions ofdisplay lists should be more efficient than repeated executions of

the display function.the display function.

Immediate Mode vs Display Lists

Display Lists

Creating a display listCreating a display list

GLuint GLuint id;id;

void init(void)void init(void)

{{

id =id = glGenListsglGenLists(1);(1);

glNewListglNewList(id, GL_COMPILE);(id, GL_COMPILE);

/* other OpenGL routines *//* other OpenGL routines */

glEndListglEndList();();

}}

Call a created listCall a created list

void display(void)void display(void)

{{

glCallListglCallList(id);(id);

}}

Instead of GL_COMPILE,

glNewList also accepts constant

GL_COMPILE_AND_EXECUE,

which both creates and executes a

display list.

If a new list is created with the same

identifying number as an existing

display list, the old list is replaced

with the new calls. No error occurs.

Display Lists

Not all OpenGL routines can be stored in display listsNot all OpenGL routines can be stored in display lists

•• If there is an attempt to store any of these routines in aIf there is an attempt to store any of these routines in a
display list, the routine is executed in immediate mode. Nodisplay list, the routine is executed in immediate mode. No
error occurs.error occurs.

State changes persist, even after a display list isState changes persist, even after a display list is
finishedfinished

Display lists can call other display listsDisplay lists can call other display lists

Display lists are not editable, but can fake itDisplay lists are not editable, but can fake it

•• make a list (A)make a list (A) which calls other lists (B, C, and D)which calls other lists (B, C, and D)

•• delete and replace B, C, and D, as neededdelete and replace B, C, and D, as needed

Some Routines That Cannot be

Stored in a Display List

An Example

Why use Display lists or Vertex

Arrays?

May provide better performanceMay provide better performance than immediate modethan immediate mode
renderingrendering

•• Both are principally performance enhancements. On someBoth are principally performance enhancements. On some
systems, they may provide better performance thansystems, they may provide better performance than
immediate mode because of reduced function call overheadimmediate mode because of reduced function call overhead
or better data organizationor better data organization

–– format data for better memory accessformat data for better memory access

•• Display lists can also be used to group similar sets of OpenGLDisplay lists can also be used to group similar sets of OpenGL
commands, like multiple calls tocommands, like multiple calls to glMaterialglMaterial() to set up the() to set up the
parameters for a particular objectparameters for a particular object

Display lists can be shared between multiple OGL contextsDisplay lists can be shared between multiple OGL contexts

•• reduce memory usage or multi-context applicationsreduce memory usage or multi-context applications

