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Abstract
Testing and debugging multi-threaded programs are notoriously dif-
ficult due to non-determinism not only in inputs but also in OS
schedules. In practice, dynamic analysis and failure replay systems
instrument the program to record events of interest in the test ex-
ecution, e.g., program inputs, accesses to shared objects, synchro-
nization operations, context switches, etc. To reduce the overhead
of logging during runtime, these testing and debugging efforts have
proposed tradeoffs for sampling or selective logging, at the cost of
reducing coverage or performing more expensive search offline.

We propose to identify a subset of input sources and shared ob-
jects that are, in a sense, relevant for covering program behavior.
We classify various types of relevancy in terms of how an input
source or a shared object can affect control flow (e.g., a conditional
branch) or dataflow (e.g., state of the shared objects) in the pro-
gram. Such relevancy data can be used by testing and debugging
methods to reduce their recording overhead and to guide coverage.

To conduct relevancy analysis, we propose a novel framework
based on dynamic taint analysis for multi-threaded programs, called
DTAM. It performs thread-modular taint analysis for each thread in
parallel during runtime, and then aggregates the thread-modular re-
sults offline. This approach has many advantages: (a) it is faster
than conducting taint analysis for serialized multi-threaded exe-
cutions, (b) it can compute results for alternate thread interleav-
ings by generalizing the observed execution, and (c) it provides a
knob to tradeoff precision with coverage, depending on how thread-
modular results are aggregated to account for alternate interleav-
ings. We have implemented DTAM and performed an experimental
evaluation on publicly available benchmarks for relevancy analysis.
Our experiments show that most shared accesses and conditional
branches are dependent on some program input sources. Interest-
ingly in our test runs, on average, only about 25% input sources
and 3% shared objects affect other shared accesses through condi-
tional branches. Thus, it is important to identify such relevant input
sources and shared objects for testing and debugging.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging

Keywords
Taint Analysis, Relevancy, Generalization

1. Introduction
With the advent of multi-core processors, there is great need to

write parallel programs to take advantage of parallel computing re-
sources. However, programming, debugging, and testing concur-
rent programs are notably difficult because of two types of inher-
ent non-determinism in multiprocessor systems: inputs (i.e., user
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and system data from non-deterministic sources) and OS sched-
ules (i.e., order of accesses to shared objects). Different inputs and
schedules of concurrent threads may affect the shared object state
and control-flow of programs. This implies that programmers have
to reason about all possible inputs and schedules to understand the
behavior of multi-threaded programs.

There are many existing efforts from both software and hardware
communities to build useful tools that help program developers to
address these challenges. For example, deterministic replay sys-
tems [29, 1, 19, 40] enable reproducing concurrency bugs such as
data races and atomicity violations, and backward time-travel de-
bugging. Systematic exploration techniques [11, 23] explore all
feasible schedules for a given test input. Runtime techniques such
as fuzzing-based testing [27, 28] focus on improving the interleav-
ing coverage of some “meaningful" set (using random sleep de-
lays), while trace-based analysis [2, 45, 10, 21, 42, 12, 37] focus
on detecting and predicting program errors in generalizations of an
observed schedule using either offline search [2, 42, 12, 37] or on-
line analysis [45, 10, 21]. These testing and debugging techniques
instrument the program to record events of interest in the test exe-
cution, e.g., inputs, accesses to shared objects, synchronization op-
erations, context switches, etc. The recorded information are then
used for detecting concurrency-related bugs, for predicting bugs
in other thread interleavings, for expanding testing coverage over
other thread interleavings, or for reconstructing an observed failure.
To reduce the overhead of recording inputs and events during run-
time, these testing and debugging efforts have proposed tradeoffs
for sampling or selective recording, at the cost of reducing cov-
erage or performing more expensive search offline to find a trace
with failure. For example, to reduce the performance overhead of
dynamic data-race detection, a sampling-based approach was pro-
posed [21] to process a small percentage of shared accesses based
on infrequent visits, thereby, avoiding the need to analyze every
shared access executed by the program.

Though many of these previous efforts have addressed the chal-
lenges in the space of possible thread interleavings induced by shared
object accesses, the space of program inputs has received little at-
tention. For instance, deterministic replay systems [29, 1, 19, 40]
record all program inputs, regardless of their effect on program
behavior. Deterministic execution systems [26, 7] and systematic
testing tools [23] provide determinism or testing coverage guar-
antee only for a given input. In addition, some concurrency bug
reproduction tools [43] assume that they can provide the same in-
put during analysis. The recording of inputs helps to reduce the
search space, however at the cost of partial coverage and increased
overhead (performance penalty).

To address these issues, we propose relevancy analysis to iden-
tify a subset of input sources and shared objects that can affect an
execution of the multi-threaded program. We classify relevancy
based on how these input sources and shared objects affect the con-
trol flow (branches) or data flow (accesses of shared objects) in the
program. We also analyze how branches or shared accesses depend
on input sources and shared objects.

The relevancy analysis for inputs can be used to reduce the space
of inputs considered by other techniques. A possible use-case is



to perform relevancy analysis on representative test data as a pre-
processing step before carrying out time-sensitive testing, debug-
ging, or runtime monitoring to reduce the performance overhead.
Some examples of potential benefits provided to other techniques
are: (a) A deterministic replay system need not record some input
source if it does not impact program behavior and it can be easily
generated during replay. Thus, monitoring and recording only rele-
vant input sources would reduce the overhead of such systems. (b)
In testing, generating different input stress data only for relevant
input sources would improve the test coverage effectively.

Similarly, relevancy analysis for shared objects can also provide
notable benefits: (a) It can help to classify data races as malign
or benign. For example, if a data race is on a shared object that
does not have any effect on conditional branches, one may clas-
sify the race as benign, since it is unlikely to affect the program
path. (b) It can also empower a data race predictor to relax cer-
tain read-after-write ordering constraints during the search for data
races. Data race predictors such as [2, 37] use a happens-before
analysis, often with a relaxed ordering of lock/unlock as long as
read-after-write (RAW) constraints for shared objects are not vio-
lated. This avoids reporting false races. However, if a shared object
does not affect any conditional branch, it may ignore its associated
RAW constraints during race prediction, thereby finding more po-
tential races. (c) It can also help sampling-based race detection
such as [21] to focus on only relevant shared objects.

To conduct relevancy analysis effectively, we propose a novel
framework based on dynamic taint analysis for multi-threaded pro-
grams, called DTAM. Taint analysis is shown useful in many appli-
cations, including security attack detection and prevention, information-
flow policy enforcement, and software testing and debugging. Static
taint analysis (e.g., [24, 39]) computes conservatively information-
flow within a program, whereas dynamic taint analysis [25, 4, 33,
5, 34, 47] identifies flows that actually occur in one of the ob-
served executions. Static analysis can produce spurious flows due
to imprecision in the taint propagation, while dynamic analysis can
miss potential flows due to unobserved program executions. In this
work, we focus on dynamic taint analysis, and address its short-
coming in its application to multi-threaded programs.

