SOFTWARE TOOLS FOR SEPARATING DISTRIBUTION CONCERNS

A Thesis
Presented To
The Academic Faculty

by

Eli Tilevich

In Partial Fulfillment
Of the Requirements for the Degree
Doctor of Philosophy

College of Computing
Georgia Institute of Technology
December 2005

Copyright © 2005 by Eli Tilevich

SOFTWARE TOOLS FOR SEPARATING DISTRIBUTION CONCERNS

Approved by:

Dr. Yannis Smaragdakis, Advisor
College of Computing
Georgia Institute of Technology

Dr. Doug Lea
Computer Science Department
State University of New York at Oswego

Dr. Karsten Schwan
Computer Science Department
Georgia Institute of Technology

Dr. Mary Jean Harrold
College of Computing
Georgia Institute of Technology

Dr. Santosh Pande
College of Computing
Georgia Institute of Technology

Date Approved: October 31, 2005

1o my family,

for their love and support.

ACKNOWLEDGEMENTS

It's a sign of mediocrity when you demonstrate gratitude with moderation.
Roberto Benigni

My graduate school experience was about intensive learning not only in the field of
computer science but also in many other aspects of life, and now I'm a different (hopefully
wiser and more mature) person as a result of this experience. As is the case with any large
endeavor, many people have contributed to the success of this dissertation.

First of all, I would like to thank my family for their support, encouragement, and
unshakable faith in my abilities during the course of my studies. Without their support,
inspired by tradition and the belief of the European intelligentsia that nothing is more valu-
able and important than education, I may not have persevered in my studies.

Regular telephone conversations with my mother saved me a fortune in psychother-
apy costs. Whenever I felt dejected or doubtful due to diverse factors such as making slower
than expected progress in my research, learning that one of my papers was rejected, having
no personal or social life whatsoever, or imagining the life I could have had, had I chosen
to continue my professional career in the “real world,” my mother would assure me that
pursuing a Ph.D. was the right thing to do and that the pleasures of normal life could wait.
My family has exhibited such incomprehensible pride about my pursuing a doctorate
degree that I have always felt like I had no choice but to carry on and successfully complete
my studies.

I would like to thank my advisor Yannis Smaragdakis and all the members of my

committee: Mary Jean Harrold, Doug Lea, Santosh Pande, and Karsten Schwan.

v

Meeting my advisor Yannis Smaragdakis solidified my intent to pursue academic
research training. He gave me the opportunity to work on problems that I found exciting
and gently guided me through the challenges of mastering the intricacies of the research
trade. His explanation that the only worthy reason for getting a Ph.D. is to become a “fully
trained Jedi Knight” seemed just barely convincing five years ago, but it makes perfect
sense to me now. His knowing exactly when a hands-on or hands-off management approach
was most appropriate helped me immensely in my development as a researcher. His point-
ing out the differences between analytic and synthetic abilities and his advice that I work
on improving the former helped me focus my efforts and achieve maximum benefits.
Yannis has never failed to amaze me with the depth of his analysis and insight, and I can
only hope that I’d be as effective an advisor for my future students as Yannis was for me.

I was fortunate to have an office on the same floor as that of Mary Jean Harrold,
whom I worked for as an RA for one semester. I quickly learned that the only way to get to
work earlier than Mary Jean was to stay in my office all night. I have learned so much by
observing Mary Jean interact with her students, and I can only hope that some of her incred-
ible work ethics, dedication to her students, and passion for academic work have rubbed off
on me.

I was also fortunate to have Doug Lea as the external member of my committee.
Every interaction with Doug was a learning experience of such high quality that I felt com-
pelled to take notes whenever I was talking to him. I find Doug’s dedication to science and
work ethics somewhat intimidating—I could not imagine that a researcher of his stature and
with such a busy schedule would not only read all my dissertation documents but also pro-

vide multiple insightful comments and suggestions.

The support and encouragement that I received from Santosh Pande have greatly
contributed to the success of this dissertation. His advice to “hold my ground” proved to be
invaluable. In addition, he contributed interesting ideas for future work directions of this
dissertation.

Karsten Schwan firmly declared, after he had known me for just a few weeks, that |
appeared to be “a systems person” and that I should pursue research in systems. His
uncanny intuition about the area for which I was most suited at a time when I was oblivious
to my proclivity or talents in that particular research area helped guide my studies. His guid-
ance was invaluable, but more importantly, his encouragement and appreciation of my
work greatly boosted my confidence and helped me succeed throughout my experience at
Tech.

The exchange Masters students from the University of Stuttgart, Marcus Handte and
Stephan Urbanski, greatly helped me in creating the infrastructure for my research. Marcus
built the J-Orchestra GUI and contributed to the code base, and Stephan implemented most
of the GOTECH framework. I also would like to acknowledge the help of other Masters
students: Austin Chau, Nikitas Liogkas, and Dean Mao. Nikitas was a major contributor to
the Kimura case study.

I’d like to thank all the members of the INCITE Lab: Idris Hsi, Vernard Martin,
Jochen “Je77” Rick, Patrick Yaner, Dave Zook, and others, for engendering an atmosphere
of intellectual vitality, exchange, and collegiality in our lab. Listening to and participating
in their discussions on various matters provided me with an opportunity to engage in intel-
lectual discourse beyond my disciplinary boundaries. Thanks to them, I’'m a more well-

rounded thinker than I used to be.

vi

I’d like to thank all the present and former members of Mary Jean Harrold’s Aristotle
research group: Taweesup “Term” Apiwattanapong, George Baah, Jim Bowring, Pavan
Kumar Chittimalli, Jim Jones, Donglin Liang, Maikel Pennings, Saurabh Sinha, and others.
I can’t imagine a better bunch of people as grad school colleagues! Being able to walk
across the hall at any time and engage them in meaningless conversation while preventing
them from doing their work helped me maintain my sanity. Also, competing with and
invariably losing to Term in trying to lift a bigger percentage of one’s weight during our
regular workouts did not just keep me in shape but also helped me tremendously in dealing
with the stress of graduate school.

I’d like to thank all the SPARC faculty: Pete Manolios, Alex Orso, Spencer Rugaber,
and Olin Shivers for generously sharing their wisdom with me, as well as the SPARC stu-
dents: Christoph Csallner, David Fisher, Shan Shan Huang, Lex Spoon, and others for
being a receptive and critical audience on which I could try out my research ideas.

I’d like to thank Deborah Mitchell, Barbara Binder, and Jennifer Chisholm for
making all the administrative matters a cinch to deal with.

Because of a freak accident that put an end to my career as a professional musician,
my experience with computers started quite haphazardly. This experience would not have
been as successful without the fine instruction, helpful advice, and strong encouragement [
received at Pace University in New York. Among the many fine professors that I had the
pleasure of interacting with as a student at Pace, Carol Wolf and Joseph Bergin are the two
to whom I’m particularly grateful. Dr. Wolf was my first professor of programming, and
because of her exceptional teaching, I have not only mastered the fundamentals of com-

puter science but also gained confidence in my abilities as a computer programmer and in

vil

my future success. By distinguishing me as a student with strong potential for becoming a
good researcher, Dr. Bergin gave me the confidence necessary to pursue a doctorate degree.
Furthermore, his personal involvement in the application for admission process was instru-
mental in my admission to Georgia Tech.

Finally, I’d like to thank the faculty at Virginia Tech for giving me a job!

viii

TABLE OF CONTENTS

ACKNOWLEDGEMENT S ..ottt iiiiiiiiiitttintetnsasessesnsnsanensnns iv
LISTOFTABLES ... ittt ittt iiiitttentnennasoseneasnsasans xiii
LISTOF FIGURES . ..ttt iiiiittinntnnnceeenencnsacnns Xiv
SUMMARY .ttt iiiiiiiitiitiitiittieeneeneeneensensenssnssssnnsnns Xvii
I INTRODUCTION .. .iiiiiiiiiiiiiititenenenensnsasesensnsnsanens 1
1.1 Overview of Software Tools 5
1.1.1 Middleware with Copy-Restore Semantics 5
1.1.2 Program Generation for Distribution. 6
1.1.3 Automatic Partitioning. i 7
1.2 Thesis Statement e 8
1.3 ContribUtioNSttt 9
1.4 Overview of Distribution Concerns.t en.. 10
1.5 Overview of Dissertation. 11
2317 12
2.1 IntrodUCtiON v i 12
2.2 Background and Motivation 15
2.3 Supporting Copy-Restore 20
2.4 DISCUSSION .« . vttt ettt e e e e e e 23
2.4.1 Copy-Restore vs. Call-by-Reference 23
242 DCE RPC. ... 24
2.5 NRMIImplementations.ottt 26
2.5.1 A Drop-in ReplacementofJavaRMI 27
2.5.1.1 Programming Interface.............. i 27
2.5.1.2 Implementation Insights............ 29
2.5.2 NRMl in the J2EE Application Server Environment. 31
2.5.3 Introducing NRMI through Bytecode Engineering 34
2.53.1 UserView:NRMIzer....... ... i, 35
2.5.3.2 Implementation Specifics: Backend Engine. 36

2.6 ConcClusion.ot 37

X

II GOTECH ...ttt iitiiettenenensacssonencnsacnnnnes 39

3.1 Introduction.ot 39
3.2 The Elements of Our Approach. 42
32,1 NRMI. . 42
3.2.2 ASpeCt. . e 42
323 XDOCIet . ..o 43
3.3 The Framework 44
331 OVEIVIEW .ottt ettt e e e 44
3.3.2 Framework Specifics 45
3321 Middleware.t 46
3.3.22 GOTECH Annotationscuuuiininini e, 46
3.3.2.3 GOTECH XDoclet Templates 47
3.3.3 Discussionof Design 50
34 Advantages and Limitations. 51
3.4.1 Advantages of ourapproach 51
342 Limitations.ot 54
3.4.2.1 Entity Bean support 54
3.4.2.2 Conditions for applying rewrite 55
3.4.2.3 Making types serializable............. 55
3.4.2.4 Exceptions, construction, fieldaccess 57
3.5 ConcluSionsottt 58
IV J-ORCHESTRA ... ittt ittt iitieenenensnsanenenns 59
4.1 IntrodUCHiONottt 60
4.2 User View of J-Orchestra 63
4.3 The General Problem and Approach. 66
4.4 Classification Heuristic e 70
4.5 Rewriting Engine. 77
4.5.1 General Approach 77
4.5.2 Call-Site Wrapping for Anchored Modifiable Code 82
4.5.3 Placement Policy Based On Creation Site. 87
454 Object Mobilityoo i 89
4.6 Dealing with Concurrency and Synchronization. 93
4.6.1 Overview and Existing Approaches. 94
4.6.2 Distributed Synchronization Complications 95
4.6.3 Solution: Distribution-Aware Synchronization....................... 98
4.6.4 Benefitsofthe Approach......... 104
4.6.4.1 Portability 104
4.6.4.2 The Cost of Universal Extra Arguments 106

4.6.4.3 Maintaining Thread Equivalence ClassesIsCheap 110

4.6.5 DISCUSSION . . o\ttt ettt e e e e e 111
4.7 Appletizing: Partitioning for Specialized Domains. 113
4.7.1 Static Analysis for Appletizing. 116
4.7.2 Profiling for Appletizing. 117
4.7.3 Rewriting Bytecode for Appletizing. 119
4.7.4 Runtime Support for Appletizing 124
4.8 Run-Time Performance. 126
4.8.1 Indirection Overheads and Optimization. 126
4.8.1.1 Indirection Overheads. 126
4.8.1.2 Local-Only Optimizationoiuitirirenenennan .. 128
4.9 Java Language Features And Limitations. 129
4.9.1 Unsafety.o e 130
4.9.2 Conservative classification 131
4.9.3 Reflection and dynamic loading 131
4.9.4 Inherited IMitations.ttt 132
410 ConCluSIONSottt 133
V APPLICABILITY AND CASE STUDIESiiiiiiiiiiiiiinnnnnens 135
5.1 Applicability of the Translucent Approach............................ 135

5.2 Applicability of NRMI: Usability Call-by-Copy-Restore vs. Call-by-Copy . .137
5.3 Applicability of GOTECH: What are the Distribution Concerns and

Can They Be Separated? 140
531 SemMantiCsottt 140
5.32 Performance. 141
533 CONVENLIONS . .« vttt ettt et e e e e e e e 141
5.4 Applicability of J-Orchestra: Conditions for Successful Partitioning. 143
5.5 NRMICase Studies.ovvti i e 146
5.5.1 NRMI Low-Level Optimizations.oiinieirenenenen... 147
5.5.2 Description of Experimentst 148
5.5.3 Experimental Results......... i, 152
5.6 The GOTECH Case Study.cviitit it 156
5.7 J-Orchestra Case Studies.oitiiii i 161
5.7.1 Appletizing Case Studies.ttt 161
57001 JBItS « ot 162
57.1.2 JNotepad. 165
5.7.1.3 Jarminator.ot 167
5.7.1.4 DISCUSSION. . o . vttt ettt et e e e e e e e e 168
572 KimuraCase Studyc.iiiii 169
5.7.3 Other J-Orchestra Case Studies 177

x1

VI GENERALIZING THE J-ORCHESTRA INDIRECTION MACHINERY .179

6.1 Introduction.o 179
6.2 User-Level Indirection Techniques. 180
6.3 Transparency Limitationsttt 182
6.3.1 Beyond Java Conventions: Native Codein NET 187
6.4 Weak Assumptions of J-Orchestra Classification. 188
6.4.1 Type-Based Analysis + Weak Assumptions 188
6.4.2 More Sophisticated Type-Based Analysis.......................... 193
6.5 Validating The Assumptions and Analysis............... 195
6.5.1 Impacton Real Applicationsttt 197
6.5.2 Accuracy of Type Information. 199
6.5.3 Testing COITeCNeSS . . .« vt ottt et ettt 201
6.6 ConclusionSttt 203
VIIRELATED WORK ..ottt ittt ittt iiieitenenencnnans 205
7.1 Directly Related Work. 205
T NRMI. L 205
7.1.1.1 Performance Improvement Work. 205
7.1.1.2 Usability Improvement Work. 206
7.1.2 GOTECH . ..o e e e e 209
713 J-Orchestra.o 211
7.2 Related Research Areas. i, 214
7.3 Beneficiaries of ThisResearch 216
VIIIFUTURE WORK AND CONCLUSIONS ... itiiiiiiiiiiiiiiennnenns 219
8.1 NRMI Future Work. e 219
8.2 GOTECH Future Work 223
8.3 J-Orchestra Future Work. 224
8.4 Merits of the Dissertationttt 230
8.5 Conclusions.ttt 231
REFERENCES ittt iiiitttneneneneseenenensncnns 233
Y 1 244

Xii

Table 1-1.

