© 2010-2011 by ACM. Original version in ACM Ubiquity. Reprinted here with permission.

doi:10.1093/comjnl/bxs074

Computation and Computational
Thinking

ALFRED V. AHO

Department of Computer Science Columbia University New York, N.Y. 10027
Corresponding author: aho@cs.columbia.edu

We recommend using the term Computation in conjunction with a well-defined model of computation

whose semantics is clear and which matches the problem being investigated. Computer science already

has a number of useful clearly defined models of computation whose behaviors and capabilities are

well understood. We should use such models as part of any definition of the term computation.

However, for new domains of investigation where there are no appropriate models it may be necessary
to invent new formalisms to represent the systems under study.

1. THE NEED FOR CLEAR DEFINITIONS

In any scientific discipline there are many reasons to use terms
that have precise definitions. Understanding the terminology
of a discipline is essential to learning a subject and precise
terminology enables us to communicate ideas clearly with other
people. In computer science the problem is even more acute: we
need to construct software and hardware components that must
smoothly interoperate across interfaces with clients and other
components in distributed systems. The definitions of these
interfaces need to be precisely specified for interoperability and
good systems performance.

Using the term “computation” without qualification often
generates a lot of confusion. Part of the problem is that the
nature of systems exhibiting computational behavior is varied
and the term computation means different things to different
people depending on the kinds of computational systems they
are studying and the kinds of problems they are investigating.
Since computation refers to a process that is defined in terms
of some underlying model of computation, we would achieve
clearer communication if we made clear what the underlying
model is.

Rather than talking about a vague notion of “computation,”
my suggestion is to use the term in conjunction with a well-
defined model of computation whose semantics is clear and
which matches the problem being investigated. Computer
science already has a number of useful clearly defined models
of computation whose behaviors and capabilities are well
understood. We should use such models as part of any
definition of the term computation. However, for new domains
of investigation where there are no appropriate models it may

be necessary to invent new formalisms to represent the systems
under study.

2. COMPUTATIONAL THINKING

We consider computational thinking to be the thought processes
involved in formulating problems so their solutions can
be represented as computational steps and algorithms. An
important part of this process is finding appropriate models of
computation with which to formulate the problem and derive
its solutions. A familiar example would be the use of finite
automata to solve string pattern matching problems. A less
familiar example might be the quantum circuits and order
finding formulation that Peter Shor [1] used to devise an integer-
factoring algorithm that runs in polynomial time on a quantum
computer. Associated with the basic models of computation
in computer science is a wealth of well-known algorithm-
design and problem-solving techniques that can be used to solve
common problems arising in computing.

However, as the computer systems we wish to build become
more complex and as we apply computer science abstractions
to new problem domains, we discover that we do not always
have the appropriate models to devise solutions. In these
cases, computational thinking becomes a research activity that
includes inventing appropriate new models of computation.

Corrado Priami and his colleagues at the Centre for
Computational and Systems Biology in Trento, Italy have
been using process calculi as a model of computation to
create programming languages to simulate biological processes.
Priami states “the basic feature of computational thinking is

THE COMPUTER JOURNAL, Vol. 55 No. 7, 2012

€102 ‘2z AInc uo AisieAiun a1e1s pue 8iniisu | o1uyseifjod eiuibli A e /B10°s[euinopioxo- jufwooy/:dny woly papeojumod

http://comjnl.oxfordjournals.org/

COMPUTATION AND COMPUTATIONAL THINKING 833

abstraction of reality in such a way that the neglected details in
the model make it executable by a machine.” [2]

As we shall see, finding or devising appropriate models
of computation to formulate problems is a central and often
nontrivial part of computational thinking.

3. FORCES AT PLAY

In the last half century, what we think of as a computational
system has expanded dramatically. In the earliest days of
computing, a computer was an isolated machine with limited
memory to which programs were submitted one at a time
to be compiled and run. Today, in the Internet era, we have
networks consisting of millions of interconnected computers
and as we move into cloud computing, many foresee a global
computing environment with billions of clients having universal
on-demand access to computing services and data hosted
in gigantic data centers located around the planet. Anything
from a PC or a phone or a TV or a sensor can be a client
and a data center may consist of hundreds of thousands of
servers. Needless to say, the models for studying such a
universally accessible, complex, highly concurrent distributed
system are very different from the ones for a single isolated
computer.

Another force at play is that because of heat dissipation
considerations the architecture of computers is changing. An
ordinary PC today has many different computing elements
such as multicore chips and graphics processing units, and an
exascale supercomputer by the end of this decade is expected
to be a giant parallel machine with up to a million nodes each
with possibly a thousand processors. Our understanding of how
to write efficient programs for these machines is limited. Good
models of parallel computation and parallel algorithm design
techniques are a vital open research area for effective parallel
computing.

In addition, there is increasing interest in applying
computation to studying virtually all areas of human endeavor.
One fascinating example is simulating the highly parallel
biological processes found in human cells and organs for the
purposes of understanding disease and drug design. Good
computational models for biological processes are still in their
infancy. And it is not clear we will ever be able to find a
computational model for the human brain that would account
for emergent phenomena such as consciousness or intelligence.