The general idea of dynamic taint analysis is as follows: During
runtime, it tags data from an external input source, propagates the
taint tag along data and control flows, and then checks if tagged
data is used at a target instruction/statement (e.g., target location of
a jump instruction). In our DTAM framework, we use a unique id to
tag data from each input source and from each shared object. Input
data include the return value of system calls and data copied from
kernel to user space (e.g., data read by sys_read()). Our runtime
system propagates the tag along both data and control flows (de-
scribed later). We check the tags on instructions corresponding to
shared accesses and conditional branches, to identify input sources
that are relevant. Although we target instructions corresponding to
shared accesses and conditional branches, our DTAM framework
is general and one can specify any target location(s) of interest.

Dynamic taint analysis for sequential programs is straightfor-
ward, and efficient implementations have been proposed in prior
work [25, 4, 33, 5, 47]. However, dynamic taint analysis for multi-
threaded programs on multi-core platforms remains a challenge.
An implementation needs to carefully handle concurrent accesses
to shared objects from multiple threads, and guarantee atomicity
of original code and added instrumentation for taint propagation
and checking. A naive approach would be to serialize the multi-
threaded execution, and simply apply sequential dynamic taint anal-
ysis on it. However, this approach would suffer from bad perfor-
mance due to serialization, i.e., loss of parallelism in the applica-
tion, and from low coverage due to consideration of only one se-
rialized (observed) trace. To address these problems, our goals in
DTAM are two fold: (a) support parallel thread-modular taint anal-

ysis at runtime, (b) generalize thread-modular taint analysis results
(i.e., to cover alternate OS schedules) in a post-execution (offline)
stage. Although thread-modular analysis has been exploited pre-
viously, such as for procedure summarization [32, 36], and model
checking [13, 18], its use in dynamic taint analysis has not been
investigated so far.

We refer to the approach with serialization execution as DTAM-

serial, and implemented it within our DTAM framework. It is built
over Dytan [5], a taint analysis generic framework for sequential
programs. In addition to DTAM-serial, we also propose two new
approaches named DTAM-parallel and DTAM-hybrid. They com-
prise two main stages: (1) an online stage where each thread per-
forms taint analysis locally, in parallel with other threads at run-
time, and (2) an offline stage where the thread-modular results are
aggregated, to capture taint propagations across threads. To enable
thread-modular taint analysis in the first stage, we treat a shared
read event by a thread as another type of input and generate a
pseudo taint tag for that event. Furthermore, whenever a thread
executes a shared write event, we log the shared object and the
propagated taint tags, if any, for further propagation during the sec-
ond stage. In the second stage, an offline merger collects the taint
results for each thread and aggregates them for the multi-threaded
program. It recursively replaces the pseudo taint tags on shared
reads with the taint tags on shared writes (to the same object) from
remote threads, until convergence.

There are two advantages of using DTAM-parallel compared to
DTAM-serial. First, it can take advantage of parallelism by per-
forming thread-modular taint analysis. Second, it can provide gen-
eralized results corresponding to many schedules. Note that dy-
namic taint analysis on a serialized execution (DTAM-serial) in-
herently follows the observed schedule, and it may require explor-
ing a large number of serialized schedules to get adequate cover-
age. On one hand, DTAM-parallel implicitly captures the effects of
many possible schedules when merging the thread-modular results
offline. On the other hand, depending on the precision of the inter-
thread propagation, there is a tradeoff involved in using this paral-
lel approach. In addition to a one-time additional cost of an offline
merge stage, DTAM-parallel approach may lead to over-tainting if
it conservatively propagates the taint tag to all remote threads when
there exists a shared write-read pair to the same object, even though
such pairing may not be feasible due to synchronization.

To remove the imprecision of this over-approximation, we pro-
pose DTAM-hybrid which considers must-happens-before relation-
ships due to synchronization operations. In this approach, we al-
low a taint tag to be propagated from a shared write in one thread
to a shared read (on the same object) in another thread, only if
there is no must-happens-before ordering between the read and the
write. By considering synchronization operations, DTAM-hybrid
approach enables us to collect generalized results (i.e., not limited
to the observed schedule) in comparison to DTAM-serial, while ad-
dressing some over-tainting issues in DTAM-parallel. While these
ideas are similar to techniques for static dataflow analysis and pre-
dictive analysis for multi-threaded programs, we use them to pro-
vide a flexible framework for dynamic taint propagation that can
tradeoff precision and coverage.

The proposed technique DTAM can give both false positives
(i.e., spurious relevancy due to offline merging) and false negatives
(i.e, missing relevancy due to unobserved program paths). How-
ever, as mentioned earlier, it can still be useful in many best-effort
applications such as debugging, stress testing, runtime monitoring,
to reduce logging overhead and improve coverage. To summarize,
the contributions of this paper are as follows:

• We propose a dynamic relevancy analysis for multi-threaded
programs to identify a subset of input sources and shared ob-
jects that can affect shared-object state or control flow of the



programs. Relevancy is classified in terms of their effect on
branches and on shared accesses. Such an analysis can sup-
plement other techniques to provide the following benefits:
reduce recording overhead, improve testing coverage, im-
prove data race prediction, and help classify benign/malign
data races.

• We present a dynamic taint analysis framework for multi-
threaded programs (DTAM). It uses parallel thread-modular
taint analysis, with an offline aggregation for propagating
taints across threads. It provides flexibility to tradeoff pre-
cision and coverage, ranging from results over only the ob-
served serialized execution to generalized results over other
thread schedules. Although we focus here on its use for per-
forming relevancy analysis, it is a general framework that
can be used for other applications of taint analysis for multi-
threaded programs.

The rest of the paper is organized as follows. We start with back-
ground and notation in Section 2. Section 3 presents the main ideas
in relevancy analysis. Section 4 describes our proposed dynamic
taint analysis framework, which we use to perform relevancy anal-
ysis, and Section 5 presents its implementation. We discuss an em-
pirical evaluation in Section 6. Finally, we compare our work with
other related efforts in Section 7 and conclude in Section 8.