Table 4-1.

Table 4-2.

Table 4-3.

Table 4-4.

Table 4-5.

Table 5-1.

Table 5-2.

Table 5-3.

Table 5-4.

Table 5-5.

Table 5-6.

Table 5-7.

Table 6-1.

LIST OF TABLES

Distribution Concerns and SOIUtIONS.......coovvveiiiiiiiiiiiii 10

Micro-benchmark: overhead of method calls

With one extra argument...........cccveecveeriierieeiienieereesee e eeee e eneees 107
Macro-benchmarks: cost of a universal extra argument.................... 109
Overhead of Maintaining Thread Equivalence Classes..................... 111

J-Orchestra worst-case indirection overhead as a function of average
work per method call (a billion calls total)ccccoeeriieiinnnnnnen. 127

Effect of lazy remote object creation (local-only objects) and J-
Orchestra INAIreCtiON...........eeeviieieiie e e 129

Baseline 1—Local Execution (processing overhead) on both the fast
(750MHz) and the slow (440MHz) machine............cccccecveeeureennnee. 153

Baseline 2—RMI Execution, without Restore (one-way traffic) 153

Baseline 3—RMI Execution with Restore on local machine (no network
OVEINEAA) ...eiiiiiiiiiii e 153

RMI Execution with Restore (two-way traffic).........ccccceeeveniienennne. 153

NRMI (Call-by-copy-restore). Both the portable and optimized version

Shown for JDK 1.4 ..o 154
Call-by-Reference with Remote References (RMI)...........ccceeeeeee. 154
Software CompleXity MEtriCS.....c..cvveriierrierieeieeseeeieeseeeveesieeeeneens 175
Type-based analysis of used system classes.........ccccceevveevienieenenne. 199

xiil

Figure 2-1:

Figure 2-2:

Figure 2-3:

Figure 2-4:

Figure 2-5:

Figure 2-6:

Figure 2-7:

Figure 2-8:

Figure 2-9:

Figure 2-10:

Figure 3-1:

Figure 4-1:

LIST OF FIGURES

A tree data structure and two aliasing references
to its Internal NOAES.ccoviieiiiecieectee e 16

A local call can affect all reachable dataoooeeeeeeeieieeeeiieeeeeen, 17

Call-by-reference semantics can be maintained
With remMote referenCes.ovueeriieierieriieieeeeee e 18

State after steps 1 and 2 of the algorithm. Remote procedure foo has
performed modifications to the server version of the data. 22

State after steps 3 and 4 of the algorithm. The modified objects (even
the ones no longer reachable through tree) are copied back to the
client. The two linear representations are “matched”—i.e., used to
create a map from modified to original versions of old objects.22

State after step 5 of the algorithm. All original versions of old objects
are updated to reflect the modified versions.cccevveveriencnnnene 22

State after step 6 of the algorithm. All new objects are updated to point
to the original versions of old objects instead of their modified
versions. All modified old objects and their linear representation can
now be deallocated. The result is identical to Figure 2-3. 22

Changes after execution of method.c.cccceeeeiieiiiiiiiiiieiecieee, 25

Under DCE RPC, the changes to data that became unreachable from t
will not be restored on the client Site.cocceevvereereniienienieeieene 26

NRMIZer GUILoviiiiiiiiiiiiiiccee e 36

Simplified fragment of XDoclet template to generate the aspect code.
Template parameters are shown emphasized. Their value is set by
XDoclet based on program text or on user annotations in the source
1 (SO SRRPSRP 48

Example user interaction with J-Orchestra. An application controlling
speech output is partitioned so that the machine doing the speech

X1v

Figure 4-2:

Figure 4-3:

Figure 4-4:

Figure 4-5:

Figure 4-6:

Figure 4-7:

Figure 4-8:

Figure 4-9:

Figure 4-10:

Figure 4-11:

Figure 5-1:

Figure 5-2:

Figure 6-1:
Figure 6-1:

Figure 6-2:

synthesis is different from the machine controlling the application
through @ GUILooiiii e 63

Results of the indirect reference approach schematically. Proxy objects
could point to their targets either locally or over the network.......... 68

J-Orchestra classification criteria. For simplicity, we assume a “pure
Java” application: no unmodifiable application classes exist............ 71

Results of the J-Orchestra rewrite schematically. Proxy objects could
point to their targets either locally or over the network.................. 80

Mobile code refers to anchored objects indirectly (through proxies) but
anchored code refers to the same objects directly. Each kind of
reference should be derivable from the other............ccccooceiiinienenne. 81
The results of a query on the creation sites of class p.MyThread......88

The zigzag deadlock problem in Java RMI.cccoovviviiiniinnnnnen. 97

Using thread id equivalence classes to solve the “zigzag deadlock
problem” in Java RMI.........cccooiiiiiiiiiiiiceee e 101

The appletizing perspective code view of a centralized Java GUI
APPLICALION. ...ttt ettt ettt te e s e ebeestaeebeesea e 116

Violating the Swing threading design invariant: someGUIOp method is
invoked on a thread different than Event-Disp-Thread, if no special

CATE 1S TAKEIL. e et e e e e e e e e e e e eeaeeaaeas 122

An automatically generated HTML file for deploying the appletized
Jarminator appliCation...........coceevuiriinieiieniienieieet e 125

UML class diagram of the Thermal Plate Simulator functionality..158

Kimura architecture: (a) the original system; (b) the reengineered

Kimura2 SYSTEIML.eeeuiieeiiieeiieeciie ettt et e 169
(a): Original system classes hierarchyc.ccooeveviiiniiiniennnnnen. 182
(b): Replicating system classes in a user package (“UP”)............... 182

(a): Original system class File (with a native method) and subclass
TXFile (without native dependencies)..........ccceeveerieeenieeneeenieennenne 196

XV

Figure 6-2:

Figure 6-3:
Figure 6-3:

Figure 8-1:

Figure 8-1:

(b): Result of the user-level indirection transformation, with safe access

to non-public fields of class File........cccceoveveciieenciieiieeieeeee 196
(a): A File class hierarchyccccoecvieviieeniiieeniieciceeecee e 197
(b): Removing subclassing restrictions...........ocveecveerveeeieeneenveennen. 197

(a): A general remote call mechanism: a subset of the client heap,
reachable from p, can be sent to the server, to be updated against a
subset of the server heap.occocvvveiiieiiieniececcce e 220

(b): A general remote call mechanism: param p is returned to the client
and restored in PIACE.cc.eevvieriieiiieriieie e 220

XVi

SUMMARY

With the advent of the Internet, distributed programming has become a necessity for
the majority of application domains. Nevertheless, programming distributed systems
remains a delicate and complex task. This dissertation explores separating distribution con-
cerns, the process of transforming a centralized monolithic program into a distributed one.
This research develops algorithms, techniques, and tools for separating distribution con-
cerns and evaluates the applicability of the developed artifacts by identifying the distribu-
tion concerns that they separate and the common architectural characteristics of the
centralized programs that they transform successfully. The thesis of this research is that
software tools working with standard mainstream languages, systems software, and virtual
machines can effectively and efficiently separate distribution concerns from application
logic for object-oriented programs that use multiple distinct sets of resources. Among the
specific technical contributions of this dissertation are (1) a general algorithm for call-by-
copy-restore semantics in remote procedure calls for linked data structures, (2) an analysis
heuristic that determines which application objects get passed to which parts of native (i.e.,
platform-specific) code in the language runtime system for platform-independent binary
code applications, (3) a technique for injecting code in such applications that will convert
objects to the right representation so that they can be accessed correctly inside both appli-
cation and native code, (4) an approach to maintaining the Java centralized concurrency and
synchronization semantics over remote procedure calls efficiently, and (5) an approach to

enabling the execution of legacy Java code remotely from a web browser.

Xvil

The technical contributions of this dissertation have been realized in three software
tools for separating distribution concerns: NRMI, middleware with copy-restore semantics;
GOTECH, a program generator for distribution; and J-Orchestra, an automatic partitioning
system. This dissertation presents several case studies of successfully applying the devel-

oped tools to third-party programs.

XViii

CHAPTER1

INTRODUCTION

As the emergence of the Internet has changed the computing landscape, distribution
has become a necessity in a large and growing number of software systems. The focus of
distributed computing has been shifting from “distribution for parallelism” to “resource-
driven distribution,” in which the resources of an application are naturally remote from
each other or from the computation. Because of this shift, more and more centralized appli-
cations, written without any distribution in mind, are being adapted for distributed execu-
tion. This entails adding distributed capabilities to these applications to move parts of their
execution functionality to a remote machine. Examples abound: a local database grows too
large and is relocated to a powerful server, becoming remote from the rest of the applica-
tion; a desktop application needs to redirect its output to a remote graphical display or to
receive input from a remote digital camera or a sensor; a desktop application, executed on
a PDA, does not find all the hardware and software resources that it references available
locally and needs to access them remotely; or a software component, designed for local

access, is distributed over a network and needs to be accessed remotely.

These examples introduce the issue of separating distribution concerns. Separation
of concerns has been a guiding principle for controlling the complexity of software ever
since Dijkstra [20] coined the term almost 30 years ago. As described by Ossher and Tarr

[64], separation of concerns is “the ability to identify, encapsulate and manipulate only

those parts of software that are relevant to a particular concept, goal, or purpose.” The
advent of the Java technology re-ignited interest in the subject within the software research
community, with industry not far behind, resulting in such tools as AspectJ [41] and HyperJ
[28]. In light of these developments, the question of which concerns can be effectively and

efficiently separated has taken on a new significance and importance.

As many other principles of computing, separating computational concerns encom-
passes two dimensions: what and how. While the “what” dimension refers to determining
whether a particular concern can be separated and identifying the specific code entities
expressing it, the “how” dimension pertains to how actual separation can be realized at the

implementation level.

Some concerns fundamentally define the meaning of computation and as such
cannot be separated. For instance, parallel algorithms often have no resemblance to sequen-
tial algorithms for the same problem, and some problems are very unlikely to even have an
efficient parallel solution. Thus “efficient parallelism” is not a concern that can be sepa-
rated from the logic of a software application. (Similar arguments apply to transactions and

failure handling as well [43].)

In view of such difficulties, most research has shifted from the problem of separating
concerns to the problem of removing low-level technical barriers to the separation of con-
cerns, assuming that the separation is conceptually possible. In software tools, two main
directions have been identified. The first is that of general-purpose tools for expressing dif-
ferent concerns as distinct code entities and composing them together. The second is that
of domain-specific tools that achieve separation of concerns for well-defined domains by

hiding such concerns behind programming abstractions (e.g., new language constructs).

2

The term “aspect-oriented” is often used to describe the first direction (although it was orig-

inally [40] proposed as a concept that encompasses both directions).

While many domains can derive benefits from separating concerns, in recent years,
it is the area of enterprise computing in which such benefits have become particularly evi-
dent. Through the process, which is currently being standardized [37], some J2EE applica-
tion servers use the so-called aspect-oriented programming (AOP) frameworks to add
various non-functional capabilities such as caching, security, and persistence to enterprise

business objects.