4. THE THEORY OF COMPUTATION

The theory of computation has been and still is one of the
core areas of computer science. It explores the fundamental
capabilities and limitations of models of computation. A model
of computation is a mathematical abstraction of a computing
system. The most important model of sequential computation
studied in computer science is the Turing machine, first

proposed by Alan Turing in 1936 [3]. Let us briefly review the
definition of a Turing machine to appreciate the detail necessary
to understand even this familiar model of computation.

We can think of a Turing machine as a finite-state control
attached to a tape head that can read and write symbols on the
squares of a semi-infinite tape. Initially, a finite string of length
n representing the input is in the leftmost n squares of the tape.
An infinite sequence of blanks follows the input string. The tape
head is reading the symbol in the leftmost square and the finite
control is in a predefined initial state.

The Turing machine then makes a sequence of moves. In
a move it reads the symbol on the tape under the tape head
and consults a transition table in the finite-state control which
specifies a symbol to be overprinted on the square under the
tape head, a direction the tape head is to move (one square to
the left or right), and a state to enter next. If the Turing machine
enters an accepting halting state (one with no next move), the
string of nonblank symbols remaining on the input tape at that
point in time is its output.

Mathematically, a Turing machine consists of seven
components: a finite set of states; a finite input alphabet (not
containing the blank); a finite tape alphabet (which includes the
input alphabet and the blank); a transition function that maps a
state and a tape symbol into a state, tape symbol, and direction
(left or right); a start state; an accept state from which there are
no further moves; and a reject state from which there are no
further moves.

We can characterize the configuration of a Turing machine at
a given moment in time by three quantities:

(i) the state of the finite-state control,
(i1) the string of nonblank symbols on the tape, and
(iii) the location of the input head on the tape.

A computation of a Turing machine on an input w is a
sequence of configurations the machine can go through starting
from the initial configuration with w on the tape and terminating
(if the computation terminates) in a halting configuration. We
say a function f from strings to strings is computable if there is
some Turing machine M that given any input string w always
halts in the accepting state with just f(w) on its tape. We say
that M computes f.

The Turing machine provides a precise definition for the term
algorithm: an algorithm for a function f is just a Turing machine
that computes f.

There are scores of models of computation that are equivalent
to Turing machines in the sense that these models compute
exactly the same set of functions that Turing machines can
compute. Among these Turing-complete models of computation
are multitape Turing machines, lambda-calculus, random access
machines, production systems, cellular automata, and all
general-purpose programming languages.

The reason there are so many different models of computation
equivalent to Turing machines is that we rarely want to
implement an algorithm as a Turing machine program;

THE COMPUTER JOURNAL, Vol. 55 No. 7, 2012

€102 ‘2z AInc uo AisieAiun a1e1s pue 8iniisu | o1uyseifjod eiuibli A e /B10°s[euinopioxo- jufwooy/:dny woly papeojumod

http://comjnl.oxfordjournals.org/

834 A.V. AHO

we would like to use a computational notation such as a
programming language that is easy to write and easy to
understand. But no matter what notation we choose, the famous
Church-Turing thesis hypothesizes that any function that can be
computed can be computed by a Turing machine.

Note that if there is one algorithm to compute a function
f, then there is an infinite number. Much of computer science
is devoted to finding efficient algorithms to compute a given
function.

For clarity, we should point out that we have defined a
computation as a sequence of configurations a Turing machine
can go through on a given input. This sequence could be infinite
if the machine does not halt or one of a number of possible
sequences in case the machine is nondeterministic.

The reason we went through this explanation is to point
out how much detail is involved in precisely defining the
term computation for the Turing machine, one of the simplest
models of computation. It is not surprising, then, as we move
to more complex models, the amount of effort needed to
precisely formulate computation in terms of those models grows
substantially.

5. CONCURRENT MODELS

Many real-world computational systems compute more than
just a single function-the world has moved to interactive
computing [4]. The term reactive system is used to describe
a system that maintains an ongoing interaction with its
environment. Examples of reactive systems include operating
systems and embedded systems.

A distributed system is one that consists of autonomous
computing systems that communicate with one another through
some kind of network using message passing. Examples of
distributed systems include telecommunications systems, the
Internet, air-traffic control systems, and parallel computers.
Many distributed systems are also reactive systems.

Perhaps the most intriguing examples of reactive distributed
computing systems are biological systems such as cells and
organisms. We could even consider the human brain to be
a biological computing system. Formulation of appropriate
models of computation for understanding biological processes
is a formidable scientific challenge in the intersection of biology
and computer science.

Distributed systems can exhibit behaviors such as deadlock,
livelock, race conditions, and the like that cannot be usefully
studied using a sequential model of computation. Moreover,
solving problems such as determining the throughput, latency,
and performance of a distributed system cannot be productively
formulated with a single-thread model of computation. For these
reasons, computer scientists have developed a number of models
of concurrent computation which can be used to study these
phenomena and to architect tools and components for building
distributed systems.

