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ABSTRACT
Knowledge Graphs (KGs) are ubiquitous structures for information
storage in several real-world applications such as web search, e-
commerce, social networks, and biology. Querying KGs remains a
foundational and challenging problem due to their size and complex-
ity. Promising approaches to tackle this problem include embedding
the KG units (e.g., entities and relations) in a Euclidean space such
that the query embedding contains the information relevant to its
results. These approaches, however, fail to capture the hierarchi-
cal nature and semantic information of the entities present in the
graph. Additionally, most of these approaches only utilize multi-
hop queries (that can be modeled by simple translation operations)
to learn embeddings and ignore more complex operations such as
intersection, and union of simpler queries. To tackle such complex
operations, in this paper, we formulate KG representation learning
as a self-supervised logical query reasoning problem that utilizes
translation, intersection and union queries over KGs. We propose
Hyperboloid Embeddings (HypE), a novel self-supervised dynamic
reasoning framework, that utilizes positive first-order existential
queries on a KG to learn representations of its entities and relations
as hyperboloids in a Poincaré ball. HypE models the positive first-
order queries as geometrical translation, intersection, and union.
For the problem of KG reasoning in real-world datasets, the pro-
posed HypE model significantly outperforms the state-of-the art
results. We also apply HypE to an anomaly detection task on a popu-
lar e-commerce website product taxonomy as well as hierarchically
organized web articles and demonstrate significant performance
improvements compared to existing baseline methods. Finally, we
also visualize the learned HypE embeddings in a Poincaré ball to
clearly interpret and comprehend the representation space.
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1 INTRODUCTION
Knowledge Graphs (KGs) organize information as a set of enti-
ties connected by relations. Positive first-order existential (PFOE)
queries such as translation, intersection, and union over these enti-
ties aid in effective information extraction from massive data (see
Figure 1 for an example PFOE query). Efficient handling of such
queries on KGs is of vital importance in a range of real-world ap-
plication domains including search engines, dialogue systems, and
recommendation models. However, the large size of KGs and high
degrees of the nodes therein makes traversal for querying a com-
putationally challenging or, in some cases, even an impossible task
[43]. One way to resolve this issue is to learn representations for
the KG units (entities and relations) in a latent (generally Euclidean)
space such that algebraic or logical operations can be applied to
extract relevant entities. Robust representation learning of KG units
has several real-world applications including KG information ex-
traction [20], entity classification [46], and anomaly detection [22].

Figure 1: An example of PFOE querying in the E-commerce
product network. The product space of Adidas and Nike in-
tersects with Footwear to narrow the search space. A union
over these spaces yields our final set of entity results.

Earlier approaches to representation learning in KGs model enti-
ties and relations as vectors in the Euclidean space [7, 31, 48]. This
is suboptimal due to the constant size of a point’s answer space
which does not capture the variations induced by different queries.
Specifically, broad queries (Nike) should intuitively cover a larger
region of the answer space compared to specific queries (Nike
running shoes for men). In the recently proposed Query2Box
model [35], the authors demonstrated the effectiveness of complex
geometries (such as hyper-rectangles) with varying offsets that con-
trol the size of an answer space according to a query’s complexity.
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However, such architectures lack the ability to capture hierarchical
information that is prevalent in many KGs. Furthermore, previous
representation learning methods in heterogeneous graphs (or KGs)
[16, 25, 26, 51] solely focus on one-hop or multi-hop reasoning over
relations. Such frameworks enable static and optimized computa-
tional graphs, but lead to poor retrieval from complex intersection
and union queries. Dynamic computational graphs, which are able
to modify their network architecture with a switch mechanism
(discussed in Section 3.5) can significantly alleviate this problem.

Although Euclidean spaces have proven to be effective for rep-
resentation learning in various domains [3], several hierarchical
datasets (including graph data) in the fields of network sciences
and E-commerce taxonomies demonstrate a latent non-Euclidean
anatomy [8]. The introduction of hyperbolic algebraic operations
[17] have led to the proliferation of hyperbolic neural networks
such as Hyperbolic-GCN (H-GCN) [12] and Hyperbolic Attention
(HAT) networks [19]. These frameworks leverage the hyperbolic
anatomy of hierarchical datasets and show a significant perfor-
mance boost compared to their Euclidean counterparts. To the best
of our knowledge, there is no existing work that (i) utilizes dy-
namic computational graphs on the hyperbolic space, (ii) applies
complex hyperbolic geometries such as hyperboloids for represen-
tation learning. Additionally, the static computational graphs of
H-GCN and HAT limit their learning capability to a single prob-
lem, generally, multi-hop (translation) reasoning. This severely
limits their applicability to representation learning on KGs since
translations can only utilize single entities. More complex inter-
sections and unions not only use more entities, but are also
more representative of real-world KG queries.While solving
union and intersection queries is more challenging, they enable
better representation learning [4]. Traversing over the entities in
KGs facilitates an intuitive way of constructing a query-reasoning
proxy task (refer Section 4.3) that enables representation learning
of entities and relations. These representations, in a self-supervised
framework, can further provide enriched features in downstream
tasks with smaller annotated datasets (such as anomaly detection),
thus alleviating the issue of data scarcity.

(a) Hyperbolic vectors (b) Hyperboloids
Figure 2: Static vs Dynamic representation. (a) hyperbolic
vectors have lower precision due to static thresholds over a
center, depicted by the dotted circle. (b) Dotted hyperboloids
encapsulate all its child entities because of dynamic sizes.
The blue and orange circles are intermediate and leaf nodes.

Motivated by the effectiveness of self-supervised learning and the
need for non-Euclidean geometries in KGs, we formulate KG repre-
sentation learning as a self-supervised query reasoning problem.We
introduce Hyperboloid Embeddings (HypE), a self-supervised dynamic
representation learning framework that utilizes PFOE queries to learn
hyperboloid representations of KG units in a (non-Euclidean) Poincaré
hyperball. Hyperboloids, unlike vectors in hyperbolic spaces, allow
us to use dynamic sizes for KG representations. For e.g., in Figure 2,
we can notice that different entities contain different number of chil-
dren, and, thus learning a static vector representation is suboptimal.
Hyperboloids learn an additional spatial parameter, limit (described
in Section 3.4), that can model the varying entity sizes. Moreover,
the dynamic nature of its computational graphs allows HypE to uti-
lize different network layers to learn different types of operations,
namely, translation, intersection, and union; and process varying
number of input units depending on the learning operation. Our
empirical studies include learning representations from large-scale
KGs in e-commerce, web pages (DBPedia), and other widely used
Knowledge bases (such as Freebase and NELL995); and evaluating
the representations on the downstream task of anomaly detection.
The major contributions of this paper are:
(1) Formulate the KG representation learning problem as a self-

supervised query reasoning problem to leverage PFOE queries.
(2) Introduce Hyperboloid Embeddings (HypE), a self-supervised

dynamic representation learning framework that learns hyper-
boloid representations of KG units in a Poincaré hyperball. This
is motivated by the need for non-Euclidean geometries.

(3) Perform an extensive set of empirical studies across diverse
set of real-world datasets to evaluate the performance of HypE
against several state-of-the-art baseline methods on the down-
stream task of Anomaly Detection.

(4) Visualize the HypE embeddings to clearly interpret and com-
prehend the representation space.

The rest of the paper is organized as follows: Section 2 describes the
related background. Section 3 formulates the representation learn-
ing problem, explains the non-Euclidean algebraic operations, and
the proposed HypE model. In Section 4, we describe the real-world
datasets, state-of-the-art baselines and performance metrics used
to evaluate the HypE model. We demonstrate the performance re-
sults along with the visualization of HypE’s representations. Finally,
Section 5 concludes the paper.

2 RELATEDWORK
In this section, we review different geometries utilized for learning
representations and earlier works that are adopted for reasoning
over Knowledge Graphs.

Representation Geometries : Previous approaches to representa-
tion learning, in the context of KG, aim to learn latent representa-
tions for entities and relations. Translational frameworks [7, 32, 48]
model relations using translation between entity pairs. This limits
the models to only handle translation-based queries. Graph Query
Embedding (GQE) [20] overcame this limitation and provided a
technique for leveraging intersection queries as deep sets [49] over
different queries. Furthermore, Box Lattices [41], EMQL [37] and
Query2Box [35] proved the effectiveness of more complex geome-
tries (hyper-rectangles) for queries. Word2Gauss [42] is a popular
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NLP technique that learns Gaussian embeddings for words. DNGE
[39] utilizes a dynamic network to learn Gaussian embeddings for
entities in a graph. These Gaussian representations cannot be in-
tuitively extended to KGs because they are not closed under more
complex PFOE queries (intersection or union of Gaussians does not
yield a Gaussian). Furthermore, they rely on properties of the Eu-
clidean space to learn representations, which are proven ineffective
at capturing the prevalent hierarchical features of a KG [17].