In the context of this dissertation, the term “separation of distribution concerns”
refers to the process of transforming a centralized monolithic program into a distributed
one. In other words, we treat distribution functionality as a separate concern that is added
to the application logic of a centralized program, thereby transforming it into a distributed
program. It has long been under debate whether distribution is a concern that can be at all
separated from application logic. For example, Waldo et al.’s well-known “A Note on Dis-
tributed Computing” [96] argues that “papering over the network™ is ill-advised. The main
reasons include difference in performance, different calling semantics, and the possibility
of partial failure. (Other reasons, mentioned by Waldo et al., such as direct memory access,
no longer hold today for Java and C#.) The research described in this dissertation does not
attempt to refute any of the major arguments made by the authors of the Note: our answer
to the question of whether distribution can be successfully introduced transparently to a//

programs is still a resounding no.

To clarify our perspective, let us consider the two extremes that define the transpar-

ency spectrum of approaches to separating distribution concerns: “papering over the net-

work™ and the so-called “explicit” approach. At one extreme, “papering over the network”
is a completely transparent approach to distribution that masks all the differences between
the centralized and distributed execution models from the programmer. Some distributed
shared memory (DSM) systems follow this approach. At the other extreme, the “explicit”
approach makes use of different programming idioms for distributed computing as a means
to accommodate for the differences in performance, calling semantics, and the possibility
of partial failure. A representative of this approach is Java RMI [80] itself. Taking the
middle ground between these two extremes from the transparency perspective, this
research follows the approach to separating distribution concerns whose unifying theme
can be defined as “translucency.” Our approach is “translucent” in the sense that it is trying
to be transparent, but without going all the way. In other words, our approach aims at cre-
ating software tools for distributed computing that are more convenient to use from the pro-
grammer’s perspective (i.e., closer to the familiar centralized programming model), while
being fully-aware of the differences between the centralized and distributed execution

models.

This research delineates the limits of introducing distribution translucently through
the following three steps. First, we determine which distribution concerns, defined as the
differences between centralized and distributed execution, can be separated effectively and
efficiently. Second, we outline the architectural characteristics of a class of programs to
which distribution can indeed be introduced translucently. Third, in trying to achieve dis-
tribution translucency, we make improvements to several mainstream software tools for
distributed computing such as RPC middleware [10]. Because adding distributed capabili-

ties to existing programs is currently one of the most important software evolution tasks in

practice [44], the improved software tools for separating distribution concerns are valuable

even if successful distribution requires changes to the application logic.

The primary goal of this research is to explore novel software tools for separating
distribution concerns that, for a certain class of object oriented programs, bridge centralized
and distributed programing models and semantics as closely as possible. Taking the soft-
ware tools approach to this problem entails that in transforming a centralized monolithic
program into a distributed one only the program’s code itself changes, while the runtime
system remains intact. That is, the new software tools, explored by this research, work

exclusively with standard mainstream languages, systems software, and virtual machines.

1.1 Overview of Software Tools

NRMI [88], middleware with copy-restore semantics, GOTECH [89], a program
generator for distribution, and J-Orchestra [87], an automatic partitioning system are three
developed software tools for evolving a centralized program into a distributed one.
Although these tools overlap in terms of the kinds of distribution concerns that they sepa-
rate, each one addresses the general problem from a different perspective, makes different
assumptions about the original centralized programs to which it can be applied, and intro-
duces novel algorithms, techniques, and tools applicable to different programming scenar-
10s.

1.1.1 Middleware with Copy-Restore Semantics
The NRMI middleware system [88] supports call-by-copy-restore semantics in addi-

tion to traditional call-by-copy semantics. Intuitively, this means that NRMI allows the user

to specify that changes to data reachable by the arguments of a remote method be repro-

5

duced on the caller site. In addition, NRMI does this in full generality, even for complex,
pointer-based data structures, imposing very low computation and communication over-
heads (remote calls proceed at full speed). Call-by-copy-restore semantics is highly desir-
able in distributed computing because it causes remote calls to behave exactly like local
calls in many cases (e.g., in the important case of single-threaded clients and stateless serv-
ers). Both the value of call-by-copy-restore and the need for a mechanism to support it in
full generality has been repeatedly identified in the distributed systems community. In their
recent textbook Distributed Systems (2002), Tanenbaum and van Steen summarize the

problem that NRMI was the first middleware to solve:

Although [call-by-copy-restore] is not always identical [to
local execution], it frequently is good enough. ...[Current
call-by-copy-restore mechanism] still cannot handle the
most general case of a pointer to an arbitrary data structure

such as a complex graph.

1.1.2 Program Generation for Distribution

Sometimes the problems of programming distributed systems are purely those of
conciseness and expressiveness of the language tools. In this direction, we have developed
the GOTECH program generator [89], which accepts programmer-supplied annotations
and generates distribution code, relieving the programmer from writing tedious, protocol-
specific code by hand. GOTECH depends only on general-purpose tools, offers easy-to-
evolve implementation amenable to inspection and change, and uniquely combines aspect-
oriented and generative techniques. In general, domain-specific tools that automate rote

programming tasks are of significant interest from a software design standpoint.

1.1.3 Automatic Partitioning

The process of rewriting a centralized application using a compiler-level tool in
order to produce its distributed version is called automatic partitioning. This approach is
more automated than copy-restore middleware and program generation for distribution.
Although the process cannot be fully automated, most correctness aspects of the rewrite are
typically handled automatically (i.e., the resulting distributed application has semantics
identical to the original centralized one) while performance aspects are optimized under
user guidance. Automatic partitioning is a relatively new approach: only a handful of par-
titioning tools exist, and all of them have been developed in the past five years. Neverthe-
less, the goal of automatic partitioning is almost identical to that of distributed shared
memory (DSM) systems, a mature systems area. The difference is in the techniques used:
DSMs operate by providing a system (i.e., a runtime environment) that enables distributed
execution. In contrast, automatic partitioning tools take a language approach and rewrite
the application only without making any change to the runtime environment. The differ-
ence has a significant practical implication: an automatically partitioned application can be
deployed very easily in standard runtime environments without any need for specialized
support. For example, a partitioned Java application can run on any Java-enabled platform,

from PDAs and cell phones to mainframes.

We have developed the J-Orchestra automatic partitioning system for Java programs
[87]. J-Orchestra, arguably the most mature and scalable automatic partitioning system in
existence, was the first system to identify the presence of unmodifiable code in the runtime
system that can access regular language-level objects (e.g., Java VM code for opening file

objects) as a salient problem with automatic partitioning. If such code accesses a remote

object, a runtime error will occur since the code is unaware of distribution (e.g., it expects
to access fields of a regular object but instead receives a proxy). J-Orchestra addresses this
problem with a rewrite algorithm that automatically transforms object references from
direct to indirect at run-time, ensuring that they are in the correct form for the code that han-
dles them. As a result, J-Orchestra has scaled to realistic, third-party applications. Also, the
ease of creating distributed programs with J-Orchestra as compared to programming with
standard distribution middleware has demonstrated automatic partitioning as a promising

technology for prototyping ubiquitous computing applications [51].

1.2 Thesis Statement

Software tools working with standard mainstream languages, systems software, and
virtual machines can effectively and efficiently separate distribution concerns from
application logic for object-oriented programs that use multiple distinct sets of

resources.

This research proves this thesis through a two-phase process. The first phase devel-
ops algorithms, techniques, and tools for separating distribution concerns. We will refer to
the deliverables of this phase of research as “research artifacts.” The second phase evalu-
ates the applicability of the developed research artifacts in terms of their effectiveness and
efficiency. We will evaluate these artifacts by determining (1) the exact set of distribution
concerns that they separate and outlining (2) the common architectural characteristics of the

centralized applications that they can transform effectively and efficiently.

1.3 Contributions

The contributions of this research include:

1. a general algorithm for call-by-copy-restore semantics in remote procedure calls for

linked data structures,

2. an analysis heuristic that determines which application objects get passed to which
parts of native (i.e., platform-specific) code in the language runtime system for plat-

form-independent binary code applications,

3. a technique for injecting code in such applications that will convert objects to the right
representation so that they can be accessed correctly inside both application and native

code,

4. an approach to maintaining the Java centralized concurrency and synchronization

semantics over remote procedure calls efficiently, and

5. an approach to enabling the execution of legacy Java code remotely from a web

browser.

1.4 Overview of Distribution Concerns

Table 1-1. Distribution Concerns and Solutions

Challenges of Separating
Distribution Concerns

Solutions

Semantics

* The lack of shared address space; the dif-
ference in parameter-passing semantics.

* Distribution in the presence of unmodifi-
able (system: OS, JVM) code.

* NRMI and its efficient implementation of
the call-by-copy-restore semantics.

* The J-Orchestra approach to enabling
indirection even in the presence of
unmodifiable code (analysis heuristics, a
novel rewrite algorithm, and run-time
direct-indirect and vice verse translation).

Perfor

mance

» The latency of a remote call is several
orders of magnitude slower than that of a
local one.

¢ J-Orchestra:
* profiling,
* object mobility, and

* placement policy based on creation site.

Distribution Middl

eware Conventions

» Having to deal with the complex conven-
tions of using modern middleware mech-
anisms.

 Preserving the centralized concurrency
and synchronization semantics in a dis-
tributed environment.

* The NRMI call-by-copy-restore is more
natural than the standard call-by-copy.

* Combining generative and aspect-ori-
ented techniques in a novel way in
GOTECH to automate the complexities
of enabling server-side distribution in
J2EE.

* The J-Orchestra approach to dealing with
distributed multi-threading and synchro-
nization.

Viability &

Scalability

» Various case studies.

10

1.5 Overview of Dissertation

The rest of this dissertation is structured as follows. The chapters I, III, and IV cover
the motivation, design, and implementation of NRMI, GOTECH, and J-Orchestra, respec-
tively. Chapter V discusses various applicability issues and validation through case studies.
Chapter VI demonstrates how the J-Orchestra indirection machinery can be extended to
domains other than distributed computing. Chapter VII presents related work. Chapter VIII

concludes after discussing future research directions and the merits of this dissertation.

11

CHAPTER 1T

NRMI

This chapter presents Natural Remote Method Invocation (NRMI): a middleware
mechanism that provides a fully-general implementation of call-by-copy-restore semantics
for arbitrary linked data structures, used as parameters in remote procedure calls. As a
parameter passing semantics, call-by-copy-restore is more natural than traditional call-by-
copy, enabling remote calls to behave much like local calls. We discuss in depth the effects
of calling semantics for middleware, present scenarios in which NRMI is more convenient
to use than regular Java RMI, and describe three efficient implementations of call-by-copy-

restore middleware, showing how the lessons of NRMI are reusable in different settings.

2.1 Introduction

Remote Procedure Call (RPC) [10] is one of the most widespread paradigms for dis-
tributed middleware. The goal of RPC middleware is to provide an interface for remote ser-
vices that is as convenient to use as local calls. RPC middleware with call-by-copy-restore
semantics has been often advocated in the literature, as it offers a good approximation of
local execution (call-by-reference) semantics, without sacrificing performance. Neverthe-
less, call-by-copy-restore middleware is not often used to handle arbitrary linked data struc-
tures, such as lists, graphs, trees, hash tables, or even non-recursive structures such as a

“customer” object with pointers to separate “address” and “company” objects. This is a

12

serious restriction and one that has often been identified. The recent (2002) Tannenbaum
and van Steen “Distributed Systems” textbook [83] summarizes the problem and (most)

past approaches:

... Although [call-by-copy-restore] is not always identical [to
call-by-reference], it frequently is good enough. ... [I]t is
worth noting that although we can now handle pointers to
simple arrays and structures, we still cannot handle the most
general case of a pointer to an arbitrary data structure such
as a complex graph. Some systems attempt to deal with this
case by actually passing the pointer to the server stub and
generating special code in the server procedure for using
pointers. For example, a request may be sent back to the

client to provide the referenced data.

This chapter addresses exactly the problem outlined in the above passage. We
describe an algorithm for implementing call-by-copy-restore middleware that fully sup-
ports arbitrary linked structures. The technique is very efficient (comparable to regular call-
by-copy middleware) and incurs none of the overheads suggested by Tanenbaum and van
Steen. A pointer dereference by the server does not generate requests to the client. (This
would be dramatically less efficient than our approach, as our measurements show.) Our
approach does not “generate special code in the server” for using pointers: the server code

can proceed at full speed—not even the overhead of a local read or write barrier is neces-
sary.

