Functional Programming - 2

- Higher Order Functions
 - Map on a list
 - Apply
 - Reductions: foldr, foldl
 - Lexical scoping with let’s

Higher Order Functions

- Functions as 1st class values
- Functions as arguments
 (define (f g x) (g x))
 (f number? 0) yields #t
 (f len '(1 (2 3))) yields 2
 (f (lambda (x) (* 2 x)) 3) yields 6
- Functions as return values
 (define incr (lambda (n) (+ 1 n))
 (incr 1) returns 2,
 incr returns #procedure:incr
Built-in function map

- Higher order function used to apply another function to every element of a list
- Takes 2 arguments: a function f and a list ys and builds a new list by applying the function to every element of the (argument) list

$$\text{(define (map } f \hspace{0.5cm} ys) \text{(if (null? } ys) \text{ () (cons (f (car } ys)) (map } f \hspace{0.5cm} (\text{cdr } ys))))}$$

$$(\text{map } \text{incr } '(1 \hspace{0.5cm} 2 \hspace{0.5cm} 3 \hspace{0.5cm} 4)) \text{ returns } (2 \hspace{0.5cm} 3 \hspace{0.5cm} 4 \hspace{0.5cm} 5)$$
$$(\text{map } \text{incr } '(-1 \hspace{0.5cm} 0 \hspace{0.5cm} 1)) \text{ returns } (0 \hspace{0.5cm} 1 \hspace{0.5cm} 2)$$
$$(\text{map } \text{(lambda } (x) \hspace{0.5cm} (* \hspace{0.5cm} 2 \hspace{0.5cm} x)) \text{ '(1 \hspace{0.5cm} 2 \hspace{0.5cm} 3)) \text{ returns } (2 \hspace{0.5cm} 4 \hspace{0.5cm} 6)$$

Possible to define a new map function map2 that takes n-ary functions and applies them to n lists, creating a new list

$$(\text{map2 } + \text{ '(1 \hspace{0.5cm} 2 \hspace{0.5cm} 3) \hspace{0.5cm} '(4 \hspace{0.5cm} 5 \hspace{0.5cm} 6)) \text{ returns } (5 \hspace{0.5cm} 7 \hspace{0.5cm} 9)$$
How map works?

(define (map f ys) (if (null? ys) '()
 (cons (f (car ys)) (map f (cdr ys)))))

TRACE of execution:
(map abs '(-1 2 -3))
 (cons (abs -1) (map abs (2 -3)))
 (cons (abs 2) (map abs (-3)))
 (cons (abs -3) (map abs '()))
 '()
 (3)
 (2 3)
 (1 2 3)
 (list 1 2 3)

Try stepping through the map definition in DrRacket.

Using map

Define atomcnt3 which uses map to calculate the number of atoms in a list. atomcnt3 creates a list of the count of atoms in every sublist and apply of + calculates the sublist sum.

(define (atomcnt3 s) (cond ((atom? s) 1)
 (else (apply + (map atomcnt3 s))))))

(atomcnt3 '(1 2 3)) returns 3
(atomcnt3 '((a b) d)) returns 3
(atomcnt3 '((1 ((2) 3) (((3) (2) 1))))) returns 6

How does this function work?
apply

apply is a built-in function whose first argument f is a function and whose second argument ys is a list of arguments for that function.

evaluation of apply applies f to ys

(apply + '(1 2 3)) returns 6
(apply zero? '(2)) returns #false
(apply zero? '(0)) returns #true
(apply (lambda (n) (+ 1 n)) '(3)) returns 4

The power of apply is that it lets your program build an S-expression to evaluate during execution, and then lets it be evaluated.

foldr

- Higher order function that takes a binary, associative operation and uses it to “roll-up” a list.

(define (foldr op ys id)
 (if (null? ys) id
 (op (car ys) (foldr op (cdr ys) id))))

(foldr + '(10 20 30) 0) yields
(+ 10 (foldr + (20 30) 0))
(+ 10 (+ 20 (foldr + (30) 0)))
(+ 10 (+ 20 (+ 30 (foldr + () 0))))
(+ 10 (+ 20 (+ 30 0))) yields 60

Think of inserting the op where the cons constructor is placed to build the list.
The Power of Higher Order Functions

- Can compose higher order functions to form compact powerful functions

\(\text{(define (sum f ys) (foldr + (map f ys) 0))} \)

- sum takes a function f and a list ys
- sum applies f to each element of the list and then sums the results

\(\text{(sum (lambda (x) (* 2 x)) '(1 2 3)) yields 12} \)
\(\text{(sum square '(2 3)) yields 13} \)

Using foldr

\(\text{(foldr append '((1 2) (3 4)) '()) yields} \)
\(\text{(app (list 1 2) (foldr append '((3 4)) '()))} \)
\(\text{(app (list 3 4) (foldr append '() '())))} \)
\(\text{'()} \)
\(\text{(list 3 4)} \)
\(\text{(list 1 2 3 4)} \)

Try this out using the stepper in DrRacket and watch how foldr works

\(\text{> (list 1 2 3 4)} \)

Defining \text{len} (list length function) from foldr.