Representation Learning on Graphs : One of the fundamental
problems in KG is to aggregate the neighbor information of nodes
while learning representations. Node embedding techniques such
as Node2Vec [18] and DeepWalk [34] aggregate the neighbors’ fea-
tures by modeling the node’s dependence on its neighbors. Cheb-
Net [13] uses Chebyshev ploynomials and filters node features in
the graph Fourier domain. GCN [23] constrains the parameters of
ChebNet to alleviate overfitting and shows improved performance.
Graph-BERT [51] and MAGNN [16] provide a self-supervised learn-
ing model utilizing the tasks of masking and metapath aggregation,
respectively. In another line of research, Miller et al. [28] utilizes
non-parametric Bayesian frameworks for link prediction on social
networks. Zhu [52] further improved the approach with a max-
margin framework. KGAT [44] is another popular approach that
utilizes attention networks over entities and relations with a TransR
[24] loss function to learn representations for user recommendation.
These methods rely on relational properties and thus are effective in
handling translational problems such as multi-hop reasoning. How-
ever, they are ineffective at handling more complex PFOE queries
such as intersection and union.

Other popular multi-hop graph networks such as Graph Atten-
tion Network (GAT) [40] and Graph Recurrent Network (GRN) [36]
have previously shown impressive results in reasoning-based QA
tasks. However, hyperbolic flavors of these networks, H-GNN [17],
H-GCN [11, 12] and H-GAT [19] argue that hierarchical datasets
follow the anatomy of hyperbolic space and show improved per-
formance over their Euclidean counterparts. Nonetheless, these
approaches are still limited by the constant answer space that does
not consider the varying fluctuations of complex queries.

Self-supervised learning [14, 21, 29, 47] utilizes large unanno-
tated datasets to learn representations that can be fine-tuned to
other tasks that have relatively smaller amount of annotated data.
Traversing over the entities in KGs facilitates an intuitive way of
constructing a query-reasoning proxy task (refer Section 4.3) that
enables representation learning of entities and relations. These
representations, in turn, are employed in downstream tasks with
scarce datasets such as anomaly detection.

The proposed HypE model utilizes a self-supervised learning
framework that leverages both simple and complex PFOE queries to
learn hyperboloid (with varying limits) representations of KG units
in a Poincaré ball to efficiently capture hierarchical information.

3 PROPOSED FRAMEWORK
In this section, we first provide the standard method of querying
knowledge graphs. Then, we set up the problem and describe the
details of our model that learns representations of entities and
relations from reasoning queries over Knowledge Graphs (KG).

3.1 Querying Knowledge Graphs
KGs contain two primary units, namely, entities and relations. En-
titites are the basic information units that connect to each other
by relation units. Heterogeneous graphs [45, 50] can be considered
as a special case of KGs where the relations serve as hierarchical
connections with no inherent information. PFOE queries of transla-
tion (t), intersection (∩) and union (∪) serve as the primary means
of querying these KGs. Translation queries utilize an entity 𝑒 and
a relation 𝑟 to retrieve all entities that are connected to 𝑒 through
𝑟 . An equivalent example of translation query for heterogeneous
graphs is to retrieve all children of a node 𝑒 connected by a certain
edge type 𝑟 . Intersection and Union operate over multiple entities
𝐸 = {𝑒1, .., 𝑒𝑛} and correspondingly retrieve the set of all entities
that are connected to all 𝑒𝑖 ∈ 𝐸 and any 𝑒𝑖 ∈ 𝐸. For heterogeneous
graphs, the equivalent is to retrieve nodes connected to all nodes
𝑒𝑖 ∈ 𝐸 and any 𝑒𝑖 ∈ 𝐸. An example of PFOE querying is given in
Figure 3. The widely studied problem of multi-hop traversal [16] is
a more specific case of translation queries, where multiple queries
are chained in a series.

Figure 3: A simple first-order query over a Product Graph.
The query Nike and Adidas footwear can be expressed as
the union of the Nike and Adidas nodes intersected with the
node corresponding to footwear in the product catalog.

3.2 Problem Setup
We denote 𝐾𝐺 = (𝐸, 𝑅) as a set of entities 𝑒𝑖 ∈ 𝐸 and relations
𝑟𝑖 𝑗 ∈ 𝑅 : 𝑒𝑖 → 𝑒 𝑗 as Boolean functions that indicate whether
a directed relation 𝑟𝑖 𝑗 holds between 𝑒𝑖 and 𝑒 𝑗 . Intersection (∩)
and Union (∪) are positive first-order existential (PFOE) operations
defined on a set of queries 𝑞1, 𝑞2, ...., 𝑞𝑛 ∈ 𝑄 :

𝑞∩ [𝑄] = 𝑉∩ ⊆ 𝐸 ∃ 𝑒1, 𝑒2, ..., 𝑒𝑘 : 𝑞1 ∩ 𝑞2 ∩ 𝑞3 ... ∩ 𝑞𝑛
𝑞∪ [𝑄] = 𝑉∪ ⊆ 𝐸 ∃ 𝑒1, 𝑒2, ..., 𝑒𝑘 : 𝑞1 ∪ 𝑞2 ∪ 𝑞3 ... ∪ 𝑞𝑛

where (𝑞∩,𝑉∩) and (𝑞∪,𝑉∪) is the query space and resultant entity
set after the intersection and union operations over query set 𝑄 ,
respectively1. Given a dataset of logical queries over a 𝐾𝐺 , the goal,
here, is to learn hyperboloid (in a Poincaré ball) representations
for its entities 𝑒𝑖 ∈ R2𝑑 and relations 𝑟𝑖 𝑗 ∈ R2𝑑 , where 𝑑 is a hyper-
parameter that defines the dimension of the Poincaré ball.

3.3 Manifold Transformation Layer
Hierarchical structures intuitively demonstrate the latent charac-
teristics of a hyperbolic space [17]. Thus, we utilize the Poincaré
ball [9] to model our representations.

1e.g., if (𝑞𝑖 , {𝑒𝑎, 𝑒𝑏 }) and (𝑞 𝑗 , {𝑒𝑏 , 𝑒𝑐 }) are the corresponding query space and re-
sultant entity sets, then 𝑞∩ [ {𝑞𝑖 , 𝑞 𝑗 }] = {𝑒𝑏 } and 𝑞∪ [ {𝑞𝑖 , 𝑞 𝑗 }] = {𝑒𝑎, 𝑒𝑏 , 𝑒𝑐 }.
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Figure 4: Manifold Transformation of Euclidean geometries
(rectangles) to a Poincaré ball (horocycle enclosures).

3.3.1 Transformation from Euclidean Space. The transformation
from Euclidean to hyperbolic space (H𝑛, 𝑔H), given in [17], is de-
fined by the manifold H𝑛 = {𝑥 ∈ R𝑛 : ∥𝑥 ∥ < 1} with the Reiman-
nian metric , 𝑔H, where:

𝑔H𝑥 = 𝜆2𝑥 𝑔E where 𝜆𝑥 B
2

1 − ∥𝑥 ∥2
(1)

𝑔E = I𝑛 being the Euclidean identity metric tensor, and ∥𝑥 ∥ is the
Euclidean norm of 𝑥 . 𝜆𝑥 is the conformal factor between the Eu-
clidean and hyperbolic metric tensor set to a conventional curvature
of -1. Eq. (1) allows us to convert a Euclidean metric to hyperbolic.
Thus, the distance between points 𝑥,𝑦 ∈ H𝑛 is derived as:

𝑑H (𝑥,𝑦) = cosh−1
(
1 + 2 ∥𝑥 − 𝑦∥2(

1 − ∥𝑥 ∥2
) (
1 − ∥𝑦∥2

) ) (2)

3.3.2 Gyrovector Spaces. Algebraic operations such as addition and
scalar product which are straightforward in the Euclidean space
cannot be directly applied in hyperbolic space. Gyrovector spaces
allow for the formalization of these operations in hyperbolic space.

Ganea et al. [17] provide the gyrovector operations relevant to
training neural networks. The gyrovector operations for Poincaré
ball of radius 𝑐 are Möbius addition (⊕𝑐 ), Möbius subtraction (⊖𝑐 ),
exponential map (exp𝑐𝑥 ), logarithmic map (log𝑐𝑥 ) and Möbius scalar
product (⊙𝑐 ).