We concretized our ideas in the form of Natural Remote Method Invocation
(NRMI), with three different implementations. The first implementation is a drop-in
replacement for Java RMI; the second enables NRMI in the context of the J2EE platform;

13

and the third introduces NRMI by employing bytecode engineering to retrofit application
classes that use the standard RMI API. In all these implementations, the programmer can
select call-by-copy-restore semantics for object types in remote calls as an alternative to the
standard call-by-copy semantics of Java RMI. (For primitive Java types the default Java
call-by-copy semantics is used.) All the implementations of NRMI call-by-copy-restore are
fully general, with respect to linked data structures, but also with respect to arguments that
share structure. NRMI is much friendlier to the programmer than standard Java RMI: in
most cases, programming with NRMI is identical to non-distributed Java programming. In
fact, the call-by-copy-restore implementations in NRMI are guaranteed to offer identical
semantics to call-by-reference in the important case of single-threaded clients and stateless
servers (i.e., when the server cannot maintain state reachable from the arguments of a call
after the end of the call). Since statelessness is a desirable property for distributed systems,

anyway, NRMI often offers behavior practically indistinguishable from local calls.

We would be amiss not to mention up front that other middleware services (most
notably the DCE RPC standard) have attempted to approximate call-by-copy-restore
semantics, with implementation techniques similar to ours. Nevertheless, DCE RPC stops

short of full call-by-copy-restore semantics, as we discuss in Section 2.4.2.
In summary, this chapter presents the following insights:

* A clear exposition of different calling semantics, as these pertain to RPC middleware.
There is confusion in the literature regarding calling semantics with respect to pointers.
This confusion is apparent in the specification and popular implementations of existing

middleware (especially DCE RPC, due to its semantic complexity).

14

* A case for the use of call-by-copy-restore semantics in actual middleware. We argue that
such a semantics is convenient to use, easy to implement, and efficient in terms of the

amount of transferred data.

* An applied result in the form of three concrete implementations of NRMI. NRMI is a
mature and efficient middleware mechanism that Java programmers can adopt on a per
case basis as a transparent enhancement of Java RMI. The results of NRMI (call-by-
copy-restore even for arbitrary linked structures) can be simulated with RMI (call-by-
copy), but this task is complicated, inefficient, and application-specific. In simple
benchmark programs, NRMI saves up to 100 lines of code per remote call. More impor-
tantly, this code cannot be written without complete understanding of the application’s
aliasing behavior (i.e., what pointer points where on the heap). NRMI eliminates all such

complexity, allowing remote calls to be used almost as conveniently as local calls.

2.2 Background and Motivation

Remote calls in RPC middleware cannot efficiently support the same semantics as
local calls for data accessed through memory pointers (references in Java—we will use the
two terms interchangeably). The reason is that efficiently sharing data through pointers
(call-by-reference) relies on the existence of a shared address space. The problem is signif-
icant because most common data structures in existence (trees, graphs, linked lists, hash

tables, and so forth) are heap-based and use pointers to refer to the stored data.

A simple example demonstrates the issues. This will be our main running example
throughout the chapter. We will use Java as our demonstration language and Java RMI as
the main point of reference in the middleware space. Nevertheless, both Java and Java RMI
are highly representative of languages that support pointers and RPC middleware mecha-
nisms, respectively. Consider a simple linked data structure: a binary tree, t, storing integer

numbers. Every tree node will have three fields, data, 1eft, and right. Consider also

15

alias?

aliasl
_>

Figure 2-1: A tree data structure and two aliasing
references to its internal nodes.

that some of the subtrees are also pointed to by non-tree pointers (aka aliases). Figure 2-1

shows an instance of such a tree.

When the tree t is passed to a local method that modifies some of its nodes, the mod-

ifications affect the data reachable from t, alias1, and alias2. For instance, consider

the following method:

void foo (Tree tree) {

tree.
tree.
tree.
tree.

Tree

tree.
.right = temp;

tree

left.data = 0;

right.data = 9;

right.right.data = 8;

left = null;

temp = new Tree (2, tree.right.right,
right.right = null;

16

null) ;

alias?
4 1
aliasl - T e
> 2
0 9 S
1 8

Figure 2-2: A local call can affect all reachable data

(New number values are shown in bold and italic. New nodes and references are dashed.

Null references are not shown.)

Figure 2-2 shows the results on the data structure after performing a call foo (t)
locally. In general, a local call can change all data reachable from a memory reference. Fur-
thermore, all changes will be visible to aliasing references. The reason is that Java has call-
by-value semantics for all values, including references, resulting into call-by-reference
semantics for the data pointed to by these references. (From a programming languages
standpoint, the Java calling semantics is more accurately called call-by-reference-value. In
this chapter, we follow the convention of the Distributed Systems community and talk
about “call-by-reference” semantics, although references themselves are passed by value.)
The call foo (t) proceeds by creating a copy, tree, of the reference value t. Then every
modification of data reachable from t ree will also modify data reachable from t, as tree
and t operate on the same memory space. This behavior is standard in the vast majority of

programming languages with pointers.

Consider now what happens when foo is a remote method, implemented by a server

on a different machine. An obvious solution would be to maintain call-by-reference seman-

17

tics by introducing “remote references” that can point to data in a different address space,

as shown in Figure 2-3.

Net k
’ aliasg o
4~/

T=~-k free
113 1
alias

9 7
1 3

Figure 2-3: Call-by-reference semantics can be
maintained with remote references.

Remote references can indeed ensure call-by-reference semantics. Nevertheless, this
solution is extremely inefficient. It means that every pointer dereference has to generate

network traffic.

Most object-oriented middleware (e.g., RMI, CORBA, and so forth and not just tra-
ditional RPC) support remote references, which are remotely-accessible objects with
unique identifiers; references to them can be passed around similarly to regular local refer-
ences. For instance, Java RMI allows the use of remote references for subclasses of the
UnicastRemoteObject class. All instances of the subclass are remotely accessible

throughout the network through a Java interface.

Nevertheless, the usual semantics for reference data in RMI calls (and the vast
majority of other middleware) is call-by-copy. (“Call-by-copy” is really the name used in
the Distributed Systems community for call-by-value, when the values are complex data
structures.) When a reference parameter is passed as an argument to a remote routine, all
data reachable from the reference are deep-copied to the server side. The server then oper-

ates on the copy. Any changes made to the deep copy of the argument-reachable data are

18

not propagated back to the client, unless the user explicitly arranges to do so (e.g., by pass-

ing the data back as part of the return value).

A well-studied alternative of call-by-copy in middleware is call-by-copy-restore.
Call-by-copy-restore is a parameter passing semantics that is usually defined informally as
“having the variable copied to the stack by the caller ... and then copied back after the call,
overwriting the caller’s original value” [83]. A more strict (yet still informal) definition of
call-by-copy-restore is:

Making accessible to the callee a copy of all data reachable by the caller-supplied argu-

ments. After the call, all modifications to the copied data are reproduced on the original

data, overwriting the original data values in-place.

Often, existing middleware (notably CORBA implementations through inout
parameters) support call-by-copy-restore but not for pointer data. Here we discuss what is
needed for a fully-general implementation of call-by-copy-restore, per the above definition.
Under call-by-copy-restore, the results of executing a remote call to the previously
described function foo will be those of Figure 2-2. That is, as far as the client is concerned,
the call-by-copy-restore semantics is indistinguishable from the call-by-reference one for
this example. (As we discuss in Section 2.4, in a single-threaded setting, the two semantics

have differences only when the server maintains state that outlives the remote call.)

Supporting the call-by-copy-restore semantics for pointer-based data involves sev-

eral complications. Our example function foo illustrates them:

» call-by-copy-restore has to “overwrite” the original data objects (e.g., t.right.data
in our example), not just link new objects in the structure reachable from the reference

argument of the remote call (t in our example). The reason is that, at the client site, the

19

objects may be reachable through other references (alias2 in our example) and the

changes should be visible to them as well.

 some data objects (e.g., node t . left before the call) may become unreachable from the
reference argument (t in our example) because of the remote call. Nevertheless, the new
values of such objects should be visible to the client, because at the client site the object

may be reachable through other references (aliasl in our example).

« as a result of the remote call, new data objects may be created (t.right after the call
in our example), and they may be the only way to reach some of the originally reachable

objects (t.right.left after the call in our example).

Most of the above complications have to do with aliasing references, i.e., multiple
paths for reaching the same heap data. Common reasons to have such aliases include mul-
tiple indexing (e.g., the data may be indexed in one way using the tree and in another way
using a linked list), caching (storing some recent results for fast retrieval), and others. In
general, aliasing is very common in heap-based data, and, thus, supporting it correctly for

remote calls is important.

2.3 Supporting Copy-Restore

Having introduced the complications of copy-restore middleware, we now discuss
an algorithm that addresses them. The algorithm appears below in pseudo-code and is illus-

trated on our running example in Figures 2-4 to 2-7.

1. Create a linear map of all objects reachable from the reference parameter. Keep a refer-

ence to it.

2. Send a deep copy of the linear map to the server site (this will also copy all the data
reachable from the reference argument, as the reference is reachable from the map).

Execute the remote procedure on the server.

20

3. Send a deep copy of the linear map (or a “delta” structure—see Section 2.5) back to the
client site. This will copy back all the “interesting” objects, even if they have become

unreachable from the reference parameter.

4. Match up the two linear maps so that “new” objects (i.e., objects allocated by the
remote routine) can be distinguished from “old” objects (i.e., objects that did exist
before the remote call even if their data have changed as a result). Old objects have two

versions: original and modified.

5. For each old object, overwrite its original version data with its modified version data.
Pointers to modified old objects should be converted to pointers to the corresponding

original old objects.

6. For each new object, convert its pointers to modified old objects to pointers to the cor-
responding original old objects.

The above algorithm reproduces the modifications introduced by the server routine
on the client data structures. The interesting part of the algorithm is the automatically keep-
ing track (on the server) of all objects initially reachable by the arguments of a remote
method, as well as their mapping back to objects in client memory. The advantage of the
algorithm is that it does not impose overhead on the execution of the remote routine. In par-
ticular, it completely eliminates the need to trap either the read or the write operations per-
formed by the remote routine by introducing a read or write barrier. Similarly, no data are
transmitted over the network during execution of the remote routine. Furthermore, note that
supporting call-by-copy-restore only requires transmitting all data reachable from parame-
ters during the remote call (just like call-by-copy) and sending it back after the call ends.
This is already quite efficient and will only become more so in the future, when network

bandwidth will be much less of a concern than network latency.

21

Client

JOrK tree Server
Site Site
aliasl I =
| 1

Figure 2-4: State after steps 1 and 2 of the algorithm. Remote procedure £ oo has performed
modifications to the server version of the data.

Client ¢ Network
site

aliasl
—p

Figure 2-5: State after steps 3 and 4 of the algorithm. The modified objects (even the ones no longer
reachable through t ree) are copied back to the client. The two linear representations are “matched”—
i.e., used to create a map from modified to original versions of old objects.

Network

Figure 2-6: State after step 5 of the algorithm. All original versions of old objects are updated to reflect
the modified versions.

Client t Network
site
alias “—““_’rg

14

Figure 2-7: State after step 6 of the algorithm. All new objects are updated to point to the original
versions of old objects instead of their modified versions. All modified old objects and their linear
representation can now be deallocated. The result is identical to Figure 2-3.

22

2.4 Discussion

2.4.1 Copy-Restore vs. Call-by-Reference

Call-by-copy-restore is a desirable semantics for RPC middleware. Because all
mutations performed on the server are restored on the client site, call-by-copy-restore
approximates local execution very closely. In fact, one can simply observe that (for a
single-threaded client) call-by-copy-restore semantics is identical to call-by-reference if the
remote routine is stateless—i.e., keeps no aliases (to the input data) that outlive the remote
call. Interestingly, statelessness is a very desirable (for many even indispensable) property
for distributed services due to fault tolerance considerations. Thus, a call-by-copy-restore
semantics guarantees network transparency: a stateless routine can be executed either

locally or remotely with indistinguishable results.

The above discussion only considers single-threaded programs. In the case of a
multi-threaded client (i.e., caller) network transparency is not preserved. The remote rou-
tine acts as a potential mutator of all data reachable by the parameters of the remote call.
All updates are performed in an order determined by the middleware implementation. The
programmer needs to be aware that the call is remote and that a call-by-copy-restore seman-
tics is used. In the common case, remote calls need to at least execute in mutual exclusion
with calls that read/write the same data. If the order of updating matters, call-by-copy-
restore can not be used at all: the programmer needs to write code by hand to do the updates
in the right order. (Of course, the consideration is for the case of multi-threaded clients—
servers can always be multi-threaded and accept requests from multiple client machines

without sacrificing network transparency.)

23

Another issue regarding call-by-copy-restore concerns the use of parameters that
share structure. For instance, consider passing the same parameter twice to a remote proce-
dure. Should two distinct copies be created on the remote site or should the sharing of struc-
ture be detected and only one copy be created? This issue is not specific to call-by-copy-
restore, however. In fact, regular call-by-copy middleware has to answer the same question.
Creating multiple copies can be avoided using exactly the same techniques as in call-by-
copy middleware (e.g., Java RMI)—the middleware implementation can notice the sharing
of structure and replicate the sharing in the copy. Unfortunately, there has been confusion
on the issue. Based on existing implementations of call-by-copy-restore for primitive (non-
pointer) types, an often repeated mistaken assertion is that call-by-copy-restore semantics

implies that shared structure results in multiple copies [82][83][93].