2. Background
A multi-threaded program consists of a set of concurrently ex-

ecuting threads. The threads communicate with shared objects,
some of which are used for synchronization such as locks and sig-
nals. A trace π of a program is a total ordered sequence of observed
events corresponding to various thread operations such as shared
accesses and external API calls. Each event e of the sequence, i.e.,
e ∈ π is carried out by some thread denoted as tid(e) at a thread
program location loc(e). These events include the following:

• write/read(t,x): write/read by t on a shared object x

• nd(t): a non-deterministic external input API call by t (in-
cluding hardware interfaces, system calls)

• branch(t): a conditional branch taken by t

• wait/notify(t,s): wait/notify by t on a signal s

• fork(t,t’)/thread_start(t’): t forks a thread t′

• join(t,t’)/thread_end(t’): t waits until t′ ends

A shared instruction is a loc(e) where a write/read occurs.
Happens-before. Given a trace π of a program, and events

e, e′ ∈ π, we say e happens-before e′, i.e., e � e′, if e is ob-

served before e′ in the trace. We say e must happens-before e′ (i.e.,
causally-ordered), denoted as e ≺ e′, if e � e′ holds and one of
the following holds:

• e, e′ belong to the same thread

• e = notify(t, s) and e′ = wait(t′, s), t 6= t′

• e = fork(t, t′) and e′ = thread_start(t′), t 6= t′

• e = thread_end(t) and e′ = join(t′, t), t 6= t′

• ∃e1 ∈ π. (e ≺ e1 � e′) or ∃e2 ∈ π. (e � e2 ≺ e′)
A must happens-before relation can be maintained easily us-

ing vector clocks [22, 9]. A vector clock of a thread, denoted as
V C(t), records the clocks of all threads. Whenever a non-locking
synchronization occurs, vector clocks are updated. Each event is
time stamped with a vector clock. (Implementation details of vec-
tor clocks can be found [30].)

Effect Chains. We now define source, sink and conduit in a
multi-threaded program w.r.t. effect chains.

Source: A source is a non-deterministic external input API or a
shared object associated with the event nd or read, respectively.
We refer to the former source as input and the latter source as
shared object. (In the sequel, we use inputs to denote input sources.)

Sink: A sink is a loc(e), where event e is either a read/write
on a shared object, or a branch. We refer to the former sink as
shared access and the latter sink as branch.

Conduit: A conduit determines propagation of the effect from a
source to a sink through a read-after-write dependency. If an effect
propagates through a write, followed by a read (on the same shared
object), we refer to the conduit, i.e., the pair of events, as shared
accesses. If an effect propagates through a branch, we refer to the
conduit as branch.

Let A,B ∈{source, conduit, sink}.
A → B: A affects or propagates an effect to B
A →�ZB: A does not affect or propagate an effect to B.

�ZA → B: B does not get an effect propagated through A.
An effect propagation chain is shown as: source → {conduit}∗

→ sink. For the above chain, we also say that the conduit/sink is
dependent on the source.

3. Relevancy Analysis
We discuss relevancy of two sources of non-determinism inmulti-

threaded programs, i.e., inputs and shared objects, with respect
to how they impact other shared accesses and branches (in Sec-
tions 3.1-3.2). Going in the other direction (from sinks to sources),
we also discuss the dependency of sinks (shared accesses and branches)
on various sources (in Section 3.3).

3.1 Relevant Inputs (Sources)
In multi-threaded programs, inputs can affect shared object state,

control flow, or both. The inputs correspond to hardware interfaces
such as network, disk, user keyboard, and non-deterministic system
API such as gettimeofday, sys_read, rdtsc instructions, etc.

We propose six possible relevancy types for inputs, based on
how they influence branches or shared accesses: i_irrel, i_b̄sb̄,
i_s̄bs̄, i_sbs̄, i_s̄bs, and i_sbs. These types are described in Ta-
ble 1. The key to understanding the mnemonics for these types is
as follows: i stands for inputs, b stands for branches, and s stands
for shared objects or accesses. Here, the positive forms (b, s) mean
that there is influence, while the negative forms (b̄, s̄) mean that
there is no influence. For example, i_b̄sb̄ denotes that the input
does not influence any branch, either directly or through a shared
access. The type i_irrel is shorthand to denote inputs that do not
influence any branch or any shared access. The remaining types
denote cases where an input affects a branch. Among these, we
distinguish cases where the branch is (or is not) affected through a
shared access (mnemonically, b is preceded by s or s̄, respectively).
We also distinguish cases where the branch itself affects (or does
not affect) a shared access (mnemonically, b is followed by s or s̄,
respectively). This leads to four types, denoted mnemonically as
i_s̄bs̄, i_sbs̄, i_s̄bs, and i_sbs.

Table 1: Relevancy Types for Inputs

Type Description

i_irrel Affects neither any branch nor any shared access.

i_b̄sb̄ Affects some shared access but not any branch.

i_s̄bs̄ Affects some branch but not any shared access.

i_sbs̄ Affects some branch through some shared access, but the branch

does not affect any shared access.

i_s̄bs Affects some branch not through any shared access, and the

branch affects some shared access.

i_sbs Affects some branch through some shared access, and the branch

affects some shared access.

These six input types are also shown pictorially in Figure 1(a),
where the circles show the different domains (I:Inputs, BR:Branches,
SH:Shared Accesses). Note that I are the sources, and BR and SH
can be either conduits or sinks, and various intersections denote
how inputs influence them. The inputs that do not affect any shared
access and do not affect any branch, denoted by type i_irrel, are
regarded as irrelevant, and the rest are regarded as relevant.



The goal of relevancy analysis is to identify relevant inputs which
may affect shared-object state and control flow of multi-threaded
programs. Information about relevant inputs can have many poten-
tial uses in monitoring and analyzing multi-threaded programs. For
example, deterministic replay systems [29, 1, 19, 40] need not mon-
itor irrelevant inputs for which natural (unlogged) input during re-
play can be used since they would not affect the shared-object state
of the program nor the program path (e.g., taken branches). Simi-
larly, deterministic execution systems [26, 7], systematic schedule
testing tools [23], and concurrency bug reproduction tools [43] also
can be augmented with system support for monitoring only relevant
inputs. Relevant input analysis can also have a significant effect
on testing, as one need not explore the space of irrelevant inputs.
Given limited testing time, one can selectively alter only relevant
inputs to provide improved test coverage.
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Figure 1: Relevancy Types for (a) Inputs (I), (b) Shared objects (S), based
on their effect on branches (BR) and shared accesses (SH).

The relevant input types of interest may vary for different appli-
cations. We highlight some of the potential uses:

• One may be interested in the subset of inputs which affect
branches only but not any shared object, i.e., those that do
not influence the interleaving coverage (ordering of shared
accesses). Such inputs, identified by the type i_s̄bs̄, are in-
cluded in the intersection of I and BR.

• Similarly, one may be interested in the subset of inputs that
do not affect branches but only some shared accesses, i.e.,
that do not influence any program path (but may be just the
outputs). Such inputs, identified by the type i_b̄sb̄, are in-
cluded in the intersection of I and SH. From the point of view
of deterministic replay, such inputs may also be irrelevant.