𝑥 ⊕𝑐 𝑦 B
(
1 + 2𝑐 ⟨𝑥,𝑦⟩ + 𝑐 ∥𝑦∥2

)
𝑥 +

(
1 − 𝑐 ∥𝑥 ∥2

)
𝑦

1 + 2𝑐 ⟨𝑥,𝑦⟩ + 𝑐2∥𝑥 ∥2∥𝑦∥2
𝑥 ⊖𝑐 𝑦 B 𝑥 ⊕𝑐 −𝑦

exp𝑐𝑥 (𝑣) B 𝑥 ⊕𝑐
(
tanh

(√
𝑐
𝜆𝑐𝑥 ∥𝑣 ∥

2

)
𝑣

√
𝑐 ∥𝑣 ∥

)
log𝑐𝑥 (𝑦) B

2
√
𝑐𝜆𝑐𝑥

tanh−1
(√
𝑐 ∥ − 𝑥 ⊕𝑐 𝑦∥

) −𝑥 ⊕𝑐 𝑦
∥ − 𝑥 ⊕𝑐 𝑦∥

𝑟 ⊙𝑐 𝑥 B exp𝑐0 (𝑟𝑙𝑜𝑔
𝑐
0 (𝑥)), ∀𝑟 ∈ R, 𝑥 ∈ H

𝑛
𝑐

Here,B denotes assignment operation for Möbius operations. Also,
the norm of 𝑥,𝑦 can subsume the scaling factor 𝑐 . Hence, in HypE,
training can be done with a constant 𝑐 or trainable 𝑐 . We empirically
validate this assumption in our experiments (Section 4.4). Figure 4
shows an example of the manifold transformation from Euclidean
space to a Poincaré ball of unit radius. HypE extends the operations
to handle complex geometries, explained in Section 3.4.

3.4 Dynamic Reasoning Framework : HypE
We aim to learn hyperboloid (made of two parallel pairs of arc-
aligned horocycles) embeddings for all the entities and relations
in the KG. An arc-aligned horocyle (Figure 5(a)) is a partial circle
that is parallel to the diameter of a Poincaré ball and orthogonally

(a) Horocycles in a Poincaré ball. (b) CDFE is the hyperboloid.
Figure 5: Horocycles and hyperboloids in a Poincaré ball.
The hyperboloid is composed of two parallel pairs of arc-
aligned horocycles.

Figure 6: An overview of the proposed HypE architec-
ture. The architecture utilizes a switch mechanism to con-
nect/disconnect different layers according to the query oper-
ator signal (t,∩,∪). The blue, red and green switches are con-
nected for translation, intersection and union operations,
respectively (and disconnected otherwise). The yellow and
pink circles depict the center and limit of KG units, respec-
tively. This figure is best viewed in color.

intersects its boundaries at two points. A hyperboloid embedding
(see Figure 5(b)) 𝑒 = (cen(𝑒), lim(𝑒)) ∈ R2𝑑 is characterized by:

𝐻𝑒 == {𝑣 ∈ R𝑑 : cen(𝑒) ⊖𝑐 lim(𝑒) ≤ 𝑣 ≤ cen(𝑒) ⊕𝑐 lim(𝑒)}

where == denotes strict equivalence and ≤ is element-wise inequality
and cen(𝑡), lim(𝑡) ∈ R𝑑 are center of the hyperboloid and positive
border limit (lim(𝑡) ≥ 0) of the enclosing horocycle from the center,
respectively. The overview of the architecture is given in Figure
6. From the KG, we derive the following types of directed edge
relations to build our dynamic computational graph for learning
embeddings.
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Distance between hyperboloid and entity point (d): Given a
query hyperboloid 𝑞 ∈ R2𝑑 and entity center 𝑣 ∈ R𝑑 , the distance
between them is defined as:

𝑑ℎ𝑦𝑝 (𝑣, 𝑞) = 𝑑𝑜𝑢𝑡 (𝑣, 𝑞) ⊕𝑐 𝛾𝑑𝑖𝑛 (𝑣, 𝑞) (3)
𝑑𝑜𝑢𝑡 (𝑣, 𝑞) = ∥𝑀𝑎𝑥 (𝑑H (𝑣, 𝑞𝑚𝑎𝑥 ), 0) +𝑀𝑎𝑥 (𝑑H (𝑞𝑚𝑖𝑛, 𝑣), 0)∥1
𝑑𝑖𝑛 (𝑣, 𝑞) = ∥𝑐𝑒𝑛(𝑞) ⊖𝑐 𝑀𝑖𝑛(𝑞𝑚𝑎𝑥 , 𝑀𝑎𝑥 (𝑞𝑚𝑖𝑛, 𝑣))∥1

𝑞𝑚𝑖𝑛 = 𝑐𝑒𝑛(𝑞) ⊖𝑐 𝑙𝑖𝑚(𝑞), 𝑞𝑚𝑎𝑥 = 𝑐𝑒𝑛(𝑞) ⊕𝑐 𝑙𝑖𝑚(𝑞)
where 𝑑𝑜𝑢𝑡 represents the distance of the entity to limits of the
hyperboloid and 𝑑𝑖𝑛 is the distance of the entity from the hyper-
boloid’s border to its center. 𝛾 is a scalar weight (set to 0.5 in our
experiments) and ∥𝑥 ∥1 is the 𝐿1-norm of x.
Translation (t): Each relation 𝑟 ∈ 𝑅 is equipped with a relation
embedding 𝑟 = 𝐻𝑦𝑝𝑒𝑟𝑏𝑜𝑙𝑜𝑖𝑑𝑟 ∈ R2𝑑 . Given an entity embedding
𝑒 ∈ 𝐸, we model its translation (𝑜𝑡 ) and distance from the result
entities 𝑣𝑡 ∈ 𝑉𝑡 ⊆ 𝐸 (𝑑𝑡 ) as follows:

𝑜𝑡 = 𝑒 ⊕𝑐 𝑟, 𝑑𝑡 (𝑣) = 𝑑ℎ𝑦𝑝 (𝑣𝑡 , 𝑜𝑡 ) (4)

This provides us with the translated hyperboloid with a new center
and larger limit (lim(𝑟 ) ≥ 0). A sample operation is illustrated in
Figure 7(a).
Intersection (∩):Wemodel the intersection of a set of hyperboloid
embeddings 𝑄∩ = {𝑒1, 𝑒2, 𝑒3, ..., 𝑒𝑛} as 𝑜∩ and entity distance from
the result entities 𝑣∩ ∈ 𝑉∩ ⊆ 𝐸 as 𝑑∩ where:

𝑜∩ = (cen(𝑄∩), lim(𝑄∩)) (5)

cen(𝑄∩) =
∑
𝑖

𝑎𝑖 ⊙𝑐 cen(𝑒𝑖 ); 𝑎𝑖 =
exp(𝑓 (𝑒𝑖 ))∑
𝑗 exp(𝑓 (𝑒𝑖 )

(6)

lim(𝑄∩) = min({lim(𝑒1), ..., lim(𝑒𝑛)}) ⊙𝑐 𝜎 (𝐷𝑆 ({𝑒1, ..., 𝑒𝑛}))

𝐷𝑆 ({𝑒1, .., 𝑒𝑛}) = 𝑓
(
1
𝑛

𝑛∑
𝑖=1

𝑓 (𝑒𝑖 )
)

(7)

𝑑∩ (𝑣∩) = 𝑑ℎ𝑦𝑝 (𝑣∩, 𝑜∩) (8)

where ⊙𝑐 is the Möbius scalar product, 𝑓 (.) : R2𝑑 → R𝑑 is the
multilayer perceptron (MLP), 𝜎 (.) is the sigmoid function and𝐷𝑆 (.)
is the permutation invariant deep architecture, namely, DeepSets
[49].𝑀𝑖𝑛(.) and exp(.) are element-wise minimum and exponential
functions. The new center and limit are calculated by an attention
layer [1] over the hyperboloid centers and DeepSets for shrinking
the limits, respectively. Figure 7(b) depicts a sample intersection.
Union (∪): Unlike intersection, union operations are not closed
under hyperboloids (union of hyperboloids is not a hyperboloid).
Hence, the distance of entities from the union query space (𝑑∪) is
defined as theminimum distance from any hyperboloid in the union.
For a set of hyperboloid embeddings 𝑄∪ = {𝑒1, 𝑒2, 𝑒3, ..., 𝑒𝑛}, union
space is given by 𝑜∪ and distance from result entities 𝑣∪ ∈ 𝑉∪ ⊆ 𝐸
by 𝑑∪, where

𝑜∪ = 𝑄∪ (9)

𝑑∪ (𝑣∪) = min
(
{𝑑ℎ𝑦𝑝 (𝑣∪, 𝑒𝑖 ) ∀𝑒𝑖 ∈ 𝑜∪}

)
(10)

Note that, since union is not closed under hyperboloids it cannot be
applied before the other operations. We circumvent this problem by
utilizing Disjunctive Normal Form (DNF) transformation [35] on
our logical queries. This allows us to push all the union operations

(a) Translation (b) Intersection

(c) Union (d) Hyperbolic distance
Figure 7: PFOEqueries andhyperbolic distance in a Poincaré
geodisc.

to the end of our computational graph, thus maintaining validity
for all PFOE queries. An outline of HypE’s training procedure is
given in Algorithm 1.