2.4.2 DCE RPC

The DCE RPC specification [63] is the foremost example of a middleware design
that tries to enable distributed programming in a way that is as natural as local program-
ming. The most widespread DCE RPC implementation nowadays is that of Microsoft RPC,
forming the base of middleware for the Microsoft operating systems. Readers familiar with
DCE RPC may have already wondered if the specification for pointer passing in DCE RPC
is not identical to call-by-copy-restore. The DCE RPC specification stops one step short of

call-by-copy-restore semantics, however.

DCE RPC supports three different kinds of pointers, only one of which (full point-
ers) supports aliasing. DCE RPC full pointers, declared with the ptr attribute, can be
safely aliased and changed by the callee of a remote call. The changes will be visible to the

caller, even through aliases to existing structure. Nevertheless, DCE RPC only guarantees

24

correct updates of aliased data for aliases that are declared in the parameter lists of a remote
call.! In other words, for pointers that are not reachable from the parameters of a remote

call, there is no guarantee of correct update.

In practical terms, the lack of full alias support in the DCE RPC specification means
that DCE RPC implementations do not support call-by-copy-restore semantics for linked
data structures. In Microsoft RPC, for instance, the calling semantics differs from call-by-
copy-restore when data become unreachable from parameters after the execution of a
remote call. Consider again our example from Section 2.2. Figure 2-2 is reproduced here

as Figure 2-8 for easy reference.

t tree
! alias?
4
liasl - e
alias 2—|
0 9 Vol
1 8

Figure 2-8: Changes after execution of method.

The remote call that operates on argument t, changes the data so that the former
objects t.left and t.right are no longer reachable from t. Under call-by-copy-restore
semantics, the changes to these objects should still be restored on the caller site (and thus
made visibleto alias1 and alias2). This does not occur under DCE RPC, however. The

effects of statements

1. The specification reads “For both out and in, out parameters, when full pointers are aliases, according to
the rules specified in Aliasing in Parameter Lists [these rules read. If two pointer parameters in a parameter
list point at the same data item), the stubs maintain the pointed-to objects such that any changes made by the
server are reflected to the client for all aliases.”

25

tree.left.data = 0;
tree.right.data = 9;
tree.right.right = null;

would be disregarded on the caller site. Figure 2-9 shows the actual results for DCE

RPC.
t tree
» A . alias?
aliasl - T e
> 2
9 7) -
1 8

Figure 2-9: Under DCE RPC, the changes to data that
became unreachable from t will not be restored on the
client site.

2.5 NRMI Implementations

We now describe the particulars of implementing NRMI. Despite the fact that our
implementations are Java specific, the insights are largely language independent. Our call-
by-copy-restore algorithm can be applied to any other distribution middleware that sup-

ports pointers.

NRMI currently has three implementations, each applicable to different program-
ming environments and scenarios. The implementation in the form of a full, drop-in
replacement for Java RMI demonstrates how this standard middleware mechanism for the
Java language can be transparently enhanced with call-by-copy-restore capacities. How-
ever, introducing a new feature into the implementation of a standard library of a main-
stream programming language is a significant undertaking, requiring multiple stakeholders

in the Java technology to reach a consensus. Therefore, our other two implementations pro-

26

vide Java programmers with call-by-copy-restore capacities without having to change any
of the standard Java libraries. One implementation takes advantage of the extensible appli-
cation server architecture offered by JBoss [68] to introduce NRMI as a pair of client/server
interceptors. Another introduces NRMI by retrofitting the bytecodes of application classes
that use the standard RMI API. Having to work around the inability to change the RMI runt-
ime libraries, these latter two solutions are not always as efficient as the drop-in replace-
ment one but offer interesting insights on how new middleware features can be introduced
transparently. Therefore, we limit our discussion on various optimization issues of NRMI

to the RMI drop-in replacement implementation only.

2.5.1 A Drop-in Replacement of Java RMI

2.5.1.1 Programming Interface

Our drop-in replacement for Java RMI supports a strict superset of the RMI func-
tionality by providing call-by-copy-restore as an additional parameter passing semantics to
the programmer. This implementation follows the design principles of RMI in having the
programmer decide the calling semantics for object parameters on a per-type basis. In brief,
indistinguishably from RMI, NRMI passes instances of subclasses of
java.rmi.server.UnicastRemoteObject by-reference and instances of types that
implement java.io.Serializable by-copy. Values of primitive types are passed by-
copy (“by-value” in programming languages terminology). That is, just like in regular
RMI, the following definition makes instances of class A be passed by-copy to remote

methods.

//Instances will be passed by-copy by NRMI
class A implements java.io.Serializable {...}

27

Our drop-in implementation introduces a marker interface java.rmi.Restor-
able, which allows the programmer to choose the by-copy-restore semantics: parameters
whose class implements java.rmi.Restorable are passed by copy-restore. For exam-
ple:

//Instances passed by-copy-restore by NRMI
class A implements java.rmi.Restorable {...}

java.rmi.Restorable extends java.io.Serializable, reflecting the fact
that call-by-copy-restore is basically an extension of call-by-copy. In particular, “restor-
able” classes have to adhere to the same set of requirements as if they were to be passed by-

copy—i.e., they have to be serializeable by Java Serialization [80].

In the case of JDK classes, java.rmi.Restorable can be implemented by their

direct subclasses as follows:
//Instances passed by-copy-restore by NRMI
class RestorableHashMap extends java.util.HashMap

implements java.rmi.Restorable {...}

In those cases when subclassing is not possible, a delegation-based approach can be

used as follows:

//Instances passed by-copy-restore by NRMI

class SetDelegator implements java.rmi.Restorable {
java.util.Set delegatee;
//expose the necessary functionality
void add (Object o) { delegatee.add (o); }

Declaring a class to implement java.rmi.Restorable is all that is required from

the programmer: NRMI will pass all instances of such classes by-copy-restore whenever

28

they are used in remote method calls. The NRMI runtime handles the restore phase of the
algorithm totally transparently to the programmer. This saves lines of tedious and error-

prone code as we illustrate in Section 5.2.

In order to make NRMI easily applicable to existing types (e.g., arrays) that cannot
be changed to implement java.rmi.Restorable, we adopted the policy that a reach-
able, serializable sub-object is passed by-copy-restore, if its parent object implements
java.rmi.Restorable. Thus, if a parameter is of a “restorable” type, everything reach-
able from it will be passed by-copy-restore (assuming it is serializable, i.e., it would other-

wise be passed by copy).

It is worth noting that Java fits the bill as a language for demonstrating the benefits
of call-by-copy-restore middleware because of its local method call semantics. In local Java
method calls, all primitive parameters are passed by-copy (“by-value” using programming
languages terminology). This is identical behavior with remote calls in Java using either
standard RMI or NRMI. With NRMI we also add call-by-copy-restore semantics for refer-
ence types, thus making the behavior of remote calls be (almost) identical to local calls even
for non-primitive types. Thus, with NRMI, distributed Java programming is remarkably

similar to local Java programming.

2.5.1.2 Implementation Insights
Having introduced the programming interface offered by our drop-in replacement
implementation of NRMI, we now describe it in greater detail. We analyze one-by-one

each of the major steps of the algorithm presented in Section 2.3.

29

Creating a linear map

Creating a linear map of all objects reachable from the reference parameter is
obtained by tapping into the Java Serialization mechanism. The advantage of this approach
is that we get a linear map almost for free. The parameters passed by-copy-restore have to
be serialized anyway, and the process involves an exhaustive traversal of all the objects
reachable from these parameters. The linear map that we need is just a data structure storing
references to all such objects in the serialization traversal order. We get this data structure
with a tiny change to the serialization code. The overhead is minuscule and only present for

call-by-copy-restore parameters.

Performing remote calls

On the remote site, a remote method invocation proceeds exactly as in regular RMI.
After the method completes, we marshall back linear map representations of all those
parameters whose types implement java.rmi.Restorable along with the return value

if the method has one.

Updating original objects

Correctly updating original reference parameters on the client site includes matching
up the new and old linear maps and performing a traversal of the new linear map. Both step
5 and step 6 of the algorithm are performed in a single depth-first traversal by just perform-
ing the right update actions when an object is first visited and last visited (i.e., after all its

descendants have been traversed).

30

Optimizations

The following two optimizations can be applied to an implementation of NRMI in
order to trade processing time for reduced bandwidth consumption. First, instead of send-
ing the linear map over the network, we can reconstruct it during the un-serialization phase
on the server site of the remote call. Second, instead of returning the new values for all
objects to the caller site, we can send just a “delta” structure, encoding the difference
between the original data and the data after the execution of the remote routine. In this way,
the cost of passing an object by-copy-restore and not making any changes to it is almost
identical to the cost of passing it by-copy. Our implementation applies the first optimiza-

tion, while the second will be part of future work.

2.5.2 NRMlI in the J2EE Application Server Environment

A J2EE [78] application server is a complex standards-conforming middleware plat-
form for development and deployment of component-based Java enterprise applications.
These applications consist of business components called Enterprise JavaBeans (EJBs).
Application servers provide an execution environment and standard means of accessing
EJBs by both local and remote clients. To accomplish that, an EJB can support a local inter-
face for clients, collocated with it in the same JVM, and a remote interface for clients
accessing it from different address spaces. With some designs, it can be desirable to be able
to treat local and remote accesses uniformly, and call-by-copy-restore can bridge the differ-
ences between the local and remote parameters passing semantics. For example, the devel-
oper could select call-by-copy-restore semantics on a per method basis if it makes sense to

do so from the design perspective. The NRMI semantics is also a great asset in the task of

31

automatic transformation of regular Java classes into EJBs, as, for example, in our

GOTECH framework described in Chapter III.

We have implemented NRMI in the application server environment of JBoss taking
advantage of its extensible architecture [68]. JBoss is an extensible, open-ended, and
dynamically-reconfigurable application server that follows the open source development
model. JBoss employs the Interceptor pattern, which enables transparent addition and auto-
matic triggering of services [72] and has become a common extensibility-enhancing mech-
anism in complex software systems. Indeed, the Interceptor pattern enables the
programmer to extend the functionary of such systems without having to understand their
inner workings. Informally, a JBoss interceptor is a piece of functionality that gets inserted
into the client-server communication path, which gets intercepted in both directions: the
client’s requests to the server and the server’s replies. JBoss interceptors intercept a remote
call with the purpose of examining and, in some cases, modifying its parameters or return
value and come in two varieties: client and server, specifying their actual deployment and
execution locations. JBoss provides flexible mechanisms for creating and deploying inter-
ceptors and broadly employs them to implement a large subset of its core functionality such

as security and transactions.

Our support for NRMI in JBoss consists of a programming interface, enabling the
programmer to choose call-by-copy-restore semantics on a per method basis, and an imple-
mentation, consisting of a pair of client server interceptors. Because this implementation
works on top of regular RMI, it cannot introduce a new Java marker interface for copy-
restore parameters and must follow a different approach. We introduced a new XDoclet

[103] annotation method-parameters copy-restore, specifying that all reference

32

parameters of a remote method are to be passed by copy-restore. The following code exam-

ple shows how the programmer can use this new annotation.

/**

* @ejb:interface-method view-type="remote”

* @jboss:method-parameters copy-restore="true”

*/
public void foo (Referencel refl, int i, Reference2 ref2) { ... }
//both refl and ref2 will be passed by-copy-restore

Note that, in this implementation, it is impossible to enable the programmer to spec-
ify call-by-copy-restore semantics for individual parameters: the copy-restore is a per-

method annotation and applies to all reference parameters of a remote method.

From the implementation perspective, the NRMI interceptors are subclasses of
org.jboss.proxy.Interceptor and org.jboss.ejb.plugins.AbstractInt-
erceptor classes for the client and the server portions of the code, respectively. The
NRMI interceptors are invoked only for those methods specified as having the call-by-
copy-restore semantics. It took only about 100 lines of Java code to supply the logic of both
NRMI interceptors. This number excludes the actual NRMI algorithm implementation
(another 700 lines of code). Below is the simplified code for the invoke methods of the
NRMI client and server interceptors.