• One may want to obtain a subset of inputs which affect some
shared accesses that are control-dependent on inputs, i.e.,
those that may influence the local branches but not the branches
of the other threads. Such inputs, identified by the type i_s̄bs,
are included in the intersection of I, BR and SH.

Based on above potential uses, we also identify some useful
groups of relevant types, as shown in Table 2. We discuss the sig-
nificance of the grouping shortly, but first we provide illustrations
of the types of inputs as shown in Table 3. For each type (shown
in Column 1), we show the effect propagation chain in Column 2.
In Column 3, we use two threads T1 and T2, communicating with
shared objects S and S′, and local objects x, y, z, and highlight
the corresponding input types with code snippets. In the rest of the
columns, we identify the membership of each type in the groups.

The groups of input types we consider are as follows:

• I_s̄b: inputs that affect some branches not through any shared
access

• I_bs: inputs that affect some shared accesses through some
branches

• I_b: inputs that affect some branches (shared object may or
may not be a conduit)

• I_s: inputs that affect some shared accesses (branch may or
may be a conduit)

• I_b_s: inputs that affect either some shared accesses or some
branches

Note that both I_b and I_s include I_bs, and I_b_s subsumes all
relevant input types. Our experimental evaluation (described later)
uses these groups.

Table 2: Input Relevancy Groups

Group i_irrel i_b̄sb̄ i_s̄bs̄ i_sbs̄ i_s̄bs i_sbs

I_s̄b X X

I_bs X X

I_b X X X X

I_s X X X X

I_b_s X X X X X

Table 3: Types and Groups of Inputs Relevancy
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3.2 Relevant Shared Objects (Sources)
Like inputs, shared objects can influence other shared-object state,

or control flow, or both.

Table 4: Relevancy Types for Shared Objects

Types Description

s_irrel Affects neither a branch nor another shared access.

s_b̄s Affects some shared access but not any branch.

s_̄ibs̄ Affects some branch without propagating the effect of any input,

but the branch does not affect any shared access.

s_ibs̄ Affects some branch with propagating the effect of some input,

but the branch does not affect any shared access.

s_̄ibs Affects some branch without propagating the effect of any input,

and the branch affects some shared access.

s_ibs Affects some branch with propagating the effect of some input,

and the branch affects some shared access.

Table 5: Shared Object Relevancy Groups

Group s_irrel s_b̄s s_ībs̄ s_ibs̄ s_ībs s_ibs

S_̄ib X X

S_bs X X

S_b X X X X

S_s X X X

S_b_s X X X X X

We propose six possible relevancy types for shared objects (as
sources), based on how they influence branches or shared accesses:
s_irrel, s_b̄s, s_̄ibs̄, s_ibs̄, s_̄ibs, and s_ibs. These are described
in Table 4, and the mnemonics used here are similar to those for
inputs (as sources) described earlier. Also, these types are shown
pictorially in Figure 1(b). The shared objects that do not affect



Table 6: Types and Groups for Shared Object Relevancy
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any shared accesses and do not affect any branches, indicated by
type s_irrel, are regarded as irrelevant. The remaining types are
regarded as relevant.

Some potential applications of relevancy analysis for shared ob-
jects are as follows:

• One may be interested to know if a shared object can influ-
ence a branch but not another shared access. Such shared
objects, identifiable by types s_̄ibs̄ and s_ibs̄, are included
in the intersection of S (source) and BR (sink).

• One may like to know if a shared object can not influence
any branch. Such shared objects, identifiable by type role
s_b̄s, are included in the intersection of S (source) and SH
(sink). For example, if a race is on a shared object that does
not have any effect on control flow, one may classify the race
as benign; otherwise, potentially malign.

• It can also empower a data-race detector to relax certain read-
after-write ordering constraints while predicting data races.
Data race detectors such as [2, 37] use happens-before anal-
ysis, often with a relaxed ordering of lock/unlock as long as
read-after-write (RAW) constraints are not violated. Such
constraints are enforced to avoid potentially false (infeasi-
ble) data races. However, if a shared object does not affect
any branch, it may ignore those constraints during race pre-
diction to find more potential races.

• A sampling-based race detection such as [21] can also benefit
by focusing on a smaller set of shared objects. (In our exper-
imental data we found that, on average, about 12% shared
objects affect some branch).

Again, based on potential uses, we have grouped the shared types
into the following five groups, also shown in Table 5.

• S_īb: shared objects that affect some branches without prop-
agating the effect of any input

• S_bs: shared objects that affect some other shared accesses
through some branches

• S_b: shared objects that affect some branches (input can be
a source)

• S_s: shared objects that affect some other shared accesses
(branch can be a conduit, input can be a source)

• S_b_s: shared objects that affect either some other shared
accesses or some branches

Like types for inputs, we also illustrate the various types for
shared objects using small examples, as shown in Table 6.

3.3 Dependencies of Sinks
So far we have addressed relevance of sources (Inputs, Shared

Objects) by following chains of influence from these sources to
sinks (Branches, Shared Accesses). Going in the other direction,
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Figure 2: Dependencies of Sinks: (a) Shared accesses (SH), (b) Branches
(BR) based on their dependency on inputs(i)/branches(b)/shared objects(s).

we can also identify dependencies of sinks, i.e. how shared ac-
cesses and branches depend on inputs/branches/shared objects.

We identify four types of shared access dependencies, as shown
in Figure 2(a).

• SH_i_b: shared accesses that are dependent on some branches
and on some inputs

• SH_i: shared accesses depending only on some inputs (not
dependent on any branch)

• SH_b: shared accesses depending only on some branches
(not dependent on any input)

• SH_nodep: shared accesses that depend neither on any in-
put nor on any branch

Similarly, we identify four types of branches dependencies, as
shown in Figure 2(b).

• BR_i_s: branches that depend on some inputs and some
shared objects

• BR_i: branches depending only on some inputs

• BR_s: branches depending only on some shared objects

• BR_nodep: branches that depend neither on any input nor
on any shared object

4. Dynamic Taint Analysis forMulti-threaded
Programs

In this section, we describe how dynamic taint analysis can be
used for relevancy analysis and describe some challenges in multi-
threaded programs in Section 4.1. Then, we provide our proposed
dynamic taint analysis approaches for multi-threaded programs, namely:
DTAM-serial, DTAM-parallel, and DTAM-hybrid.

4.1 Taint Analysis for Relevancy Analysis
There are three main steps in traditional sequential dynamic taint

analysis: (1) tagging, i.e., identifying data from external inputs
and marking them as tainted, (2) propagating the taint tag along
the data and control flow through the program, and (3) checking
whether tainted data is used unsafely. We use this dynamic taint tag
propagation and check scheme to enable relevant analysis. We also
generate a unique taint tag on data from each input and from each
shared object reads, and propagate it along data-flow and control-
flow. However, in our relevancy analysis, we do not use taint analy-
sis to focus on security policy or detect security attacks; instead, we
perform runtime checks on shared accesses and/or branches. For
example, when a taint tag from input data propagates to a shared
access, through a branch or directly, we say that the input affects
shared-object state. We classify it according to our relevancy types.