3.5 Implementation Details
We implemented HypE in Pytorch [33] on two Nvidia V100 GPUs
with 16 GB VRAM. For gradient descent, the model is trained using
Reimannian Adam optimizer [2] with an initial learning rate of
0.0001 and standard 𝛽 values of 0.9 and 0.999. We utilize ReLU [30]
as the activation function. Also, we randomly selected 128 negative
samples per positive sample in the training phase to learn better
discriminative features. For our empirical studies, we learned hy-
perboloid embeddings of 2 × 400 dimensions (d=400). Due to the
conditionality (i.e., if conditions in Algorithm 1) in our computa-
tional graph, we employ a switch mechanism between the network
layers [15, 27]. The switch mechanism receives an operator signal
that defines the operation and accordingly connects/disconnects
a layer from the framework. A disconnected switch blocks back-
propagation of weight updates to the disconnected layers. This
enables a concurrent use of all PFOE queries to update the entity
and relation embeddings. For an input query𝑄 and resultant entities
𝑉 , Algorithm 1 provides the pseudocode of our overall framework
to learn representations of entities 𝐸 and relation 𝑅. The algorithm
describes the three main operations, namely, translation (lines 4-7),
intersection (lines 8-11), and union (lines 12-15) 2.

4 EXPERIMENTAL SETUP
This section describes the experimental setup that analyzes the
performance of HypE on various problems. We aim to study the
following research questions:
2Implementation code: https://github.com/amazon-research/hyperbolic-embeddings

https://github.com/amazon-research/hyperbolic-embeddings
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Algorithm 1: HypE algorithm
Input: Training data 𝐷𝑡 , 𝐷∩, 𝐷∪, which are set of all (query

(𝑄), result (𝑉 )) for translation, intersection, and
union, respectively;

Output: Entity 𝐸 and Relation 𝑅 hyperboloids;
1 Randomly initialize 𝑒 ∈ 𝐸 and 𝑟 ∈ 𝑅 (𝑒, 𝑟 ∈ H2𝑑 );
2 for number of epochs; until convergence do
3 𝑙 = 0; # Initialize loss
4 for {(𝑒, 𝑟,𝑉𝑡 ) ∈ 𝐷𝑡 } do
5 𝑜𝑡 = 𝑒 ⊕𝑐 𝑟 , from Eq. (4)

# Update loss for translation queries
6 𝑙 = 𝑙 +∑

𝑣𝑡 ∈𝑉𝑡 𝑑ℎ𝑦𝑝 (𝑣𝑡 , 𝑜𝑡 )
7 end
8 for {(𝑄∩,𝑉∩) ∈ 𝐷∩} do
9 𝑜∩ = (𝑐𝑒𝑛(𝑄∩), 𝑙𝑖𝑚(𝑄∩)), from Eq. (5)

# Update loss for intersection queries
10 𝑙 = 𝑙 +∑

𝑣∩∈𝑉∩ 𝑑ℎ𝑦𝑝 (𝑣∩, 𝑜∩)
11 end
12 for {(𝑄∪,𝑉∪) ∈ 𝐷∪} do
13 𝑜∪ = 𝑄∪, from Eq. (9)

# Update loss for union queries
14 𝑙 = 𝑙 +∑

𝑣∪∈𝑉∪ 𝑀𝑖𝑛
(
𝑑ℎ𝑦𝑝 (𝑣∪, 𝑒𝑖 ) ∀𝑒𝑖 ∈ 𝑜∪

)
15 end

# Update E and R with backpropagation
16 𝐸 ← 𝐸 − Δ𝐸𝑙
1818 𝑅 ← 𝑅 − Δ𝑅𝑙
19 end
20 return E,R

• RQ1: For the task of reasoning over KGs, are hyperboloid embed-
dings better than the baselines at learning hierarchical relations?
• RQ2: What is the contribution of individual components in the
HypE model?
• RQ3: Do the representations capture relevant data features for
the downstream task of anomaly detection?
• RQ4: Can hyperboloid embeddings leverage auxiliary semantic
information from the entities?
• RQ5: Can we comprehend the latent representational space ob-
tained by the proposed HypE model?

4.1 Datasets
We perform our experimental study on the following standard KG
and hierarchical graph datasets:
(1) FB15k [7] contains knowledge base relation triples and textual

mentions of Freebase entity pairs. This dataset contains a large
number of simple test triples that can be obtained by inverting
the training triples.

(2) FB15k-237 [38] is a subset of FB15k where all the simple in-
versible relations are removed, so the models can learn and
focus on more complex relations.

(3) NELL995 [10] is a KG dataset of relation triples constructed
from the 995𝑡ℎ iteration of the Never-Ending Language Learn-
ing (NELL) system.

(4) DBPediaHierarchical Taxonomy3 is a subset extracted from
Wikipedia snapshot that provides multi-level hierarchical tax-
onomy over 342,782 articles (leaf-nodes).

(5) E-commerce Product Network4 is a subsampled product tax-
onomy from an e-commerce platform.

To be consistent with KG terms, for the hierarchical graph datasets
(DBPedia and E-commerce) we consider all the intermediate and
leaf nodes as entities and the edges between them as relations.
Additionally, we consider two variants for encoding edges. First, all
edges are considered identical (|𝑅 | = 1) and second, where all edges
are depth-encoded (|𝑅 | = 𝑝), where 𝑝 is maximum depth of the
hierarchy (𝑝 = 3 for DBPedia and 𝑝 = 4 for E-commerce dataset).
For cross-validation and evaluation, we split the graph 𝐾𝐺 into
three parts: 𝐾𝐺𝑡𝑟𝑎𝑖𝑛 , 𝐾𝐺𝑣𝑎𝑙𝑖𝑑 and 𝐾𝐺𝑡𝑒𝑠𝑡 in a 75 : 10 : 15 ratio for
our experiments. More details of the datasets are given in Table 1.

Table 1: Basic statistics of the datasets including the number
of unique entities, relations, and edges.

Dataset # entities # relations # edges
FB15k 14,951 2690 273,710

FB15k-237 14,505 474 149,689
NELL995 63,361 400 107,982
DBPedia 34,575 3 240,942

E-commerce ∼118K 4 ∼562K

4.2 Baselines
We select our baselines based on the following two criteria:
(1) The embedding geometries are closed under the intersection

and translation operation, e.g., the translation or intersection of
arc-aligned hyperboloids results in an arc-aligned hyperboloid.

(2) The baseline can be intuitively extended to all PFOE queries
over KG. This is necessary to have a fair comparison with HypE
that can leverage all PFOE queries.

We adopt the following state-of-the-art baselines based on geomet-
ric diversity and our criterion to compare against HypE:
• Graph Query Embedding (GQE) [20] embeds entities and
relations as a vector embedding in the Euclidean space.
• KnowledgeGraphAttentionNetwork (KGAT) [44] embeds
entities and relations as a vector embedding in the Euclidean
space utilizing attention networks over entities and relations
with a TransR loss [24] .
• Hyperbolic Query Embeddings (HQE) [17] utilizes mani-
fold transformations (refer to Section 3.3) to represent entities
and relations as a vector embedding in hyperbolic space.
• Query2Box (Q2B) [35] embeds entitites and relations as axis-
aligned hyper-rectangle or box embeddings in Euclidean space.

Some of the other possible baselines [7, 32, 48], solely, focus on
the multi-hop (or translation) problem. They could not be natu-
rally extended to other PFOE queries. Additionally, other geometric
variants such as circular and Gaussian embeddings [39, 42] are
not closed under intersection (intersection of Gaussians is not a
Gaussian).

3https://www.kaggle.com/danofer/dbpedia-classes
4Proprietary dataset

https://www.kaggle.com/danofer/dbpedia-classes
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Table 2: Performance comparison of HypE (ours) against the baselines to study the efficacy of the Query-Search space. The
columns present the different query structures and averages over them. The final row presents the Average Relative Improve-
ment (%) of HypE compared to Query2Box over all datasets. E-Vector and H-Vector are vectors in Euclidean and hyperbolic
space, respectively. Best results for each dataset are shown in bold.