//in NRMI client interceptor

public InvocationResponse invoke (Invocation invocation)
throws Throwable {

Object[] arguments = invocation.getArguments();

//create linear map representations

//for copy-restore arguments

Object[][] linearRepresentations =
NRMI.createlLinearRepresentations (arguments) ;

33

//pass the invocation to the next interceptor in the chain
InvocationResponse response =

getNext () .invoke (invocation) ;
Object[][] newlLinearRepresentations =
(Object[][]) response.getAttachment (LINEAR MAP) ;

//after the invocation, perform the restore

//for copy-restore args

NRMI.performRestore (newLinearRepresentations,
linearRepresentations);

return response;

}

//in NRMI server interceptor
public InvocationResponse invoke (Invocation invocation)
throws Exception {

Object[][] linearReps =
NRMI.createlLinearRep (invocation.getArguments ()) ;

InvocationResponse response =
getNext () .invoke (invocation) ;

response.addAttachment (LINEAR MAP, linearReps);

return response;

}

2.5.3 Introducing NRMI through Bytecode Engineering

In some development environments, the programmer could find beneficial the abil-

ity to use the call-by-copy-restore semantics on top of a standard unmodified middleware

implementation, supporting only the standard call-by-copy semantics. Furthermore, that

environment might not provide any built-in facilities for flexible functionality enhance-

ment such as interceptors. For example, the J-Orchestra automatic partitioning system,

described in Chapter IV, has as one of its primary design objectives the ability to execute

34

partitioned programs using a standard RMI middleware implementation. By default, J-
Orchestra uses the RMI call-by-reference semantics (remote reference) to emulate a shared
address space for the partitioned programs. However, as Figure 2-3 shows, any access to a
remote object through a remote reference incurs network overhead. Therefore, a program
partitioned with J-Orchestra can derive substantial performance benefits by using the call-
by-copy-restore semantics in some of its remote calls. It is exactly for these kind of scenar-
ios that we developed our approach for introducing NRMI by retrofitting the bytecodes of

application classes that use the standard RMI API.

Prior research has employed bytecode engineering for modifying the default Java
RMI semantics with the goal of correctly maintaining thread identity over the network
[90][98]. In our implementation, we follow a similar approach that transparently enables

the call-by-copy-restore semantics for remote calls that use regular Java RMI.

2.5.3.1 User View: NRMlzer

Our GUI-enabled tool is called NRMIzer. Figure 2-10 shows the tool’s GUI. As
input, the tool takes two application classes that use the Java RMI API: a remote class (i.e.,
implementing a remote interface) and its RMI stub. An RMI stub is a client site class that
serves as a proxy for its corresponding remote class (i.e., located on a remote server). Under
Sun’s JDK, stubs are generated in binary form by running the rmic tool against a remote
class. The reason why the user has to specify the names of both a remote class and its RMI
stub is the possibility of polymorphism in the presence of incomplete program knowledge.
Since a stub might be used to invoke methods on a subclass of the remote class from which
it was generated, the appropriate transformations must be made to all possible invocations
of the remote method through any of the stubs. NRMIzer shows a list of all methods imple-

35

NRMIizer

Remote Class Name:

|A || Browse |

Stub Class Name:

|A_Stub || Browse |

Methods together
with their JVM
signatures

Methods:
—_— |fnu {ILjavalang/StringBuffer;Ljavaitilvec.. v |

All reference parameters — p- pycopyrestore parameters:

Param 2 (Java.lang.StringBuffer)
A by-copy-restore —————————® Param 3 (java.utilVector)

parameter

Figure 2-10: NRMIzer GUI.
mented by a selected class, displayed together with their JVM signatures. For each method,
the tool also shows a list of its reference parameters. The programmer then selects these

parameters individually, conveying to the tool that they are to be passed by-copy-restore.

2.5.3.2 Implementation Specifics: Backend Engine

The backend engine of NRMIzer retrofits the bytecode of a remote class and its RMI
stub to enable any reference parameter of a remote method to be passed by-copy-restore.
To accomplish the by-copy-restore semantics on top of regular RMI, the tool adds extra
code to both the remote class and its stub for each remote method that has any by-copy-
restore parameters. Consider the following remote method foo taking as parameter an int

and a Ref and returning a f1oat. We want to pass its Re f parameter by copy-restore.

//original remote method foo
//want to pass Ref by copy-restore
public float foo(int i, Ref r) throws RemoteException{...}

36

We show the transformations performed on the stub code, running on the client, next.

//change the body of foo as follows (slightly simplified)
public float foo (int i, Ref r) throws RemoteException ({
Object[] linearMap = NRMI.computelLinearMap (r);
//invoke foo nrmi remotely
//NRMIReturn encapsulates both
//linear maps and the return value of foo
NRMIReturn ret = foo nrmi (i, r);
Object[]newLinearMap = ret.getlLinearMap()
NRMI.performRestore (linearMap, newLinearMap) ;
//extract the original return value
return ((Float)ret.getReturnValue()) .floatValue();

On the server side, the method foo nrmi computes a linear map for the Ref
parameter, invokes the original method foo, and packs both the return £1oat value of foo
and the linear map into a holder object of type NRMIReturn. The class NRMIReturn
encapsulates the original return value of a remote method along with the linear representa-
tions of copy-restore parameters. All special-purpose NRMI methods that NRMIzer adds

to the remote and stub classes use NRMIReturn as their return type.

As far as the runtime deployment is concerned, several classes, implementing the
NRMI algorithm, have to be added to the original RMI program. These NRMI runtime
classes can either be deployed as a separate jar file or bundled together with the original

program’s classes.

2.6 Conclusion

In this chapter, we presented NRMI, a middleware mechanism that provides a fully-
general implementation of call-by-copy-restore semantics for arbitrary linked data struc-

tures, used as parameters in remote procedure calls. We discussed the effects of calling

37

semantics for middleware, explained how our algorithm works, and described three differ-
ent implementations of call-by-copy-restore middleware. In Chapter V we further discuss
various applicability issues of NRMI, present several examples of Java programs in which
NRMI is more convenient to use than regular Java RMI, and present detailed performance
measurements of our drop-in RMI replacement implementation, proving that NRMI can be

implemented efficiently enough for real world use.

38

CHAPTER III

GOTECH

This chapter describes GOTECH, a framework that can be used with a large class of
unaware applications to turn their objects into distributed objects with minimal program-
ming effort. GOTECH combines domain-specific and domain-independent tools to “aspec-
tize” the distributed character of server-side applications to a much greater extent than with
prior efforts. Specifically, the GOTECH framework has been developed on top of three
main components: Aspect] (a high-level aspect language), XDoclet (a low-level aspect lan-
guage), and NRMI (a middleware facility that makes remote calls behave more like local
calls). We discuss why each of the three components offers unique advantages and is nec-
essary for an elegant solution, why the GOTECH approach is general, and how it consti-

tutes a significant improvement over past efforts to isolate distribution concerns.

3.1 Introduction

GOTECH (for “General Object To EJB Conversion Helper”) is a general frame-
work for separating distribution concerns from application logic in enterprise Java applica-
tions via a mixture of aspect-oriented techniques and domain-specific tools. Following the
objective of removing low-level technical barriers to the separation of distribution con-
cerns, the framework operates under the assumption that the structure of the application is

amenable to adding distribution. GOTECH targets the specific technical substrate of

39

server-side Java applications as captured by the J2EE specification [78]. This domain is
technically challenging (due to complex conventions) and has been particularly important

for applied software development in the last decade.

This work demonstrates how a combination of three tools can yield very powerful
separation of distribution concerns in a server-side application. We call this separation
“aspectization,” following other aspect-oriented work. (We use the main aspect-oriented
programming terms in this chapter, but do not embrace the full terminology. E.g. we avoid

the AOP meaning of the term “component” as a complement of “aspect” [40].)

To classify the GOTECH approach, we can distinguish between three levels of

aspectization of a certain concern or feature:

» Type 1: “out-of-sight”. The application already exhibits the desired feature. The chal-
lenge of aspectization is to remove the relevant code and encapsulate it in a different
entity (aspect) that is composable with the rest of the code at will. The approach is appli-

cation-specific.

» Type 2: “enabling”. The application does not exhibit the desired feature, but its struc-
ture is largely amenable to the addition of the feature. Code implementing the feature
needs to be added in a separate aspect, but glue code may also need to be written to

adapt the application logic and interfaces to the feature.

» Type 3: “reusable mechanism”. Both the feature implementation and the glue code are
packaged in a reusable entity that can be applied to multiple applications. Adapting an
existing application to include the desired feature is trivial (e.g., a few annotations at the

right places).
The GOTECH framework achieves Type 3 aspectization for a large class of server-
side applications. In contrast, the closest prior work [72] attempts Type 1 aspectization and

identifies several difficulties with the tools used: the need to write code to synchronize

40

views, the need to create application-specific interfaces for redirecting calls, and some oth-
ers. GOTECH resolves these difficulties automatically. To achieve its goals, it uses three

tools:

* NRMI [88]: a middleware mechanism described in detail in the previous chapter. NRMI
is the key for going from a Type 1 aspectization to a Type 2. That is, it provides the
mechanism for enabling an application that is written without distribution in mind to be
distributed without significant changes to its logic. The NRMI semantics is indistin-
guishable from local execution for a large class of applications—e.g. all applications

with single-threaded clients and stateless servers.

» AspectJ [41]: a high-level aspect language. It is used as a back-end, i.e. our framework
generates AspectJ code. It eliminates a lot of the complexity of writing glue code to turn

regular Java objects into Enterprise Java Beans (EJBs) [78].

* XDoclet [103]: a low-level aspect language. It is used primarily for generating the
Aspect] glue code that adapts the application to the conventions of the distribution mid-
dleware. Like Aspect], XDoclet is a widely available tool and our framework just pro-
vides XDoclet templates for our task. XDoclet is the key for going from a Type 2
aspectization to a Type 3. That is, it lets us capture the essence of the rewrite in a reus-

able template, applicable to multiple applications.
As an example (see Chapter V for a detailed description), we used GOTECH to turn
an existing scientific application (a thermal plate simulator) into a distributed application.
The application-specific code required for the distribution consists of only a few lines of

annotations. The GOTECH framework provides the rest of the distribution-specific code.

41

3.2 The Elements of Our Approach

3.2.1 NRMI

The issue of reproducing the changes introduced by remote calls is important in

aspectizing distribution. For instance, Soares et al. write in [72]:

When implementing the client-side aspect we had also to deal with the synchronization
of object states. This was necessary because RMI supports only a copy parameter pass-

ing mechanism ...

and

[Reproducing remote changes] requires some tedious code to be written ...

Our NRMI middleware, described in detail in Chapter II, succeeds in making remote
calls resemble local calls for many practical scenarios. For example, in the common case
of a single-threaded client (multiple clients may exist but not as threads in the same pro-
cess) and a stateless or memory-less server, NRMI calls are indistinguishable from local
calls. With NRMI, the need for writing explicit code to reproduce remote changes is mostly

eliminated. Thus, our approach can be more easily applied to unaware applications.
3.2.2 AspectJ

Aspect] [41] is a general purpose, high-level, aspect-oriented tool for Java. Aspect]
allows the user to define aspects as code entities that can then be merged (weaved) with the
rest of the application code. The power of Aspect] comes from the variety of changes it
allows to existing Java code. With Aspect], the user can add superclasses and interfaces to
existing classes and can interpose arbitrary code to method executions, field references,

42

exception throwing, and more. Complex enabling predicates can be used to determine
whether code should be interposed at a certain point. Such predicates can include, for
instance, information on the identity of the caller and callee, whether a call to a method is

made while a call to a certain different method is on the stack, and so forth.

For a simple example of the syntax of AspectJ, consider the code below:

aspect CaptureUpdateCallsToA {
static int num updates = 0;

pointcut updates (A a): target(a) &&
call (public * update* (..)):

after (A a): updates(a) { // advice

num_ updates++; // update was just performed

}

The above code defines an aspect that just counts the number of calls to methods
whose name begins with “update” on objects of type A. The “pointcut” definition specifies
where the aspect code will tie together with the main application code. The exact code

(“advice”) will execute after each call to an “update” method.
3.2.3 XDoclet

XDoclet is a widely used, open-source, extensible code generation engine [103].
XDoclet is often used to automatically generate wrapper code (especially EJB-related)
given the source of a Java class. XDoclet works by parsing Java source files and meta-data
(annotations inside Java comments) in the source code. Output is generated by using
XDoclet template files that contain XML-style tags to access information from the source
code. These tags effectively define a low-level aspect language. For instance, tags include

forAllClassesInPackage, forAllClassMethods, methodType, and so forth.

43

XDoclet comes with a collection of predefined templates for common tasks (e.g., EJB code
generation). Writing new templates allows arbitrary processing of a Java file at the syntax

level. Creating new annotations effectively extends the Java syntax in a limited way.

3.3 The Framework

3.3.1 Overview

The GOTECH framework offers the programmer an annotation language1 for
describing which classes of the original application need to be converted into EJBs [78] and
how (e.g., where on the network they need to be placed and what distribution semantics
they support). The EJBs are then generated and deployed in an application server: a run-
time system taking care of caching, distribution, persistence, and so forth of EJBs. The
result is a server-side application following the J2EE specification [78]—the predominant

server-side standard.

The importance of using EJBs as our distribution substrate is dual. First, it is the
most mature technology for server-side development, and as such it has practical interest.
Second, it has a higher technical complexity than middleware such as RMI. Thus, we show
that our approach is powerful enough to handle near-arbitrary technical complications—
our aspectization task is significantly more complex than that of [72] in terms of low-level

interfacing.