There are many theoretical models for concurrent compu-
tation. One is the message-passing Actor model, consisting of
computational entities called actors [5].

An actor can send and receive messages, make local
decisions, create more actors, and fix the behavior to be
used for the next message it receives. These actions may
be executed in parallel and in no fixed order. The Actor
model was devised to study the behavioral properties of
parallel computing machines consisting of large numbers of
independent processors communicating by passing messages
through a network. Other well-studied models of concurrent
computation include Petri nets and the process calculi such as
pi-calculus and mu-calculus.

Many variants of computational models for distributed
systems are being devised to study and understand the behaviors
of biological systems. For example, Dematte et al. [6] describe a
language called BlenX that is based on a process calculus called
Beta-binders for modeling and simulating biological systems.

We do not have the space to describe these concurrent
models in any detail. However, it is still an open research area
to find practically useful concurrent models of computation
that combine control and data for many areas of distributed
computing.

6. BENEFITS OF MODELS OF COMPUTATION

In addition to aiding education and understanding, there
are many practical benefits to having appropriate models
of computation for the systems we are trying to build. In
cloud computing, for example, there are still a host of poorly
understood concerns for systems of this scale. We need to
better understand the architectural tradeoffs needed to achieve
the desired levels of reliability, performance, scalability and
adaptivity in the services these systems are expected to provide.
We do not have appropriate abstractions to describe these
properties in such a way that they can be automatically mapped
from a model of computation into an implementation (or the
other way around).

In cloud computing, there are a host of research challenges
for system developers and tool builders. As examples, we need
programming languages, compilers, verification tools, defect
detection tools, and service management tools that can scale to
the huge number of clients and servers involved in the networks
and data centers of the future. Cloud computing is one important
area that can benefit from innovative computational thinking.

7. CONCLUSION

Mathematical abstractions called models of computation are
at the heart of computation and computational thinking.
Computation is a process that is defined in terms of an
underlying model of computation and computational thinking
is the thought processes involved in formulating problems so

THE COMPUTER JOURNAL, Vol. 55 No. 7, 2012

€102 ‘2z AInc uo AisieAiun a1e1s pue 8iniisu | o1uyseifjod eiuibli A e /B10°s[euinopioxo- jufwooy/:dny woly papeojumod

http://comjnl.oxfordjournals.org/

COMPUTATION AND COMPUTATIONAL THINKING 835

their solutions can be represented as computational steps and
algorithms. Useful models of computation for solving problems
arising in sequential computation can range from simple finite-
state machines to Turing-complete models such as random
access machines. Useful models of concurrent computation for
solving problems arising in the design and analysis of complex
distributed systems are still a subject of current research.

ABOUT THE AUTHOR

Alfred V. Aho is Lawrence Gussman Professor in the Computer
Science Department at Columbia University. He served as Chair
of the department from 1995 to 1997, and in the spring of 2003.

ACKNOWLEDGEMENTS

The author would like to thank Peter Denning and Jeannette
Wing for their thoughtful comments on the importance of
computational thinking. The author is also grateful to Jim Larus
for his insights into the problems confronting cloud computing
and to Corrado Priami for many stimulating conversations on
computational thinking in biology.

REFERENCES

[1] Shor, P. W. (1994) Algorithms for quantum computation: discrete
logarithms and factoring. Proceedings of the 35th Annual
Symposium on Foundations of Computer Science, pp. 124-134.
IEEE Computer Society.

[2] Priami, C. (2007) Computational thinking in biology. Transac-
tions on Computational Systems Biology VIII, 8, 63-76.

[3] Turing, A. (1937) On computable numbers, with an application
to the entscheidungsproblem. Proceedings of the London
Mathematical Society, 2, 42, pp. 230-265.

[4] Goldin, D. Q., Smolka, S. A., and Wegner, P. (eds.) (2006)
Interactive Computation: The New Paradigm. Springer.

[5] Hewitt, C., Bishop, P., and Steiger, R. (1973) A universal modular
actor formalism for artificial intelligence. Proceedings of the 3rd
international joint conference on Artificial intelligence, Stanford,
USA, pp. 235-245. Morgan Kaufmann Publishers Inc.

[6] Dematté, L., Priami, C., and Romanel, A. (2008) The blenx
language: a tutorial. Proceedings of SFM’08, Bertinoro, Italy,
pp- 313-365. Springer-Verlag.

[7] Denning, P.J. (2009) Beyond computational thinking. Commun.
ACM, 52, 28-30.

[8] Wing, J. M. (2006) Computational thinking. Commun. ACM,
49, 33-35.

THE COMPUTER JOURNAL, Vol. 55 No. 7, 2012

€T0Z ‘22 AInc uo AlsIBAIUN BTRIS pUe 8INMISU| J1UYdRIA|I0d eIUIBIIA Te /B10'Ssjeulnopioxor jufwod//:dny woi papeojumoq

http://comjnl.oxfordjournals.org/

	1 The Need for Clear Definitions
	2 Computational Thinking
	3 Forces at Play
	4 The Theory of Computation
	5 Concurrent Models
	6 Benefits of Models of Computation
	7 Conclusion