Metrics Hits@3 Mean Reciprocal Rank
Dataset Model 1t 2t 3t 2∩ 3∩ 2∪ ∩𝒕 𝒕∩ ∪𝒕 Avg 1t 2t 3t 2∩ 3∩ 2∪ ∩𝒕 𝒕∩ ∪𝒕 Avg
FB15k GQE (E-Vector) .636 .345 .248 .515 .624 .376 .151 .310 .273 .386 .505 .320 .218 .439 .536 .300 .139 .272 .244 .330

KGAT (E-Vector) .711 .379 .276 .553 .667 .492 .181 .354 .302 .435 .565 .352 .243 .471 .573 .393 .167 .311 .270 .372
HQE (H-Vector) .683 .365 .265 .451 .589 .438 .135 .283 .290 .389 .543 .339 .233 .384 .506 .350 .125 .249 .259 .332
Q2B (Box) .786 .413 .303 .590 .710 .608 .211 .397 .330 .483 .654 .373 .274 .488 .602 .468 .194 .339 .301 .410
HypE (Hyperboloid) .809 .486 .365 .598 .728 .610 .206 .406 .410 .513 .673 .439 .330 .495 .617 .470 .189 .347 .374 .437

FB15k GQE (E-Vector) .404 .214 .147 .262 .390 .164 .087 .162 .155 .221 .346 .193 .145 .250 .355 .145 .086 .156 .151 .203
-237 KGAT (E-Vector) .436 .227 .167 .293 .422 .202 .069 .135 .174 .236 .373 .205 .165 .280 .384 .179 .068 .130 .170 .217

HQE (H-Vector) .440 .231 .171 .265 .387 .195 .083 .162 .183 .235 .376 .209 .169 .253 .352 .173 .082 .156 .179 .217
Q2B (Box) .467 .240 .186 .324 .453 .239 .050 .108 .193 .251 .400 .225 .173 .275 .378 .198 .105 .180 .178 .235
HypE (Hyperboloid) .572 .366 .255 .399 .527 .225 .145 .246 .282 .335 .490 .343 .237 .339 .440 .186 .305 .410 .260 .334

NELL GQE (E-Vector) .417 .231 .203 .318 .454 .200 .081 .188 .139 .248 .311 .193 .175 .273 .399 .159 .078 .168 .130 .210
995 KGAT (E-Vector) .486 .249 .218 .331 .467 .285 .107 .200 .151 .277 .362 .208 .188 .284 .410 .227 .103 .179 .141 .234

HQE (H-Vector) .477 .250 .219 .270 .413 .267 .091 .153 .166 .256 .355 .209 .189 .232 .363 .213 .088 .137 .155 .216
Q2B (Box) .555 .266 .233 .343 .480 .369 .132 .212 .163 .306 .413 .227 .208 .288 .414 .266 .125 .193 .155 .254
HypE (Hyperboloid) .618 .359 .312 .400 .563 .441 .143 .227 .278 .371 .460 .306 .279 .336 .486 .318 .135 .207 .264 .310

DBPedia GQE (E-Vector) .673 .006 N.A. .873 .879 .402 .160 .668 0.00 .406 .502 .005 N.A. .749 .773 .32 .154 .597 0.00 .344
|𝑅 | = 1 KGAT (E-Vector) .753 .007 N.A. .937 .940 .526 .192 .762 0.00 .457 .561 .006 N.A. .804 .825 .419 .185 .682 0.00 .387

HQE (H-Vector) .422 .003 N.A. 1.00 1.00 .138 .109 .182 .001 .296 .314 .003 N.A. .859 .879 .110 .105 .163 .001 .270
Q2B (Box) .832 .007 N.A. 1.00 1.00 .649 .224 .856 0.00 .508 .619 .006 N.A. .840 .863 .468 .212 .779 0.00 .421
HypE (Hyperboloid) .897 .009 N.A. 1.00 1.00 .708 .294 .935 .001 .546 .668 .008 N.A. .840 .863 .511 .278 .853 .001 .447

DBPedia GQE (E-Vector) .730 .565 N.A. .873 .879 .534 .213 .705 .027 .504 .544 .421 N.A. .651 .656 .398 .159 .526 .020 .375
|𝑅 | = 𝑝 KGAT (E-Vector) .816 .621 N.A. .937 .940 .699 .255 .804 .030 .567 .608 .463 N.A. .698 .700 .521 .190 .599 .022 .422

HQE (H-Vector) .456 .182 N.A. 1.00 1.00 .184 .143 .192 .143 .367 .339 .135 N.A. .744 .744 .137 .106 .143 .106 .273
Q2B (Box) .901 .676 N.A. 1.00 1.00 .863 .297 .903 .033 .630 .670 .503 N.A. .744 .744 .642 .221 .672 .025 .469
HypE (Hyperboloid) .970 .756 N.A. 1.00 1.00 .940 .388 .985 .046 .676 .722 .563 N.A. .744 .744 .700 .289 .733 .034 .503

Avg. Improv. (%) (HypE vs Q2B) 15.0 39.2 67.0 4.1 4.7 13.0 28.5 12.9 7.3 14.4 14.9 38.4 59.8 4.4 5.0 12.9 39.5 17.9 64.9 18.5

4.3 RQ1: Efficacy of the Query-Search space
To analyze the efficacy of the query space obtained from the HypE
model, we compare it against the state-of-the-art baselines on the
following reasoning query structures:
(1) Single operator queries include multi-level translation (1t,

2t, and 3t) multi-entity intersection (2∩, 3∩) and multi-entity
union queries (2∪). 1t, 2t, and 3t denote translation with 1,
2 and 3 consecutive relations, respectively. 2∩ and 2∪ stand
for intersection and union over two entities, respectively. 3∩
represents intersection over three entities.

(2) Compound queries contain multiple operators chained in se-
ries to get the final result. Our experiments analyze∩𝑡 (intersection-
translation), 𝑡∩ (translation-intersection) and∪𝑡 (union-translation).

The above queries are illustrated in Figure 8.

Figure 8: Logical query structures designed to compare
HypE against baselines. The blue, red, and green units de-
note translation, intersection, and union operations, respec-
tively.

We extract the ground truth query-entity pairs by traversing the
datasets [35]. The models are trained on queries from 𝐾𝐺𝑡𝑟𝑎𝑖𝑛 and
validated on𝐾𝐺𝑣𝑎𝑙𝑖𝑑 . The final evaluation metrics are calculated on
𝐾𝐺𝑡𝑒𝑠𝑡 . We utilize Euclidean norm and hyperbolic distance (given in
Eq. (3)) to measure the distance between query embeddings and its
resultant entities in Euclidean and hyperbolic spaces, respectively.
The sorted query-entity distances are the ranked results for the
given query.

Table 3: Performance comparison ofHypE (ours) against the
baselines on an e-commerce dataset for multi-level transla-
tion queries. We assume GQE (E-vector) as a baseline and
report relative improvements against that for all the meth-
ods. The numbers are in percentages. Best results for each
dataset are shown in bold.5
Metrics Hits@3 Mean Reciprocal Rank
Dataset Model 1t 2t 3t 1t 2t 3t
|𝑅 | = 1 GQE (E-Vector) 0.0 0.0 0.0 0.0 0.0 0.0

KGAT (E-Vector) 12.12 10.9 0.0 0.0 -36.2 -57.3
HQE (H-Vector) -34.8 -51.6 0.0 -34.7 -56.6 0.0
Q2B (Box) 30.3 4.7 200 23.5 7.5 0.0
HypE (Hyperboloid) 38.6 98.4 200 38.8 79.2 100

|𝑅 | = 𝑝 GQE (E-Vector) 0.0 0.0 0.0 0.0 0.0 0.0
KGAT (E-Vector) 12.2 10.7 0.0 11.5 9.5 0.0
HQE (H-Vector) 38.8 92.9 350 38.5 90.5 600
Q2B (Box) 17.3 37.5 0.0 23.1 19.0 0.0
HypE (Hyperboloid) 122.3 298.2 8350 192.3 471.4 9900

Given a test query 𝑞𝑡𝑒𝑠𝑡 , let the true ranked result entities be
𝐸𝑟𝑒𝑠𝑢𝑙𝑡 and model’s ranked output be 𝐸𝑜𝑢𝑡𝑝𝑢𝑡 = {𝑒𝑜1, 𝑒𝑜2, ..., 𝑒𝑜𝑛}.
The evaluation metrics used in our work are Hits@K andMean

5Due to the sensitive nature of the proprietary dataset, we only report relative results.
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Table 4: Ablation study results. The first column presents the model variants compared against the final HypE model. Avg-1t
and Avg-1,2,3t variants only utilize average center aggregation because other aggregation variants only apply when intersec-
tions are involved.HypE-TCpresents theHypE variantwith trainable curvature. Themetrics reported in the table are averaged
across evaluation on all the datasets. Finer evaluation results are provided in the Appendix B. Best results are shown in bold.