Converting an existing Java class to conform to the EJB protocol requires several

changes and extensions. An EJB consists of the following parts:

1. The annotations are introduced in Java source comments as “JavaDoc tags”. We use the term “annota-
tion” instead of the term “tag” as much as possible to prevent confusion with the XDoclet “tags”, i.e. the
XDoclet aspect-language keywords, like forAl1ClassMethods.

44

» the actual bean class implementing the functionality

» a home interface to access life cycle methods (creation, termination, state transitions,

persistent storing, and so forth)
+ a remote interface for the clients to access the bean
* a deployment descriptor (XML-formatted meta-data for application deployment).
In our approach this means deriving an EJB from the original class, generating the
necessary interfaces and the deployment descriptor and finally redirecting all the calls to
the original class from anywhere in the client to the newly created remote interface. The

process of adding distribution consists of the following steps:

1. The programmer introduces annotations in the source

2. XDoclet processes the annotations and generates the aspect code for Aspect]

3. XDoclet generates the EJB

4. XDoclet generates the EJB interface and deployment descriptor

5. The Aspect] compiler compiles all generated code (including regular EJB code and
Aspect] aspect code from step 1) to introduce distribution to the client by redirecting all

client calls to the EJB instead of the original object.

(The XDoclet templates used in step 4 are among the pre-defined XDoclet templates

and not part of the GOTECH framework.)

3.3.2 Framework Specifics

We discuss many of the technical specifics of GOTECH in this section. Further

examples can be found in Chapter V, in which we present an example application.

45

3.3.2.1 Middleware

In our development we used the JBoss open-source application server. JBoss is one
of the most widely used application servers with 2 million downloads in 2002. Although
our approach would work with other application servers, they would need to somehow inte-
grate NRMI. (An alternative discussed in Section 3.3.3 is to have XDoclet insert the right
NRMI code in the application. This just changes the packaging of the code but not the need
for NRMI, and it is technically much more convoluted.) Section 2.5.2 of this dissertation
describes in detail the integration of NRMI in the JBoss code base as a middleware option.

GOTECH uses NRMI just like any other client would.

3.3.2.2 GOTECH Annotations

In our approach, the programmer needs to provide annotations to guide the auto-
mated transformation process. Some of these annotations are EJB-specific (i.e. processed
by existing XDoclet templates). Additionally, we added annotations for making remote
calls use NRMI. Integrating copy-restore semantics required an extension of the JBoss-spe-
cific deployment descriptor. For instance, the following annotations will make a parameter

passed using call-by-copy-restore. (This is a per-method annotation.)

/ * %
* @ejb:interface-method view-type="remote”
* @jboss:method-parameters copy-restore="true”
*/
Note that without invoking GOTECH the comments remain completely transparent

to the original application.

46

3.3.2.3 GOTECH XDoclet Templates

After the programmer supplies all the necessary information, we can use XDoclet to
generate files. The first task XDoclet is used for is creating the source code for the client
aspect. The generated aspect’s role is to redirect all method calls to the original objects to
now be performed on the appropriate EJB. Additionally, the original object should only be
referred to through an interface and its creation should be done by a distributed object fac-
tory instead of through the operator new. (We ignore direct field reference for now, but it
could be handled similarly using Aspect] constructs.) A simplified (shorter XML tags,
elided low-level details) fragment of our XDoclet template appears in Figure 3-1. The tem-
plate file consists of plain text, in this case a basic Aspect] source file structure, and the

XDoclet annotation parameters, whose value is determined by running XDoclet.

For ease of reference we have split the template in Figure 3-1 in three parts. Part [
defines that the aspect is per-target, i.e. that a unique instance of the aspect will be created
every time a target object (i.e. an instance of class className, which is derived from the
name XDoclet parameter) is created. The other conditions in Part I determine that the inter-
ception of the construction of a target object should only occur if this takes place outside
the control flow of the Aspect itself. Note that the template uses XDoclet’s ability to access

class information (<className/>) in addition to user-supplied annotations.

Part II of the template shows the code that will be executed for the creation of a new
instance of the aspect. This is the code that takes care of the remote creation of the EJB

using a remote object factory mechanism.

47

public aspect GOTECH <className/>WrapperAspect
pertarget (target (<className/>)
&& (!cflow(within (GOTECH <className/>WrapperAspect)))) {

// Part I above: per-target aspect that captures object creation.

private
<classTagValue tagName="ejb:bean” paramName="interface-name”/> ep;

GOTECH <className/>WrapperAspect () {
try {
<classTagValue tagName="ejb:bean” paramName="name”/>Home sh;
javax.naming.InitialContext initContext =
new Jjavax.naming.InitialContext();
String JNDIName =
“<classTagValue tagName="ejb:bean” paramName="jndi-name”/>";
Object obj = initContext.lookup (IJNDIName) ;
sh = (<classTagValue tagName="ejb:bean” paramName="name”/>Home)
javax.rmi.PortableRemoteObject.narrow(obj,
<classTagValue tagName="ejb:bean” paramName="name”>Home.class);
ep = sh.create();
} catch (Exception e) { ... }
}

// Part Il above: Intercepting object creation.
// A remote object factory is called. All access is through an interface.

Object around() : target (<className/>)
&& call(* *(..))

&& (!cflow(within (GOTECH <className/>WrapperAspect)))
{

try {

Method meth = ep.getClass () .getMethod (
thisJoinPoint.getSignature () .getName (),
((org.aspectj.lang.reflect.MethodSignature)
thisJoinPoint.getSignature()) .getParameterTypes());

Object result = meth.invoke (ep, thisJoinPoint.getArgs()):
return result;

} catch (Exception e) { ... }
}

// Part III above: Intercepting method calls.
}

Figure 3-1: Simplified fragment of XDoclet template to generate the aspect code. Template parameters

are shown emphasized. Their value is set by XDoclet based on program text or on user annotations in
the source file.

48

Finally, Part III makes the generated aspect code capture all method calls
(call(* *(..)))toobjects of class className unless the calls come from within

the Aspect itself.

The next task for XDoclet is to transform the existing class into a class con-
forming to the EJB protocol. To do this, we need to make the class implement the
SessionBean interface. Additionally, all parameters of methods of an EJB must
implement interface Serializable: a Java marker interface used to designate that
the parameter’s state can be “pickled” and transported to a remote site. We do this by
creating an aspect that when run through Aspect] will make the parameter types
implement interface Serializable. The template file for this transformation is not

shown, but the functionality is not too complex.

The last task in which we employ XDoclet is the generation of the home and
remote interface as well as the deployment descriptors. XDoclet has predefined tem-
plates for this purpose. The only extension has to do with the copy-restore semantics
and generating the right deployment descriptor to use NRMI. Note that this step needs
to iterate over all methods of a class and replicate them in a generated interface, while
adding a throws RemoteException clause to every method signature. This is a
task that Soares et al. [72] had to perform manually in their effort to aspectize distri-
bution with Aspect]. A simplified fragment of the XDoclet template for iterating over

the methods appears below:

49

<forAllMethods>
<ifIsInterfaceMethod interface="remote”>
public <methodType/> <methodName>
(<parameterList/>)
<exceptionList append=
“java.rmi.RemoteException”/>;

<ifIsInterfaceMethod>

</forAllMethods>

3.3.3 Discussion of Design

Our approach uses a combination of Aspect], NRMI and XDoclet in order to add dis-
tribution to existing applications. Each tool has unique advantages and greatly simplifies

our task. Of course, in terms of engineering choices, there are alternative approaches:

* instead of our three tools, we could have a single, special-purpose tool, like D [52], Jav-
aParty [66] or AdJava [23] that will rewrite existing Java code and introduce new code
and meta-data. (None of these tools deals with the EJB technology, but they are repre-
sentatives of domain-specific tools for distribution.) We strongly prefer the GOTECH
approach over such a “closed” software generator approach. The first reason is the use
of widely available tools (Aspect], XDoclet) that allow exposing the logic of the rewrite
in terms of templates. Templates are significantly easier to understand and maintain than
the source code of a compiler-level tool. The second advantage of our approach is the
use of unobtrusive annotations inside Java source comments. That is, the annotations do
not affect the source code of the original Java program, which can still be used in its cen-

tralized form.

» we could have XDoclet generate all the code, completely replacing both NRMI and
Aspect]. In the case of NRMI, this would mean that XDoclet will act as an inliner/spe-
cializer: the NRMI logic would be added to the program code, perhaps specialized as
appropriate for the specific remote call. Conceptually, this is not a different approach
(the copy-restore semantics is preserved) but in engineering terms it would add a lot of
complexity to XDoclet templates. Similarly, one can imagine replacing all uses
of Aspect] with more complex XDoclet templates. Yet Aspect] allows manipulations

taking Java semantics into account—e.g. the cf£1ow construct mostly used for recogniz-

50

ing calls under the control flow of another call (i.e. while the latter is still on the execu-
tion stack). Although the emulation of this construct with a run-time flag is not too
complex conceptually, it does require essentially replicating the functionality of Aspect]
in a low-level, inconvenient, and hard-to-maintain way. XDoclet is not designed for such

complex program manipulations.

+ finally, one could ask whether a combination of Aspect] and NRMI without XDoclet
would be sufficient. Unfortunately, this approach would suffer a more severe form of the
drawbacks identified by Soares et al. [72]. These drawbacks include needing to write the
remote interface code by hand, not being able to work without availability of source
code, and so forth. The problem is exacerbated in our case because our target platform
(EJBs) is more complex and because we are attempting complete automation. To auto-
mate the construction of EJBs, we need to generate the remote and home interfaces from
the original class, as well as generate non-code artifacts (the deployment descriptor
meta-data in XML form). None of these activities could be automatically handled by
Aspect]. In general, low-level generation, like iterating over all methods and replicating
them (with minor changes) in a new class or interface, is impossible with Aspect]. The

same is true for “destructive” changes, like adding a throws clause to existing methods.

3.4 Advantages and Limitations

3.4.1 Advantages of our approach

Despite the simplicity of applying GOTECH, the resulting code is feature-by-feature
analogous to that written manually by Soares et al. [72]. We discuss each element of the

implementation and perform a comparison.

Making the object remote. With GOTECH, this step is quite simple. A new remote inter-
face is created from the original class using XDoclet. Soares et al. identified several prob-
lems when trying to perform the same task with Aspect], even though their original

application already supported reference to the relevant objects through an interface. Specif-

51

ically, Soares et al. could not add a RemoteException declaration to the constructor of
their “facade” class using Aspect]. In our approach, the original class does not need to be
modified: a slightly altered copy forms the bean part of the EJB. It is easy to add exception
declarations when the new class gets created (see the exceptionList append statement

in Section 3.3.2).

Serializing types. Soares et al. needed to write by hand (listing all affected classes!) the
aspect code that will make application classes extend the java.io.Serializable inter-
face so they can be used as parameters of a remote method. In their paper, they acknowl-
edge:

This might indeed be repetitive and tedious, suggesting that either AspectJ should have

more powerful metaprogramming constructs or code analysis and generation tools

would be helpful for better supporting this development step.

Indeed, our approach fulfills this need. Using XDoclet, we create automatically the

aspect code to make the parameter types implement java.io.Serializable.

Client call redirection. The code introduced by the generated aspect of Figure 3-1 (part
IIT) does a similar redirection as with the technique of Soares et al. That is, it executes a call
to the same method, with the same arguments, but with a different target (a remote interface
instead of the original local reference). Nevertheless, in the Soares et al. technique this code
had to be introduced manually for each individual method. These authors admit:

... [T]his solution works well but we lose generality and have to write much more tedious

code. It is also not good with respect to software maintenance: for every new facade

method, we should write an associated advice....

52

We should note that it is not really XDoclet or NRMI that give us this advantage over
the Soares et al. approach. Instead, our aspect code of Figure 3-1 (part III) uses Java reflec-
tion to overcome the type incompatibilities arising with a direct call. This technique is also

applicable to the Soares et al. approach.

Updating Remotely Changed Data. NRMI offers a very general way to update local data
after a remote method changes them. Our approach is not only more general than the one
used by Soares et al. but also more efficient. Specifically, Soares et al. admit the need to
“synchronize object states.” They perform this task by trapping every call to an update
method, storing the affected objects in a data structure, and eventually iterating over this
data structure on the remote site and reproducing all the introduced changes. NRMI is a
more general version of this technique, applicable to a large class of applications. The
Health Watcher system of Soares et al. is one of them: the system is “non-concurrent” (as
characterized by the authors) and the two sites do not need to always maintain consistent
copies of data: it is enough to reproduce changes introduced by a remote call. Soares et al.
acknowledge both the need for automation and the fact that the structure of state synchro-
nization in Health Watcher is general:

.. it would be helpful to have a code analysis and generation tool that would help the

programmer in implementing this aspect for different systems complying to the same

architecture of the Health Watcher system.