Extending a sequential dynamic taint analysis to multi-threaded
programs is non-trivial. One needs to consider concurrent accesses
to a shared object with additional guarantee that a shared instruc-
tion and instrumented code for taint propagation are executed atom-
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Figure 3: Example of DTAM Analysis. On the left code example, I0 and I1 are program inputs; x, y, and z are local objects; S0 and S1 are shared
objects where statements 2 and 7 have a data-race (i.e., statement 2 can happen before (�) statement 7, or vice-versa); and there exists a must-happens-before
order between statements 10 and 3 enforced by Notify() and Wait(). On the right, we show the results of DTAM-serial, DTAM-parallel, and DTAM-hybrid
approaches. DTAM-serial depends on the serialized schedule, so it may lead to under-tainting as in case 2. For DTAM-parallel and DTAM-hybrid, the dotted
arrows represent the result of offline analysis. Since DTAM-parallel does not consider a must-happens-before order constructed by synchronization operations,
it may result in over-tainting.

ically. In addition to thread-local data and control flow, one also
need to consider inter-thread flow for taint propagation, where in
a taint tag can propagate from one thread to another through read-
after-write (RAW) shared object dependency.

4.2 DTAM-serial
One straightforward solution for multi-threaded programs is to

serialize the multi-threaded execution, and then propagate taint tags
along the serialized schedule while ensuring atomicity between a
shared instruction and instrumented code for taint propagation. We
call this approach DTAM-serial.

In DTAM-serial approach, there exists a single taint map for
shared objects which holds propagated taint tags for each shared
object. This map is shared by all threads so that one thread can
see the effect of taint propagation by the other. In addition, each
thread has its own taint map for registers which contains thread lo-
cal context information. Though DTAM-serial is easy to reason
about and implement, it has two drawbacks. First, it cannot ex-
ploit application-level parallelism and therefore, it is much slower
than normal executions even without considering instrumentation
costs. Second, DTAM-serial is carried out on the observed serial-
ized schedule, so it may lead to undertainting w.r.t. other possible
interleavings on the same inputs.

We illustrate the above issue in Figure 3. On the left code exam-
ple, I0 and I1 are program inputs; x, y, and z are local objects; S0
and S1 are shared objects. Note that statements 2 and 7 have a data-
race. On the right, we show the result of DTAM-serial approach
based on two different schedules. If statement 2 happens-before
statement 7 (Case 1), then taint tag for I0 is propagated to y, BR0,
and S1 in Thread 1 via read-after-write (RAW) shared accesses of
S0. However, if statement 7 happens before statement 2 (Case 2),
then the taint tag for I0 would not be propagated to Thread 1. Thus,
serializing an execution potentially leads to undertainting.

4.3 DTAM-parallel
To overcome the two limitations of DTAM-serial, i.e., serializa-

tion and undertainting, we propose a parallel dynamic taint analysis
technique, namely DTAM-parallel. In addition to thread-local data
and control flows, a taint tag can be propagated from one thread to
another through write and read accesses to the same shared object

in multi-threaded programs (RAW dependency). Therefore, it is
necessary to deal with this additional inter-thread flow in dynamic
taint analysis for multi-threaded programs. For each thread, the
shared writes are the points where a local taint tag can be poten-
tially propagated to the other threads, and the shared reads are the
ones where a remote taint tag can be propagated into a thread.

Like DTAM-serial, DTAM-parallel marks each input data with
a unique input taint tag. However, in DTAM-parallel, each thread
maintains its own taint map for shared objects and performs thread-
modular taint propagation. When a thread performs a shared read,
it creates a unique pseudo taint tag and propagates it as if the shared
read was treated as an external input.During offline analysis, this
pseudo taint tag will be replaced by taint tags, which can be prop-
agated via shared writes (performed on the same object) by remote
threads. To obtain this additional information, when a thread per-
forms a shared write, it logs the shared object identifier (such as
memory address) and corresponding taint tags. On completion of
thread-modular taint propagation, an offline analysis collects the
taint results of each thread and aggregates them by replacing the
pseudo taint tags on shared reads with the propagated taint tags on
shared writes (performed on the same object) by remote threads.

There is a performance-precision tradeoff in using the DTAM-
parallel approach. By performing taint analysis for each thread, it
can take advantage of parallelism, but the offline merging step may
lead to over-tainting because it does not consider must-happens-
before relation due to synchronization operations. It conservatively
propagates the taint tag from one thread to another whenever there
exists a shared write-read pair to the same shared object. However,
if the shared write happens after the shared read, the taint tag should
not propagate from write to read.

Although not precise, this conservative propagation provides gen-
eralization over other interleavings on the same inputs. The pro-
posed DTAM-parallel approach implicitly captures the effects of
many possible interleavings when merging the thread-modular re-
sults offline; however, this comes at the cost of over-tainting. In the
following section, we discuss our final technique, namely DTAM-
hybrid, which takes into account the must-happens-before relation-
ship enforced by synchronization operations.

Figure 3 shows this tradeoff. In DTAM-parallel, Thread 0 logs



taint tag I0 and I1 on shared writes (on statements 2 and 5, respec-
tively), and Thread 1 treats the shared read as a pseudo input on
statement 7. This allows two threads to perform thread-modular
taint analysis in parallel. Then, the offline analysis merges the re-
sults by replacing pseudo taint tags with the propagated input tags
on shared accesses to the same object, as represented by the dotted
arrows in the example. However, DTAM-parallel does not consider
a must-happens-before order between statements 10 and 3 enforced
by Notify() and Wait(), thus it could result in over-tainting, i.e., it
may conclude that I1 can also affect y, BR0, and S1.

4.4 DTAM-hybrid
DTAM-hybrid tracks synchronization operations and takes into

account the must-happens-before relationship to address the above
over-tainting problem. Such types of synchronization prevent local
taint tags from being propagated from a shared write to a shared
read, if the shared read must happen before the shared write. We
also record vector clocks for each read and write event, in addi-
tion to the shared events and tags. Such information is used for
determining the must-happens-before relationship during aggrega-
tion step (as discussed in the next section).

Figure 3 shows the difference between DTAM-parallel and DTAM-
hybrid. DTAM-hybrid is aware of the must-happens-before order
between Notify() in Thread 1 and Wait() in Thread 0. Therefore,
during the offline merge stage, it does not allow taint tag of I1 in
Thread 0 to be propagated to Thread 1.