Metrics Hits@3 Mean Reciprocal Rank
Model Variants 1t 2t 3t 2∩ 3∩ 2∪ ∩𝒕 𝒕∩ ∪𝒕 Avg 1t 2t 3t 2∩ 3∩ 2∪ ∩𝒕 𝒕∩ ∪𝒕 Avg
HypE-Avg-1t .651 .274 .153 .383 .414 .484 .099 .235 .135 .312 .538 .238 .149 .309 .332 .366 .108 .216 .126 .264
HypE-Avg-1,2,3t .650 .353 .213 .431 .474 .486 .133 .280 .187 .352 .532 .306 .204 .345 .381 .366 .140 .256 .171 .297
HypE-Avg .650 .432 .272 .479 .535 .487 .167 .325 .239 .392 .525 .373 .258 .381 .429 .366 .172 .296 .215 .330
HypE-DS .630 .432 .267 .488 .555 .451 .165 .356 .238 .392 .511 .376 .257 .399 .460 .344 .172 .326 .213 .334
HypE-TC .656 .439 .275 .490 .565 .488 .177 .374 .243 .406 .530 .379 .262 .391 .458 .368 .184 .340 .216 .342
HypeE (final) .656 .438 .275 .490 .564 .488 .177 .373 .242 .405 .530 .378 .262 .390 .458 .368 .184 .340 .215 .341

Reciprocal Rank (MRR). The metrics are given by:

𝐻𝐼𝑇𝑆@𝐾 (𝑞𝑡𝑒𝑠𝑡 ) =
1
𝐾

𝐾∑
𝑘=1

𝑓 (𝑒𝑜𝑘 ) , 𝑓 (𝑒𝑜𝑘 ) =
{
1, if 𝑒𝑜𝑘 ∈ 𝐸𝑟𝑒𝑠𝑢𝑙𝑡
0, otherwise

𝑀𝑅𝑅(𝑞𝑡𝑒𝑠𝑡 ) =
1
𝑛

𝑛∑
𝑖=1

1
𝑓 (𝑒𝑜𝑖 )

, 𝑓 (𝑒𝑜𝑖 ) =
{
𝑖, if 𝑒𝑜𝑖 ∈ 𝐸𝑟𝑒𝑠𝑢𝑙𝑡
∞, otherwise

From the results in Table 2, we observe that, on average, HypE
outperforms the current baselines in translation, single, and com-
pound operator queries by 15%-67%, 4%-13%, and 7%-28%, respec-
tively. The performance improvement linearly increases with higher
query depth (1𝑡 < 2𝑡 < 3𝑡 ). Furthermore, we notice that unique
depth encoding (|𝑅 | = 𝑑) outperforms identical depth encoding
(|𝑅 | = 1) by 23% in DBPedia. Because of our subsampling strategy,
the E-commerce Product Network is disjoint (i.e., there are several
intermediate nodes that do not share children). Hence, the number
of intersection queries are extremely low and insufficient for train-
ing HypE or baselines. However, we can still train the translation
queries, and the results are shown in Table 3, where we report rela-
tive performance improvements with respect to the GQE baseline.
For the sake of completeness, results on intersection and union
queries are given in the Appendix C.

4.4 RQ2: Ablation Study
In this section, we empirically analyze the importance of different
layers adopted in the HypE model. For this, we experiment with
different variations of the center aggregation layer; Average (HypE-
Avg), Attention (HypE) (refer to Eq. (6)) and Deepsets (HypE-DS)
(refer to Eq. (7)). Furthermore, we test the exclusion of intersection
and unions to comprehend their importance in the representation
learning process. We adopt two variants of HypE; one trained on
only 1t queries (HypE-Avg-1t) and the other trained on all transla-
tion queries (HypE-Avg-1,2,3t). Table 4 presents the performance
metrics of different variants on the query processing task, aver-
aged across all the datasets including the E-commerce dataset. The
results are provided in Table 4.

Firstly, we observe that the exclusion of intersection and union
queries results in a significant performance decrease by 25% (Avg-
1,2,3t vs HypE). Furthermore, removing deeper queries such as
2t and 3t, also results in an additional decrease by 17% (Avg-1t
vs Ag-1,2,3t). The tests on different aggregation layers prove that
Attention is better than average and Deepsets by 23.5% and 14.5%,
respectively. Additionally, we notice that employing a trainable
curvature results in a slight performance improvement of 0.3%.
However, given the incremental performance boost but significant
increase in the number of parameters (∼10K) that the trainable

curvature adds to the framework, we ignore this component in the
final HypE model.

As explained in Section 3.4, the final HypE model adopts a
Poincaré ball manifold with non-trainable curvature, in addition
to attention and Deepsets layer for center and limit aggregation,
respectively. Additionally, HypE leverages all PFOE queries.

4.5 RQ3: Performance on Anomaly Detection
In this experiment, we utilize the entity and relation representations,
trained on the DBPedia Hierarchical Taxonomy and E-commerce
Product Network with query processing task, to identify products
that might be anomalously categorized. We consider identifying
the anomalous children by three levels of parents (i.e., taxonomy
levels); 𝑃1, 𝑃2 and 𝑃3. The motivating application is to categorize
items that are potentially mis-categorized by sellers into the more
relevant (correct) part of the product taxonomy.

Table 5: Results on Miscategorized Article Anomaly Detec-
tion in DBPedia dataset. Best results are shown in bold and
the second best results are underlined. P, R, and F1 represent
Precision, Recall, and F-score, respectively.

P-Level 1 2 3
Dataset Models P R F1 P R F1 P R F1
DBPedia GQE .512 .369 .428 .549 .446 .492 .576 .409 .479
|𝑅 | = 𝑝 KGAT .523 .375 .437 .552 .448 .495 .578 .416 .484

HQE .529 .385 .446 .556 .45 .497 .586 .424 .492
Q2B .589 .479 .527 .589 .479 .528 .597 .481 .532
HypE .590 .479 .528 .648 .482 .552 .650 .486 .557
HypE-SI .591 .479 .529 .648 .483 .553 .651 .486 .557
HypE-SC .601 .501 .546 .662 .563 .608 .705 .563 .626

Table 6: Results on Miscategorized Product Anomaly De-
tection in E-commerce Product Networks. Best results are
shown in bold and the second best results are underlined.
The improvements are relative to theGQEbaseline. P, R, and
F1 represent Precision, Recall, and F-score, respectively.6

P-Level 1 2 3
Dataset Models P R F1 P R F1 P R F1
E- GQE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
commerce KGAT 2.2 1.8 2.1 0.6 0.5 0.7 0.2 1.6 1.1
|𝑅 | = 𝑝 HQE 3.4 4.5 4.1 1.2 1.0 1.1 1.7 3.5 2.8

Q2B 15.1 29.9 23.4 7.2 7.4 7.4 3.6 17.5 11.3
HypE 15.3 29.9 23.4 18.0 8.4 12.8 16.6 18.5 17.2
HypE-SI 15.5 29.9 23.7 18.0 8.4 12.5 16.4 18.8 17.2
HypE-SC 17.4 35.8 27.5 20.6 26.4 23.7 22.3 37.6 30.8

We construct a pseudo-tree, where all parent nodes are infused
with 10% noise of randomly sampled anomalous leaf nodes from
different parts of the dataset. The goal of the model is to learn repre-
sentations from this pseudo-tree and identify anomalous leaf nodes
6Due to the sensitive nature of the proprietary dataset, we only report relative results.
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Table 7: Example ofAnomalies in the E-commerce dataset. Themodels predict “MISCAT” and “TRUE” tags formis-categorized and
truly-categorized items, respectively. Correct and Incorrect tags are given in green and red color, respectively. HypE performs
better thanQuery2Box (Q2B) as we consider higher level of parents because hyperbolic space is better at capturing hierarchical
features. Also, HypE-SC is able to utilize semantic information to improve prediction.