\(\text{(define (len z) (foldr (lambda (x y) (+ 1 y)) z 0))} \)
Informal Trace of len

(len '(5 6 7)) is
(foldr (lambda (x y) (+ 1 y)) '(5 6 7) 0))
((lambda (x y) (+ 1 y)) 5 (foldr (lambda (x y) (+ 1 y)) '(6 7) 0))
((lambda...) 6 (foldr (lambda...) '(7) 0))
((lambda... 7 (foldr (lambda...) '() 0)) 0
((lambda (x y) (+ 1 y)) 7 0) yields 1
((lambda (x y) (+ 1 y)) 6 1) yields 2
((lambda (x y) (+ 1 y)) 5 2) yields 3

Fold operations

- Operations that combine elements of an S-expr in an ordered manner
- foldr - right associative
 - (foldr + '(1 2 3) 0) can see computation tree in which partial sums are calculated in order down the right branch

(define (foldr op ys id)
 (if (null? ys) id
 (op (car ys) (foldr op (cdr ys) id))))
Fold operations

- \texttt{foldl} - left associative, more efficient than \texttt{foldr}
 - \(\texttt{(foldl + (1 2 3) 0)}\) can see computation tree in which partial sums are calculated in order down the left branch
 - Note \texttt{foldl} uses less storage than \texttt{foldr}, because doesn’t need to keep values in the recursive copies; Instead it accumulates sum as it recurses downward

\[
\begin{align*}
\text{(define (foldl g ys u)} & \\
& \quad (\text{if (null? ys) u (foldl g (cdr ys) (g u (car ys)))))}
\end{align*}
\]

Using foldl

\[
\begin{align*}
\text{(define (rev xs)} & \\
\quad (\text{foldl (lambda (x y) (cons y x)) xs ‘(())})
\end{align*}
\]

then \(\text{(rev ‘(1 2 3))}\) will result in the following:

order of execution:

\[
\begin{align*}
\text{(cons 1 ‘(())}} & \\
\text{(cons 2 ‘(1))} & \\
\text{(cons 3 ‘(2 1))}
\end{align*}
\]
Comparison of Fold Functions

(define (foldr op ys id)
 (if (null? ys) id
 (op (car ys) (foldr op (cdr ys) id))))
(define (foldl g ys u)
 (if (null? ys) u (foldl g (cdr ys) (g u (car ys))))))

• Compare underlined portions of these 2 functions
 - Can see that foldl returns the value obtained from a recursive call to itself!
 - Foldr contains a recursive call, but it is not the entire return value of the function

Let expressions

Let -expr ::= (let (Binding-list) S -expr1)
Let* -expr ::= (let* (Binding-list) S -expr)
Binding-list ::= (Var S -expr) { (Var S -expr) }

• Let and Let* expressions define a binding between each Var and the S -expr value, which holds during execution of S -expr1
• Let evaluates the S -exprs in parallel (no order specified); Let* evaluates them from left to right.
• Both used to associate temporary values with variables for a local computation
• Variables declared in let’s follow lexical scoping rules
Let Examples

(let ((x 2)) (* x x)) yields 4
(let ((x 2)) (let ((y 1)) (+ x y))) yields 3
(let ((x 10) (y (* 2 x))) (* x y)) is an error because all exprs evaluated in parallel and simultaneously bound to the vars
(let* ((x 10) (y (* 2 x))) (* x y)) yields 200

Let Examples

(let ((x 10))) ; causes x to be bound to 10
(let ((f (lambda (a) (+ a x)))) ;causes f to bound to the lambda expr
 (let ((x 2)) (f 5)))
Evaluation yields (+ 5 10) = 15, NOT (+ 5 2) = 7
In dynamic scoping the answer would be 7!

(define (f z) (let* ((x 5) (f (lambda (z) (* x z))))
 (map f z)))
What does this function do?