In Table 7, we present the results of taint analysis in identify-
ing various relevant inputs and shared objects for the example in
Figure 3. Similarly, in Table 8, we present the results of taint
analysis in identifying various dependencies of shared accesses and
branches. Note, all branches and shared access have dependencies
on inputs and/or shared objects.

As one would expect, DTAM-hybrid gives the most precise1 re-
sult compared to DTAM-serial and DTAM-parallel.

Table 7: Input and Shared object relevancy

input groups shared objects groups
dtam

I_s̄b I_bs I_b I_s I_b_s S_̄ib S_bs S_b S_s S_b_s

serial (1) I0 I0,I1 I0,I1 I0,I1 S0 S0,S1 S0,S1 S0,S1

serial (2) I1 I0,I1 I0,I1 S0 S0,S1 S0,S1 S0,S1

parallel I0,I1 I0,I1 I0,I1 I0,I1 S0,S1 S0,S1 S0,S1 S0,S1

hybrid I0 I0,I1 I0,I1 I0,I1 S0 S0,S1 S0,S1 S0,S1

Table 8: Shared access and branch dependency

shared access branch
dtam

SH_i_b SH_i SH_b BR_i_s BR_i BR_s

serial (1) S1 S0 BR0,BR1

serial (2) S0 S1 BR1 BR0

parallel S1 S0 BR0,BR1

hybrid S1 S0 BR0,BR1

4.5 Aggregation of thread-modular results
In this section, we describe how we perform the offline merging.

We first introduce some notation:

• I : a set of all input taint tags (i.e., inputs)

• S: a set of all pseudo taint tags (i.e., shared object reads)

• t: an input or a pseudo taint tag, i.e., t ∈ I ∪ S

• t.r: read access event corresponding to pseudo taint tag t

• t.obj: shared object corresponding to pseudo taint tag t

• t.lw: last observed thread local write event to t.obj (t.lw �
t.r)

1DTAM-hybrid may still have overtainting problem if the causal-ordering (≺) permits

infeasible permutation of trace events. Although one may avoid the problem by using

maximal-causal models [35], one may incur low coverage.

• t.gw: last observed global write event to t.obj (t.gw � t.r)

• t.A: a set of all shared write events by other threads to t.obj

• w.T : a set of taint tags propagated (during thread-modular
taint analysis) to write event w

The goal of aggregation is to obtain a transitive dependency on
inputs taint tags (or pseudo taint tags) for a given set of taint tags
propagated at sinks in a thread-modular taint analysis.

For a given relevancy group R (e.g., I_b, S_b), let R.d denote a
set of pseudo taint and input taint tags that were relevant for R as
obtained from the thread-modular taint analysis.

We then obtain a set of all input taint tags that are relevant forR,
denoted as R.I , as follows:

R.I =
⋃

t∈R.d

t.I (1)

where t.I is the set of all input taint tags that can possibly affect t
(computed as described below).

Similarly, we obtain a set of all pseudo taint tags that are relevant
for R, denoted as R.S, as follows:

R.S =
⋃

t∈R.d

t.S (2)

where t.S is the set of all pseudo taint tags that can possibly affect
t.

We now describe how we obtain t.I and t.S for a tag t. Let t.W
denote a set of all write accesses that can possibly affect the read of
t.obj. In the following, we define t.W in such a way that we can
uniformly handle DTAM-serial/parallel/hybrid.

t.W =











{t.gw} serial

{t.lw} ∪ t.A parallel

{t.lw} ∪ {w|w ∈ t.A ∧ (t.r 6≺ w)} hybrid

(3)

We then compute t.I and t.S recursively using t.W as follows:

t.I =

{

{t} if t ∈ I
⋃

w∈t.W
(
⋃

t′∈w.T
t′.I) if t 6∈ I

(4)

t.S =

{

{} if t ∈ I
⋃

w∈t.W (
⋃

t′∈w.T t′.S) if t 6∈ I
(5)

5. Implementation
In this section, we describe our implementation for relevancy

analysis based on dynamic taint analysis. We first discuss a profile-
based approach to identify shared instructions in Section 5.1 and
then discuss the implementation of DTAMapproaches in Section 5.2.

5.1 Profiling Shared Instructions
For a given program, DTAM needs to identify a set of shared

instructions (i.e., program locations of read/write events) for two
reasons: First, the DTAM approaches proposed in Section 4 rely
on shared instructions for inter-thread data flow based (RAW de-
pendency) taint propagation. For example, DTAM-serial ensures
atomicity between shared accesses and instrumented code. For
DTAM-parallel and DTAM-hybrid, the pseudo taint tags are gen-
erated at shared read accesses, and the taint tags are logged during
shared write accesses. Second, the relevant analysis perform taint
checks on the shared accesses as we are interested in the inputs
and shared objects that can affect the outcome of the shared ac-
cesses. The process of identifying shared instructions can be done
through profiling or static analysis. In our implementation, we use
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Figure 4: DTAM overview

a profile-based approach, where we execute the programs multi-
ple times with representative test data and collect the set of shared
instructions, along with its type of operation (write or read).

We used PIN [20], a dynamic binary translation tool to instru-
ment and profile application x86 executables. We maintain meta-
data for each byte of location address, which represents the access
history of each thread. An instruction is marked shared if the in-
struction accesses a shared object which has been accessed by other
threads. Instead of using instruction address, we name each instruc-
tion the tuple of loaded image name and offset so that we can refer
to each instruction uniformly for different profiled runs (e.g., a dy-
namically linked library may be loaded into different addresses).

5.2 DTAM
We implemented the proposed DTAMapproaches (DTAM-serial,

DTAM-parallel, and DTAM-hybrid) based on Dytan [5] which pro-
vides a generic framework for dynamic taint analysis. Dytan sup-
ports dynamic taint analysis for an x86 executable by instrument-
ing it on-the-fly to produce an instrumented executable, using the
PIN [20] tool. Dytan maintains taint tags for each byte of location
address and supports allocating virtually any number of taint mark-
ings, which allows us to specify different taint marking for different
input sources. Dytan also supports both explicit (data-flow based)
and implicit (control-flow based) information flow. For control-
flow based taint propagation, Dytan performs static analysis on the
binary to find immediate post-dominator of a conditional branch.
All the statements that belong to the paths starting at the conditional
branch and ending with its immediate postdominator are conserva-
tively marked as tainted if the conditional branch depends on the
tainted data. In addition to leveraging the default functionalities in
Dytan, we extended the framework to support DTAM as follows.