Product Title Parent Prediction
Category P-level Q2B HypE HypE-SC

ASICS Women’s Gel-Venture 7 Trail Running Shoes, 5.5M, Graphite Grey/Dried Berry Rompers 1 TRUE TRUE MISCAT
inktastic Family Cruise Youth T-Shirt Youth X-Large (18-20) Pacific Blue 35074 Calvin Klein 1 TRUE MISCAT MISCAT
Calvin Klein Men’s Cotton Classics Multipack Crew Neck T-Shirts Calvin Klein 1 MISCAT MISCAT TRUE
Epic Threads Big Girls Paint Splatter Distressed Girlfriend Denim Jeans (Dark Wash, 10) Wool & Blends 2 MISCAT MISCAT TRUE
New Balance Women’s Crag V1 Fresh Foam Trail Running Shoe, Black/Magnet/Raincloud Wool & Blends 2 TRUE MISCAT MISCAT
Fifth Harmony Vintage Photo Blue T Shirt (M) Customer Segment 2 TRUE TRUE MISCAT
Billy Bills Playoff Shirt Buffalo T-Shirt Let’s Go Buffalo Tee Customer Segment 2 MISCAT TRUE TRUE
Kanu Surf Toddler Karlie Flounce Beach Sport 2-Piece Swimsuit, Ariel Blue, 4T Brand Stores 3 TRUE MISCAT MISCAT
The North Face Infant Glacier ¼ Snap, Mr. Pink, 0-3 Months US Infant Brand Stores 3 MISCAT TRUE TRUE
Artisan Outfitters Mens Surfboard Shortboard Batik Cotton Hawaiian Shirt Specialty Stores 3 MISCAT TRUE TRUE
PUMA Unisex-Kid’s Astro Kick Sneaker, Peacoat-White-teamgold, 3 M US Little Kid Specialty Stores 3 TRUE TRUE MISCAT

(a) DBPedia Taxonomy (b) E-commerce Product Networks
Figure 9: Visualization of HypE representations for samples from hierarchical datasets in Poincaré ball. The hyperboloids
have been scaled up 10 times for better comprehension. The blue (intermediate nodes) circles are annotated with their entity
names and orange circles (leaf nodes) depict articles and products in (a) and (b), respectively.

of the immediate parent nodes. From the set of all intermediate
nodes 𝐾𝐺𝑃 , given a parent 𝑝 ∈ 𝐾𝐺𝑃 and its originial set of children
𝐶+ = 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛(𝑝) and randomly sampled set of anomalous children
𝐶− = 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 (𝐾𝐺𝑃 \ {𝑝}), the aim here is to identify 𝑐 ∈ 𝐶− from
𝐶+ ∪𝐶−. We use Precision, Recall and F1-score as the evaluation
metrics for this experiment.

The results (given in Table 5 and Table 6) show that, although
HypE has comparable performance to baselines at 𝑃1, it outper-
forms the baselines bymore than 5% at 𝑃2 and 𝑃3. This demonstrates
the robustness of HypE to noisy data and its capability of capturing
relevant hierarchical features (as F1 on 𝑃3 > 𝑃2 > 𝑃1) for down-
stream tasks. Furthermore, the specific task is critical in e-commerce
search as irrelevant results impede a smooth user experience. Table
7 presents some qualitative examples from the E-commerce dataset.

4.6 RQ4: Leveraging Semantic Information
KGs generally also contain additional auxiliary information within
the entities. In this section, we test the possibility of leveraging the
semantic information in the DBPedia (article titles) and E-commerce
(product titles) dataset to improve representations. We study two

methods to connect HypE with FastText embeddings [6] of the
corresponding titles:

• Semantic Initiation (SI) initiates the HypE’s entities with se-
mantic embeddings and learns new HypE-SI embeddings with
the query-processing task (given in Section 4.3).
• Semantic Collaboration (SC) concatenates the HypE’s pre-
trained entity representations with semantic embeddings.

We investigate the performance of these methods on the task of
anomaly detection. The results of the experiments are given in
Tables 5 and 6. The results demonstrate that HypE-SI shows no
significant performance improvement over HypE. That is, a good
semantic initialization of the vectors does not result in better repre-
sentations. This is reasonable, since the semantic embeddings are
learnt in the Euclidean space, and several transformations occur be-
tween the initialization and final representations. This also means
that the learning framework is robust to initialization. We observe
a performance improvement of 2% − 8% in case of HypE-SC when
compared to HypE. This suggests the ubiquity of HypE since hierar-
chical representations can be independently augmented with other
auxiliary features to solve more complex tasks. From the examples
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given in Table 7, we can observe that HypE-SI is able to leverage
semantic information from product title and category name to enrich
HypE’s hierarchical information to produce better predictions. The
additional semantic information is especially useful for product
miscategorization. In the absence of semantic information, HypE
will merely learn representations based on the noisy graph and will
lose discriminative information between outliers and correct nodes.

4.7 RQ5: Visualization of the Poincaré ball
We extract representative examples of different operations from
our dataset and visualize them in a 2-dimensional Poincaré ball of
unit radius. We employ Principal Component Analysis (PCA) [5]
for dimensionality reduction (R2𝑑 → R2) of the hyperboloids in
Poincaré ball.

Figure 9 depicts the HypE representations in a Poincaré ball man-
ifold. Notice that the density of nodes increases superlinearly from
the center towards the circumference, which is analogous to the
superlinear increase in the number of nodes from root to the leaves.
Thus, HypE is able to learn a better distinction between different
hierarchy levels, when compared to the Euclidean distance-based
baselines, which conform to a linear increase. Furthermore, we
observe that hyperboloid intersections in DBPedia Taxonomy (Fig-
ure 9(a)) capture entities with common parents. Also, the disjoint
nature of E-commerce Product Networks (Figure 9(b)) is illustrated
by disjoint non-intersecting hyperboloids in the latent space. In
addition, we can also notice that the learnable limit parameter ad-
justs the size of hyperboloids to accomodate its varying number
of leaf nodes. Thus, the complex geometry of HypE is able to im-
prove its precision over vector baselines that, generally, utilize static
thresholds over distance of the resultant entities from query points.

5 CONCLUSION
In this paper, we presented Hyperboloid Embeddings (HypE) model,
a novel self-supervised learning framework that utilizes dynamic
query-reasoning over KGs as a proxy task to learn representations
of entities and relations in a hyperbolic space. We demonstrate the
efficacy of a hyperbolic query-search space against state-of-the-
art baselines over different datasets. Furthermore, we also show
the effectiveness of hyperboloid representations in complex down-
stream tasks and study methods that can leverage node’s auxiliary
information to enrich HypE features. Additionally, we analyze the
contribution of HypE’s individual components through an abla-
tion study. Finally, we present our hyperboloid representations in a
2-dimensional Poincaré ball for better comprehensibility.
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A HYPERBOLIC VS EUCLIDEAN DISTANCES
To better analyze the impact of adopting hyperbolic space, we
need to understand its distinction from the Euclidean space in
handling hierarchy. For this, we study the intra-level and inter-
level Euclidean and hyperbolic distance between entities at different
levels of the dataset. Let us say 𝐸𝑝 is the set of entities at level 𝑃𝑝
in the E-commerce Product Networks dataset. For the analysis, we
calculate two sets of distances; intra-level (Δ𝑖𝑛𝑡𝑟𝑎) and inter-level
(Δ𝑖𝑛𝑡𝑒𝑟 ) distance as follows:

Δ𝑖𝑛𝑡𝑟𝑎 (𝑃𝑝 ) =
∑ |𝐸𝑝 |
𝑖=0

∑ |𝐸𝑝 |
𝑗=𝑖

𝛿 (𝑒𝑖 , 𝑒 𝑗 )
|𝐸𝑝 |

(
|𝐸𝑝 | − 1

) (11)

Δ𝑖𝑛𝑡𝑒𝑟 (𝑃𝑝1, 𝑃𝑝2) =
∑ |𝐸𝑝1 |
𝑖=0

∑ |𝐸𝑝2 |
𝑗=0 𝛿 (𝑒𝑖 , 𝑒 𝑗 )

|𝐸𝑝1 | × |𝐸𝑝2 |
(12)

𝛿 (. , .) is replaced with Euclidean norm (on Query2Box representa-
tions) and hyperbolic distance (𝑑ℎ𝑦𝑝 on HypE representations) to
understand the difference between the hierarchical separation of
entities in the two spaces.

In the Δ𝑖𝑛𝑡𝑟𝑎 results (depicted in Figure 10), we observe that,
with increasing level of hierarchy the distance between entities at
different levels remains constant in the case of Euclidean space and
shows a clear decreasing trend for hyperbolic space. This indicates
denser clustering of entities at the same level. Additionally, the
Δ𝑖𝑛𝑡𝑒𝑟 results, illustrated in Figure 11, depict a linear increase in
distance between inter-level entities in the Euclidean space and a
superlinear growth in the hyperbolic space. This shows that hy-
perbolic space also learns clusters such that inter-level entities are
farther apart compared to Euclidean space. This nature of inter-level
discrimination and intra-level aggregation demonstrates the supe-
rior ability of hyperbolic spaces at capturing hierarchical features.

Figure 10: Intra-level Euclidean (Q2B) and Hyperbolic
(HypE) distances. The graph presents Δ𝑖𝑛𝑡𝑟𝑎 of entity sets at
different hierarchy levels, given on the x-axis.

