Computation to Core Mapping

— Lessons learned from a simple application
A Simple Application

- **Matrix Multiplication**
 - Used as an example throughout the course

- **Goal for today:**
 - Show the concept of “Computation-to-Core Mapping”
 - Block schedule, Occupancy, and thread schedule

- **Assumption**
 - Deal with square matrix for simplicity
 - Leave memory issues later
 - With global memory and local registers
The algorithm and CPU code

\[P = M \times N \text{ of size } WIDTH \times WIDTH \]

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 {
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
 }
}
The algorithm and CPU code

\[P = M \times N \text{ of size } WIDTH \times WIDTH \]

// Matrix multiplication on the (CPU) host in double precision
void MatrixMulOnHost(float* M, float* N, float* P, int Width)
{
 for (int i = 0; i < Width; ++i)
 for (int j = 0; j < Width; ++j) {
 double sum = 0;
 for (int k = 0; k < Width; ++k) {
 double a = M[i * width + k];
 double b = N[k * width + j];
 sum += a * b;
 }
 P[i * Width + j] = sum;
 }
}
First Mapping Scheme

- **Thread mapping:**
 - Define the finest computational unit, and map it onto each thread
 - Main criterion: None Dependency
 - In our first scheme:
 Unit: Calculation of one element of P

- **Block mapping:**
 - Simple: One block
Step 1: Memory layout

\[M_{0,0} \quad M_{1,0} \quad M_{2,0} \quad M_{3,0} \]
\[M_{0,1} \quad M_{1,1} \quad M_{2,1} \quad M_{3,1} \]
\[M_{0,2} \quad M_{1,2} \quad M_{2,2} \quad M_{3,2} \]
\[M_{0,3} \quad M_{1,3} \quad M_{2,3} \quad M_{3,3} \]

\[M (\text{column#}, \text{row#}) \]
Step 2: Input Matrix Data Transfer (Host Code)

```c
void MatrixMulOnDevice(float* M, float* N, float* P, int Width)
{
    int size = Width * Width * sizeof(float);
    float* Md, Nd, Pd;

    // Allocate and Load M, N to device memory
    cudaMalloc(&Md, size);
    cudaMemcpy(Md, M, size, cudaMemcpyHostToDevice);
    cudaMalloc(&Nd, size);
    cudaMemcpy(Nd, N, size, cudaMemcpyHostToDevice);

    // Allocate P on the device
    cudaMalloc(&Pd, size);
}
```
Step 3: Output Matrix Data Transfer (Host Code)

2. // Kernel invocation code – to be shown later
 ...

3. // Read P from the device
cudamemcpy(P, Pd, size, cudamemcpyDeviceToHost);

 // Free device matrices
cudaFree(Md); cudaFree(Nd); cudaFree(Pd);
}
// Matrix multiplication kernel – per thread code

__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width)
{
 // Pvalue is used to store the element of the matrix
 // that is computed by the thread
 float Pvalue = 0;
Step 4: Kernel Function (cont.)

for (int k = 0; k < Width; ++k) {
 float Melement = Md[threadIdx.y*Width+k];
 float Nelement = Nd[k*Width+threadIdx.x];
 Pvalue += Melement * Nelement;
}

Pd[threadIdx.y*Width+threadIdx.x] = Pvalue;
Step 5: Kernel Invocation (Host Code)

// Setup the execution configuration
 dim3 dimGrid(1, 1);
 dim3 dimBlock(Width, Width);

// Launch the device computation threads!
MatrixMulKernel<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);
Issues with the First Mapping Scheme

- One Block of threads compute matrix Pd
- Other Multi-processors are not used.
Issues with the First Mapping Scheme

- **Each thread**
 - Loads a row of matrix Md
 - Loads a column of matrix Nd
 - Perform one multiply and addition for each pair of Md and Nd elements
 - Compute to off-chip memory access ratio close to 1:1 (not very high)
Issues with the First Mapping Scheme

- **Size of matrix limited by the number of threads allowed in a thread block**
 - Maximum threads per block: 512
 - Can only do 22 x 22 matrix
 - You can put a loop around the kernel call for cases when Width > 22. But multiple kernel launch will cost you.
Solution: the Second Mapping Scheme

- **Thread mapping:** the same with the first one
- **Block mapping:**
 - Create 2D thread blocks, each of which compute a \((TILE_WIDTH)^2\) sub-matrix (tile) of the result matrix
 - Each has \((TILE_WIDTH)^2\) threads
 - Generate a 2D Grid of \((WIDTH/TILE_WIDTH)^2\) blocks
More blocks \((\text{WIDTH}/\text{TILE_WIDTH})^2\)