First, Dytan was originally developed for supporting sequential
programs. For sequential programs, there is no inter-thread taint
propagation. However, concurrent accesses to shared location lo-
cations and corresponding metadata updates should be carefully
handled in multi-threaded programs. In DTAM-serial mode, we
ensure atomicity between shared accesses and taint propagation
using locks, as all threads share a single taint map for shared ob-
jects. In DTAM-parallel and DTAM-hybrid, each thread maintains
its own taint map for shared objects and performs thread-modular
taint propagation. Note that inter-thread taint propagations are han-
dled by the offline merge stage. On the thread-modular data, we can
also do a serialized merging (as shown in Eq 3) to obtain DTAM-
serial data. Figure 4 gives an overview of the implementations of
the various DTAM approaches.

Second, as our goal is to identify relevant inputs, DTAM taints
all the program inputs. This is not true for traditional dynamic

taint analysis tools including Dytan, as most of them refer to some
(not all) inputs that stem from external sources such as network,
disk, user keyboard, etc. to be tainted. (Traditional DTA tools
were primarily used to track untrusted user input data.) For ex-
ample, DTAM considers the return value of system calls such as
gettimeofday, rdtsc to be tainted because its value can have
an effect on shared state or control flow of the program. In con-
trast, Dytan clears the taint tag for the target registers.

Third, DTAM supports precise control-flow based taint propaga-
tion at the flag (bit) granularity of status register (e.g. EFLAGS). In
Dytan, like other registers, taint tags are maintained for the whole
EFLAGS status register, thus Dytan cannot differentiate the taint
tag for each flag bit such as CF(carry flag), PF(parity flag), and
ZF(zero flag). However, most x86 instructions do not affect all the
flags in the status register, so flag-sensitive taint propagation for the
status register can lead to better precision.

6. Experimental Results
We now report evaluation of DTAM approaches for relevancy

analysis. We begin with describing our evaluation methodology.
Then, we compare the result of relevancy analysis for different
DTAM approaches. Last, we show the distribution of shared ac-
cesses and branches in terms of their dependency on inputs, branches,
and shared objects.

Experimental Setup. We ran all experiments on a 2.8GHz 2-
core Xeon processor with 4GB of RAM running Linux 2.6.9 ker-
nel. We used two sets of benchmarks. The first set consists of
six desktop applications from open source repositories [17, 16],
namely: aget, pfscan, pnscan, pbzip2, fastspy, and axel. The test
setup for each application is as follows: aget downloads a 47KB
file in parallel; pfscan searches in parallel for the string “debug” in
a directory with 30KB of sources files; pnscan scans TCP port in
parallel to find running web servers; pbzip2 compresses a 0.8KB
log file in parallel; fastspy scans port 10 to 20 for a given IP ad-
dress; and axel downloads a 47KB file. The second set consists of
three representatives of scientific application with different charac-
teristics from PARSEC-2.1 suite [31] 2: blackscholes, canneal, and
streamcluster. We used simsmall input sets for the evaluations.

Table 9: Characteristics of multi-threaded applications.

Apps (LOC, Lang) N E Idyn Isc SH S ON OFF

aget (1.1K, C) 4 84K 318 65 35K 8.5K 9 18

pfscan (1K, C) 3 47K 197 49 37K 869 17 30

pnscan (1.5K, C) 2 6K 776 66 2K 931 32 0.1

pbzip2 (5K, C++) 3 5K 252 55 712 1K 28 0.05

blackscholes (800, C) 3 2K 192 39 68 369 5 0.05

canneal (1.7K, C) 3 7K 204 43 4K 717 5 0.1

streamcluster (1.2K, C++) 5 20K 2K 44 10K 804 20 4

fastspy (1.2K, C) 12 73K 740 54 28K 7K 9 71

axel (4K, C) 7 64K 1568 65 32K 11.5K 23 4

In Table 9, we report the run time characteristics for the tests
conducted for the applications listed in Column 1. The number
of threads (N, Column 2) was between 2 to 12, and the number
of observed events was between 2K to 84K (E, Column 3). We
use Idyn to denote the number of nd events (Column 4), ranging
from 192 to 2K. We count each instance of system calls (return
value, data copied into user-level process) and nondeterministic in-
structions (e.g., rdtsc) as input source. The static count of inputs
(Column 5, Isc) is the count of loc(e) where e is nd event, ranging
from 39 to 66. It is obtained by combining the effect of multiple
dynamic instances (i.e., nd events). We use SH to denote the num-
ber of read/write events (Column 6), ranging from 68 to 37K.

2Blackscholes has coarse-grained data- parallel parallelization with low sharing; Can-

neal has fine-grained unstructured parallelism with high frequent sharing pattern; and

Streamcluster has medium-grained and medium level of sharing characteristics.



The number of shared objects (Column 7, S) refers to the distinct
objects, where each object was accessed by at least two threads.
We ran each application 20 times first to profile a set of shared
instructions. The online thread-modular taint analysis (Column 8,
ON) took between 5 to 32 minutes, about 16 minutes on average
per application. The offline aggregation of the thread-modular taint
results (Column 9, OFF) took between a few seconds to 70 min-
utes, 15 minutes on average per application. These times (shown in
min.) can be improved further with a better implementation.

Results of Relevancy Analysis. For comparing different DTAM
approaches on the same observed trace, we use the same thread-
modular data for aggregation for serial/parallel/hybrid. The left
half of Figure 5 shows the results of relevant input analysis based
on DTAM-hybrid. Results for DTAM-serial and DTAM-parallel
show similar trends, and are not shown. Each bar represents the ra-
tio of relevant inputs to the total number of inputs (Isc) for a given
relevant input type. For aget, I_s̄b is 9% (=6/65), I_bs is 28%
(=18/65), I_b is 28% (=18/65), I_s is 43% (=28/65) and I_b_s is
43% (=28/65), resp. The average of each bar is shown rightmost.

For DTAM-hybrid (and similarly for parallel and serial), on av-
erage, about 15% of inputs are categorized into relevant group I_s̄b
that affects branches not through any shared access, about 25% of
inputs are categorized into group I_bs (and I_b). The percentage
increases to 40% on average for I_s (and I_b_s) on our bench-
marks. This implies that about 15% inputs (I_b_s−I_s) that affect
shared accesses do not have control over the program paths, and
60% inputs are irrelevant. We found that (1) many rdtsc instruc-
tions (e.g., 10/49 in pfscan) are just used for logging time stamp of
events (e.g., thread creation) and never affect branching, (2) many
return values from system calls (e.g., sys_close, sys_fstat64,
sys_write, sys_mprotect etc.) are not used, whereas some re-
turn value matters (e.g., sys_open).

For comparing different DTAM approaches, we show results for
group I_bs as shown in the right half of Figure 5. For three ap-
plications (i.e., aget, fastspy, and axel) DTAM-parallel and DTAM-
hybrid demonstrate the generalization effect, resulting in larger rel-
evancy ratios compared to serial. DTAM-hybrid addresses the over-
tainting issue in DTAM-parallel, and undertainting issue in DTAM-
serial, as observed for aget in particular. We observe that the ratio
of shared objects (S) to that of inputs (Isc) for these three applica-
tions is about 100, while that of the rest is about 10. Such a large
ratio indicates more pronounced generalization.