B ABLATION STUDY: FINER RESULTS
The finer results, across all datasets, of our Ablation study, described
in Section 4.4, are given in Tables 8 and 9. We observe that, on aver-
age over all types of reasoning queries, a combination of attention
aggregation for centers and Deepsets aggregation for limits results
in the best performance across all the datasets. Thus, we utilize this
combination in our final model.
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Table 8: Performance comparison of HypE (ours) against the baselines to study the efficacy of its Query-Search space. The
columns present different query structures and averages values. The final row presents the Average Relative Improvement (%)
of HypE compared to Query2Box over all datasets. Best results for each dataset are shown in bold.

Metrics Hits@3 Mean Reciprocal Rank
Dataset Model 1t 2t 3t 2∩ 3∩ 2∪ ∩𝒕 𝒕∩ ∪𝒕 Avg 1t 2t 3t 2∩ 3∩ 2∪ ∩𝒕 𝒕∩ ∪𝒕 Avg
FB15k HypE-Avg-1t .803 .304 .202 .468 .534 .606 .115 .256 .228 .395 .683 .276 .188 .392 .448 .467 .111 .221 .219 .338

HypE-Avg-1,2,3t .803 .392 .282 .527 .612 .608 .155 .305 .317 .446 .675 .355 .257 .438 .513 .467 .144 .262 .296 .380
HypE-Avg .802 .479 .361 .585 .690 .609 .194 .353 .405 .497 .667 .433 .325 .483 .578 .467 .177 .302 .373 .422
HypE-DS .777 .479 .354 .596 .717 .564 .192 .387 .403 .496 .649 .437 .324 .506 .620 .439 .176 .333 .370 .428
HypE-TC .809 .486 .365 .598 .729 .610 .206 .406 .410 .513 .674 .439 .331 .495 .617 .470 .189 .348 .375 .437
HypeE (final) .809 .486 .365 .598 .728 .610 .206 .406 .410 .513 .673 .439 .330 .495 .617 .470 .189 .347 .374 .437

FB15k HypE-Avg-1t .567 .229 .141 .312 .387 .223 .081 .155 .157 .258 .498 .216 .135 .269 .319 .185 .179 .261 .152 .258
-237 HypE-Avg-1,2,3t .567 .295 .197 .351 .444 .224 .109 .185 .218 .292 .492 .277 .185 .300 .366 .185 .233 .309 .206 .291

HypE-Avg .567 .361 .252 .390 .500 .225 .137 .214 .279 .325 .486 .338 .234 .331 .412 .185 .286 .357 .259 .323
HypE-DS .549 .361 .247 .398 .519 .208 .135 .234 .277 .324 .473 .341 .233 .347 .442 .174 .285 .393 .257 .327
HypE-TC .573 .366 .256 .399 .528 .225 .146 .246 .283 .335 .490 .344 .238 .339 .440 .186 .306 .411 .260 .335
HypeE (final) .572 .366 .255 .399 .527 .225 .145 .246 .282 .335 .490 .343 .237 .339 .440 .186 .305 .410 .260 .334

NELL HypE-Avg-1t .614 .225 .173 .313 .413 .438 .080 .143 .155 .286 .467 .192 .159 .266 .353 .316 .079 .131 .154 .240
995 HypE-Avg-1,2,3t .613 .290 .241 .352 .474 .439 .108 .170 .215 .323 .462 .247 .217 .297 .404 .316 .103 .156 .209 .270

HypE-Avg .612 .354 .309 .391 .534 .440 .135 .197 .275 .359 .456 .302 .275 .328 .455 .316 .127 .180 .263 .299
HypE-DS .594 .354 .303 .399 .554 .408 .134 .216 .273 .359 .444 .304 .274 .344 .488 .297 .126 .198 .261 .304
HypE-TC .618 .360 .313 .400 .563 .442 .144 .228 .278 .371 .461 .306 .279 .336 .487 .319 .135 .207 .264 .310
HypeE (final) .618 .359 .312 .400 .563 .441 .143 .227 .278 .371 .460 .306 .279 .336 .486 .318 .135 .207 .264 .310

DBPedia HypE-Avg-1t .963 .473 N.A. .782 .734 .933 .216 .621 .026 .521 .713 .374 N.A. .589 .540 .696 .170 .467 .020 .390
|𝑅 | = 𝑝 HypE-Avg-1,2,3t .962 .609 N,A. .880 .841 .936 .291 .739 .036 .588 .724 .455 N.A. .658 .619 .696 .221 .553 .027 .438

HypE-Avg .961 .745 N.A. .978 .948 .938 .366 .856 .045 .655 .715 .555 N.A. .726 .697 .696 .271 .638 .034 .486
HypE-DS .932 .745 N.A. .997 .985 .869 .362 .938 .045 .654 .697 .560 N.A. .741 .738 .654 .270 .703 .034 .490
HypE-TC .971 .757 N.A. 1.00 1.00 .941 .388 .986 .047 .677 .722 .563 N.A. .745 .745 .701 .289 .733 .034 .504
HypeE (final) .970 .756 N.A. 1.00 1.00 .940 .388 .985 .046 .676 .722 .563 N.A. .744 .744 .700 .289 .733 .034 .503

Table 9: Performance comparison of HypE (ours) against the baselines on E-commerce dataset to study the efficacy of the
model’s Query-Search space. The columns present the different query structures and averages over them. The final row
presents the Average Relative Improvement (%) of HypE compared to Query2Box over all datasets. Best results for each dataset
are given in bold.7

Metrics Hits@3 Mean Reciprocal Rank
Dataset Model 1t 2t 3t 2∩ 3∩ 2∪ ∩𝒕 𝒕∩ ∪𝒕 Avg 1t 2t 3t 2∩ 3∩ 2∪ ∩𝒕 𝒕∩ ∪𝒕 Avg
E- HypE-Avg-1t 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
commerce HypE-Avg-1,2,3t 0.0 28.6 39.4 12.5 0.0 0.5 0.0 50.0 39.8 13.0 -1.0 28.5 36.8 13.3 0.0 0.0 0.0 100 35.3 12.6
|𝑅 | = 𝑝 HypE-Avg -0.3 57.1 77.7 25.0 0.0 0.9 0.0 50.0 78.7 26.0 -2.3 57.0 72.8 23.3 0.0 0.0 0.0 100 70.6 24.2

HypE-DS -3.3 57.1 74.5 27.5 0.0 -6.8 0.0 50.0 76.9 26.0 -4.9 58.3 71.9 30.0 0.0 -6.1 0.0 100 69.4 26.3
HypE-TC 0.7 60.0 80.9 27.5 0.0 0.9 0.0 50.0 81.5 31.0 -1.3 59.6 75.4 30.0 0.0 0.6 0.0 200 70.6 28.4
HypE (final) 0.7 59.3 79.8 27.5 0.0 0.9 0.0 50.0 80.6 30.0 -1.3 58.9 75.4 26.7 0.0 0.6 0.0 100 70.6 28.4

Table 10: Performance comparison of HypE (ours) against
the baselines on an e-commerce dataset for intersection and
union queries. We fix GQE (E-vector) to be our baseline and
report the relative improvements against that for all the
methods. The numbers are in percentages. Best results for
each dataset are shown in bold.
Metrics Hits@3 Mean Reciprocal Rank
Dataset Model 2∩ 3∩ 2∪ ∩𝒕 𝒕∩ ∪𝒕 2∩ 3∩ 2∪ ∩𝒕 𝒕∩ ∪𝒕
|𝑅 | = 1 GQE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

KGAT 53.8 2850 30.8 200 300 0.0 -36.2 -57.3 24.4 -60 -45.5 0.0
HQE 0.0 0.0 -57.7 0.0 -50.0 1500 -58.5 -99 -61 -80 -90.9 1100
Q2B -1.9 -50 32.7 0.0 50 0.0 -59.6 -99 53.7 -80 -81.8 0.0
HypE -1.9 -50 119.2 0.0 50 1500 -59.6 -99 107.3 -80 -81.8 1100

|𝑅 | = 𝑝 GQE 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
KGAT 0.0 0.0 30.2 0.0 2600 0.0 -8.8 0.0 31.3 -25 0.0 0.0
HQE 0.0 0.0 0.0 -50 0.0 19400 11.8 0.0 0.0 -75 0.0 14400
Q2B 0.0 0.0 95.3 0.0 200 0.0 11.8 0.0 59.4 -75 100 0.0
HypE 0.0 0.0 416.3 0.0 2600 19400 11.8 0.0 415.6 -75 100 14400 Figure 11: Inter-level Euclidean (Q2B) and Hyperbolic

(HypE) distances. Each graph presents Δ𝑖𝑛𝑡𝑒𝑟 between entity
pairs of a source hierarchical level, given by the graph label
and the other hierarchy levels in the dataset, given on the
x-axis.

C E-COMMERCE RESULTS
The intersection and union results on the e-commerce datasets,
described in Section 4.3, are given in Table 10.
7Due to the sensitive nature of the proprietary dataset, we only report relative results.
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