- Support larger matrix
 - The maximum size of each dimension of a grid of thread blocks is 65535.
 - Max Width = 65535 x \(\text{TILE_WIDTH}\)

- Use more multi-processors
Algorithm concept using tiles

- Break-up P_d into tiles
- Each block calculates one tile
 - Each thread calculates one element
 - Block size equal tile size

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes
Computation to Core Mapping

Example

Block(0,0) Block(1,0)

\[\begin{array}{ccc}
P_{0,0} & P_{1,0} & P_{2,0} & P_{3,0} \\
P_{0,1} & P_{1,1} & P_{2,1} & P_{3,1} \\
P_{0,2} & P_{1,2} & P_{2,2} & P_{3,2} \\
P_{0,3} & P_{1,3} & P_{2,3} & P_{3,3}
\end{array} \]

TILE_WIDTH = 2

Block(0,1) Block(1,1)
Block Computation
__global__ void MatrixMulKernel(float* Md, float* Nd, float* Pd, int Width) {
 // Calculate the row index of the Pd element and M
 int Row = blockIdx.y*TILE_WIDTH + threadIdx.y;
 // Calculate the column index of Pd and N
 int Col = blockIdx.x*TILE_WIDTH + threadIdx.x;

 float Pvalue = 0;
 // each thread computes one element of the block sub-matrix
 for (int k = 0; k < Width; ++k)
 Pvalue += Md[Row*Width+k] * Nd[k*Width+Col];

 Pd[Row*Width+Col] = Pvalue;
}
Revised Kernel Invocation (Host Code)

// Setup the execution configuration
 dim3 dimGrid (Width/TILE_WIDTH, Width/TILE_WIDTH);
 dim3 dimBlock (TILE_WIDTH, TILE_WIDTH);

// Launch the device computation threads!
MatrixMulKernel<<dimGrid, dimBlock>>>(Md, Nd, Pd, Width);
Questions?

➢ For Matrix Multiplication using multiple blocks, should I use 8X8, 16X16 or 32X32 blocks?

➢ Why?
Up to 8 blocks to each SM as resource allows
SM in G80 can take up to 768 threads
 Could be 256 (threads/block) * 3 blocks
 Or 128 (threads/block) * 6 blocks, etc.
SM in GT200 can take up to 1024 threads
Each Block is executed as 32-thread Warps

If 3 blocks are assigned to an SM and each block has 256 threads, how many Warps are there in an SM?

- Each Block is divided into 256/32 = 8 Warps
- There are 8 * 3 = 24 Warps
Occupancy of Multiprocessor

How much a Multiprocessor is occupied:

Occupancy = Actually warps / Totally allowed

- GT200 SM allows 32 warps
- G80 SM allow 24 warps

For example:

- One block per SM, 32 threads per block
 \[(32/32) / 32 = 3.125\% \text{ (Very bad)}\]
- 4 blocks per SM, 256 threads per block
 \[(256/32) * 4 / 32 = 100\% \text{ (Very good)}\]
There are three factors:

- Maximum number of warps
- Maximum registers usage
- Maximum share memory usage
For Matrix Multiplication using multiple blocks, should I use 8X8, 16X16 or 32X32 blocks?

For G80 GPU:

- For 8X8, we have 64 threads per Block. Since each SM can take up to 768 threads, there are 12 Blocks. However, each SM can only take up to 8 Blocks, only 512 threads will go into each SM! (Occupancy = 66.6%)
- For 16X16, we have 256 threads per Block. Since each SM can take up to 768 threads, it can take up to 3 Blocks and achieve full capacity unless other resource considerations overrule. (Occupancy = 100%)
- For 32X32, we have 1024 threads per Block. Not even one can fit into an SM! (Can not support)
Answers to Our Questions (Cont’)

- For Matrix Multiplication using multiple blocks, should I use 8X8, 16X16 or 32X32 blocks?

- For GT200 GPU:
 - For 8X8, we have 64 threads per Block. Since each SM can take up to 1024 threads, there are 16 Blocks. However, each SM can only take up to 8 Blocks, only 512 threads will go into each SM! (Occupancy = 50%)
 - For 16X16, we have 256 threads per Block. Each SM takes 4 Blocks and achieve full capacity unless other resource considerations overrule. (Occupancy = 100%)
 - For 32X32, we have 1024 threads per Block. Each SM takes 1 Block and achieve full capacity unless other resource considerations overrule. (Occupancy = 100%)

Copyright © 2010 by Yong Cao, Referencing UIUC ECE498AL Course Notes
Computation to Core Mapping

Step 1:
- Define your computational unit, map each unit to a thread
 - Avoid dependency
 - Increase compute to memory access ratio

Step 2:
- Group your threads into blocks
 - Eliminate hardware limit
 - Take advantage of shared memory