The left half of Figure 6 shows the results of relevant shared ob-
ject analysis based on DTAM-hybrid. (Results for DTAM-serial
and DTAM-parallel are similar, and are not shown.) Each bar rep-
resents the ratio of relevant shared objects to the total number of
shared objects for a given relevant shared type. The average of
each bar is shown rightmost. We observe that relevancy ratio S_īb
for these applications is 0%, i.e., all shared objects that affect some
branch also propagate the effect of some input to the branch. Fur-
ther, the relevancy ratio for groups S_bs and S_b is about 3% each
on average, indicating that shared objects have very small impact
on the control over the program paths. The ratio increases to 13%
on average for S_s and S_b_s each, indicating that the 10% shared
objects that affect other shared accesses do not control the program,
and about 87% shared objects are irrelevant. Comparing all DTAM
approaches, hybrid gives better precision, as observed for axel.

Disclaimer: The relevancy ratios for inputs and shared objects
reflect the trends observed on the test runs of the benchmarks used
in our experiments. It may hold for other multi-threaded bench-
marks that were not used, but may not hold in general.

Sink Dependencies. We now evaluate the dependency for sinks
(shared accesses and branches) i.e., (1) how many shared accesses
depend on inputs and/or branches and (2) how many branches rely
on inputs and/or shared objects. We chose DTAM-hybrid to repre-
sent the results, as other methods give similar results.

The left half of Figure 7 shows the distribution of dynamic in-
stances of shared accesses that are dependent on inputs and/or branches
among all tested applications. Except for blackscholes, we observe
that more than 95% of shared accesses turn out to be dependent
upon inputs (SH_i and SH_i_b) at runtime, and most of them de-
pend on both inputs and branches.

The right half of Figure 7 shows the distribution of dynamic in-
stances of branches that are dependent upon inputs and shared ob-
jects. Similar to previous result, most of branches depend on inputs
(BR_i) or both inputs and shared objects (BR_i_s).

These results highlight that most shared accesses and branches
are dependent on some inputs. This implies that without prop-
erly monitoring such relevant inputs, it is extremely difficult to re-
construct shared state or control flow of multi-threaded programs,
which justifies our motivation of relevancy analysis.

7. Related Work
Our work is related to dynamic taint analysis and runtime multi-

threaded program monitoring.
Dynamic Taint Analysis. In the last few years, there have been

many proposals to build efficient dynamic taint analysis tools from
both software and hardware communities. Overall, the previous
proposals can be categorized into three approaches based on under-
lying infrastructure used: dynamic binary translation (DBT) based
approaches [25, 4, 33, 44, 5, 47], whole-system emulation based
approaches [8, 46, 15], and hardware-assisted systems [38, 6, 41].

Dynamic binary translation has been largely used for implement-
ing dynamic taint analysis, as it works easily on a given executable
binary, and most previous works have focused on reducing perfor-
mance overhead of taint propagation and runtime checks for se-
quential programs with better instrumentation techniques. For ex-
ample, TaintTrace [4], based on DynamoRio, leverages one-to-one
table mapping between data and taint metadata for fast lookup, and
also implements a fast switch between original code and instru-
mentation using dead register analysis and eflag liveness analysis.
Similarly, LIFT [33], implemented by StarDBT, proposes a condi-
tional branching mechanism between a fast path (w/o instrumenta-
tion) and a slow path (with instrumentation) to skip redundant run-
time checks. It also implements an efficient instrumentation mech-
anism without stack switches. Recently, TaintEraser [47], based
on PIN, proposes to leverage user-annotated function summaries to
speed up runtime taint propagation and checks. Even though we
also use the dynamic binary translation tool PIN, our focus is not
on improving performance using better instrumentation like previ-
ous works. Instead, we focus on enabling parallel taint analysis for
multi-threaded programs. All the previous DBT-based works either
do not consider multi-threaded programs, or simply assume serial-
ized executions (like DTAM-serial). On the other hand, previous
whole-system emulation based approaches enable dynamic taint
analysis for multi-threaded programs, but they suffer from high per-
formance overhead and require support from operating systems or
hardware for practical implementation.

Runtime Monitoring for Parallel Programs. With the advent
of multicore processors, runtime systems that exploit extra cores to
monitor multi-threaded programs have been proposed. Log-Based
Architecture (LBA) [3] supports a hardware event queue which effi-
ciently collects runtime execution events (e.g. memory operations).
The logged information can be dequeued by lifeguards, which run
in parallel with the original program on spare cores and perform
runtime checks. For example, Bufferfly analysis [14] has been built
on top of LBA for efficient memory bound analysis and taint anal-
ysis for multi-threaded programs.

Respec [19] proposes a software-only system that enables decou-
pled runtime checks of multi-threaded programs based on an online
deterministic replay technique. Respec records non-deterministic
events of the original process and reproduces them for the replayed



Figure 5: (L) Ratio of relevant inputs to total inputs (Isc) for DTAM-hybrid; (R) Comparison of serial/parallel/hybrid for I_bs.

Figure 6: (L) Ratio of relevant shared objects to total shared objects (S) for DTAM-hybrid; (R) Comparison of serial/parallel/hybrid for S_bs.

Figure 7: Distribution of dynamic instances of (left) shared accesses that depend on inputs and/or branches, (right) branches that depend on inputs and/or
shared objects.

process, which run in parallel on extra cores. As replayed exe-
cution is guaranteed to be same as the original execution, it al-
lows users to perform heavy-weight runtime checks on replayed
executions without pausing the original executions. As an exten-
sion, Doubleplay [40] timeslices multi-threaded executions into so-
called epochs, and runs each epoch in uniprocessor concurrently
with original execution. As each epoch is executed in uniprocessor,
Doubleplay enables using sequential version of monitoring tools
(such as bound checks, taint checks, etc.) without modification and
its runtime cost can be parallelized.

In contrast, our system DTAM monitors each thread indepen-
dently (i.e., performs thread-modular taint analysis) and considers
the effect of shared accesses later in an offline analysis.

8. Conclusions
We presented a thread-modular dynamic taint analysis for multi-

threaded programs which can provide generalized taint analysis
from a single observed execution. We used this analysis to iden-
tify a smaller set of inputs and shared objects in a multi-threaded
program. In future work, we plan to evaluate the benefits of rele-
vancy analysis to a replay system for multi-core platforms. Based
on potential uses, we also introduced various relevancy types and
groups for inputs and shared objects. Such relevancy analysis can
be used to improve testing, verification, debugging, and program
understanding for multi-threaded programs during development, or
for failure diagnosis after deployment.
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