Additionally, NRMI is more efficient than capturing all calls to update methods.
Instead of intercepting every update call, NRMI allows the remote call to proceed at full
speed and only after the end of its execution it collects the changed data. (To do this, before

execution of the remote call, NRMI needs to store pointers to all data reachable by param-

53

eters. This is not costly, since these data are transferred over the network anyway.) Soares
et al. admit the inefficiency of their approach, although they argue it does not matter for the

case of Health Watcher.

3.4.2 Limitations

Currently the GOTECH framework suffers from some engineering limitations. We
outline them below. Some of these limitations are shared by the approach of Soares et al.—
assuming that this approach is applied to multiple applications. Recall, however, that our
templates only automate some tedious tasks. Although these templates are not application-
specific, they also do not attempt complete coverage for all Java language features. In gen-
eral, it is up to the programmer to ensure that the GOTECH process is applicable to the

application.

3.4.2.1 Entity Bean support

So far we have only concentrated on distributing the computation of an application.
Thus, we only have templates for generating Session Beans and not Entity Beans. Entity
Beans are commonly used for representing database data through an object view. There is
no further technical difficulty in producing templates for Entity Beans, but their value is
questionable in our case. First, we are not aware of an example where adding distribution
to an existing application requires creating any Entity Beans. Second, the Entity Bean gen-
eration will have more constraints than Session Beans—for instance, Entity Beans should
support identity operations (retrieval by primary key) since they are meant for use with

databases. These operations usually cannot be supplied automatically—the original class

54

will have to support such operations, or a fairly complex XDoclet annotation could supply

the needed information.

3.4.2.2 Conditions for applying rewrite

Our aspect code controlling where we apply indirection in the original code is cur-
rently coarse grained. Consider again Part I of Figure 3-1 The generated aspect code is
applied everywhere except in points in the execution under the control flow of the EJB.
This roughly means that our approach assumes that the desired distributed application is
split into a client site and a server site, and the server site never calls back to the client. On
the server site, the calls to the existing class are not redirected. The positive side-effect of
this rule is that server-side objects communicate with each other directly, thus suffering no
overhead. Future versions could have a finer grained control over when the indirection

should be applicable.

3.4.2.3 Making types serializable

Our current approach of making classes implement java.io.Serializable so
that they could be passed as parameters to remote method calls works only for some appli-
cation classes. Indeed, our current XDoclet template for generating aspects that adds
java.io.Serializable to all non-serializable parameter types makes several assump-

tions.

One assumption is that having a type implement this marker interface is sufficient
for making it serializable by Java Serialization [79]. However, this is not always the case:
a type is serializable only if all the types reachable transitively from it are also serializable.

Our current implementation performs no such check. Nevertheless, this is a reasonable

55

assumption for a framework that assumes that the original centralized application is ame-
nable for distribution in the first place. Making a type adhere to the serializability require-
ments could be non-trivial, requiring significant changes to its implementation. In that case,
careful manual code restructuring often is the only feasible option for performing these

changes.

Another assumption is that all non-serializable parameters are application classes. In
other words, all system JDK classes, passed as parameters to a remote method, must be seri-
alizable, for applying aspects to system classes has not been standardized. Even if changing
the implementation of a system class (i.e., having it implement an additional interface) were
straightforward, that would violate the design principles of our framework, creating the
need for a custom runtime environment. However, in practice it never makes sense to
modify the serializability properties of a system class. Because significant effort has gone
into designing system classes that are part of the standard JDK, the ones that are serializable
are always marked as such (i.e., implementing java.io. Serializable).? The system
classes that are not serializable are usually the ones that control some local system
resources such as threads, sound, etc. It would be meaningless to send instances of such
classes over the network anyway. Thus, making a centralized program amenable to our
approach requires restructuring it in such a way that no non-serializable system classes are

used as parameters in remote methods.

2. In addition, instances of some serializable system classes could become invalid if serial-
ized and transferred to a machine on a different network node. E.g., java.io.File.

56

3.4.2.4 Exceptions, construction, field access

The current state of our templates leaves some more minor engineering issues unre-
solved. For instance, the handling of remote method exceptions is generic and cannot be
influenced by the programmer at this stage. This is just a matter of regular Java program-
ming: we need to let user code register exception handlers that will get called from the
catch clauses of our generated code. Another shortcoming of our template of Figure 3-1
is that it only supports zero-argument constructors. (This is fine for stateless Session Beans,
which by convention have no-argument constructors.) However, it would be only a matter
of engineering to implement an additional rewrite to address this problem. We also cur-
rently have no support for adding indirection to direct field access from the client object to
the remote object, which should be quite feasible with Aspect]. Nevertheless, direct access
to fields of another object may mean that the two objects are tightly coupled, suggesting

that perhaps they should not be split in the distributed version.

The subset of implemented functionality in the current version of GOTECH is suf-
ficient to illustrate our approach. At the same time, all of the remaining issues would be rel-
atively easy to address in a production system—GOTECH templates are highly amenable
to inspection and modification. In fact, it is quite feasible that application programmers

would incorporate additional functionality to GOTECH on a per-application basis.

Finally, since performance is an important concern, we should emphasize that it is
not an issue for the GOTECH framework. For the most part, GOTECH just generates the
code that a programmer would otherwise add by hand. Additionally, in the only case in
which something is done automatically (when using NRMI) the mechanism is quite opti-

mized [88]. In general, however, for a given set of distribution and caching decisions, the

57

constant computational overheads of a distribution mechanism like ours are relatively
unimportant. These overheads are small relative to the inherent cost of communication
(including network time and middleware, e.g., EJB, overheads). These costs are not impor-
tant if only few objects are accessed remotely. On the other hand, if many objects are

accessed remotely, any distribution mechanism will suffer.

3.5 Conclusions

We presented the GOTECH framework: an approach to aspectizing distribution con-
cerns. GOTECH relieves the programmer from performing many of the tedious tasks asso-
ciated with distribution. GOTECH relies on NRMI: a middleware implementation that
makes remote calls behave much like local calls for a large class of uses (e.g. single-
threaded access to client data and no memory of past call arguments on the server). Addi-
tionally, GOTECH only depends on general-purpose tools and offers an easy to evolve
implementation, easily amenable to inspection and change. Compared with the closest past

approaches, GOTECH is significantly more convenient and general.

In high-level terms, GOTECH is also interesting as an instance of a collaboration of
generative and aspect-oriented techniques. The generative elements of GOTECH are very
simple exactly because Aspect] handles much of the complexity of where to apply trans-
formations and how. On the other hand, Aspect] alone would not suffice to implement

GOTECH.

Section 5.6 presents an example of applying the GOTECH framework to convert a
centralized scientific application into a distributed application interacting with an applica-

tion server.

58

CHAPTER IV

J-ORCHESTRA

This chapter presents J-Orchestra, an automatic partitioning system for Java pro-
grams. J-Orchestra takes as input a Java program in bytecode format and transforms it into
a distributed application, running across multiple Java Virtual Machines (JVMs). To
accomplish such automatic partitioning, J-Orchestra substitutes method calls with remote
method calls, direct object references with proxy references, and so forth, by means of byte-
code rewriting and code generation. The partitioning does not involve any explicit pro-
gramming or modifications to the JVM or its standard runtime classes. The main novelty
and source of scalability of J-Orchestra is its approach to dealing with unmodifiable code
(e.g., Java system classes). The approach consists of an analysis heuristic that determines
which application objects get passed to which parts of native (i.e., platform-specific) code
and a technique for injecting code that will convert objects to the right representation so
that they can be accessed correctly inside both application and native code. Validating the
type information accuracy and testing the correctness of the analysis heuristic have demon-
strated its viability in the J-Orchestra context. To be able to run partitioned programs over
a standard remote procedure call middleware such as RMI, J-Orchestra introduces a new
approach to maintaining the Java centralized concurrency and synchronization semantics
over RMI efficiently. Finally, specialized domains present opportunities for making J-

Orchestra partitioning more automatic, which is the case for appletizing—a semi-automatic

59

approach to transforming a Java GUI application into a client-server application, in which

the client runs as a Java applet that communicates with the server through RMI.

4.1 Introduction

Adding distributed capabilities to existing programs has come to the forefront of
software evolution [44] and is commonly accomplished through application partitioning—
the task of splitting up the functionality of a centralized monolithic application into distinct
entities running across different network sites. As a programming activity, application par-
titioning entails re-coding parts of the original application so that they could interact with
a distributed middleware mechanism such as Remote Procedure Call (RPC) [10] or
Common Object Request Broker Architecture (CORBA) [61]. In general, this manual pro-
cess is costly, tedious, error prone, and sometimes infeasible due to the unavailability of

source code, as in the case of many commercial applications.

Automating, even partially, a tedious and error-prone software development task is
always a desirable goal. Thus, automating application partitioning would not only save pro-
gramming time but would also result in an effective approach to separating distribution
concerns. Having a tool that under human guidance handles all the tedious details of distri-
bution could relieve the programmer of the necessity to deal with middleware directly and

to understand all the potentially complex data sharing through pointers.

Automating any programming task presents an inherent dichotomy between power
and automation: any automation effort hinders complete control for users with advanced
requirements. Indeed, transforming a centralized application for distributed execution often

requires changes in the logic and structure of the application to satisfy such requirements

60

as fault tolerance, load balancing, and caching. In view of this dichotomy, one important
question is what kind of common architectural characteristics make applications amenable
to automatic partitioning, and when meaningful partitioning is impossible without manu-

ally changing the structure and logic of the application first.

J-Orchestra operates on binary (Java bytecode) applications and enables the user to
determine object placement and mobility to obtain a meaningful partitioning. The applica-
tion is then re-written to be partitioned automatically and different parts can run on different
machines, on unmodified versions of the Java VM. For a large subset of Java, the resulting
partitioned application’s execution semantics is identical to the one of its original, central-
ized version. The requirement that the VM not be modified is important. Specifically,
changing the runtime is undesirable both because of deployment reasons (it is easy to run
a partitioned application on a standard VM) and because of complexity reasons (Java code
is platform-independent, but the runtime system has a platform-specific, native-code

implementation).

The conceptual difficulty of performing application partitioning in general-purpose
languages (such as Java, C#, but also C, C++, etc.) is that programs are written to assume
a shared memory: an operation may change data and expect the change to be visible
through all other pointers (aliases) to the same data. The conceptual novelty of J-Orchestra
(compared to past partitioning systems [33][75][84] and distributed shared memory sys-
tems [2][3][5][14][102]) consists of addressing the problems resulting from inability to
analyze and modify all the code under the control flow of the application. Such unmodifi-
able code is usually part of the runtime system on which the application is running. In the

case of Java, this runtime is the Java VM. In the case of free-standing applications, the runt-

61

ime is the OS. Without complete control of the code, execution is in danger of letting a ref-
erence to a remote object get to code that is unaware of remoteness. Prior partitioning
systems have ignored the issues arising from unmodifiable code and have had limited scal-
ability, as a result. J-Orchestra features a novel rewrite mechanism that ensures that, at run-
time, references are always in the expected form (“direct” = local or “indirect” = possibly
remote) for the code that handles them. The result is that J-Orchestra can split code that
deals with system resources, safely running, e.g., all sound synthesis code on one machine,

while leaving all unrelated graphics code on another.

This chapter starts by describing the general partitioning approach of J-Orchestra
and its analysis algorithm and rewriting engine. Then it covers how J-Orchestra maintains
the Java centralized concurrency and synchronization semantics over RMI efficiently.
Finally, it demonstrates how specialized domains present opportunities to make J-Orches-

tra partitioning more automatic through the case of appletizing.

Chapter V of this dissertation identifies the environment features that make J-
Orchestra possible and argues that partitioning systems following the principles laid out by
J-Orchestra are valuable in modern high-level run-time systems such as the Java VM or
Microsoft’s CLR. Chapter V also presents several case-studies that demonstrate J-Orches-
tra handling arbitrary partitioning of realistic applications without requiring an understand-

ing of their internals.

62

4 JOrchestra - O] x|

File Action Preference Help

Sites [o ipag@152 1560 21pa : :
" dpesq%p@192.1EB.D.Eljquesktnp =] class Browsefpas@iio2 1680 2pa 7| Relocate |

| 1 Anchored Clagses

—® javalawt/AVWTEvent Selection

— & javafawt/Component e .

@ javatawt/Container Optimistic Selection I
—® javafawt/Frame Mohile Selection E

gl = Javalawt/LayoutManager
—® JavalawtAYindow

Dependencies

all — ja\rafamfeventfﬁ.ct@unE_\rent
appli- :: J_::::::m::g:gmmﬂszﬁitdeani javaxispeechisynthesis/Synthesizer
catidn . javafawtfeventf'u"-findquistEr javaxispeech/synthesis/SpeakableListener
clasges —® java/util’'EventListener javax/speach/Engine

—® java/util/EventObject javaxfspeech/Central

By ;

javaxispeechisynthesis/SynthesizerModelesc

B javaxspeech/EngineModeDesc

_.

javax/speechfsynthesisMoic
javax/swing/AbstractButton
—® javax/swingAButtaon
— e —#® javax/swing/lComboBox

—® jJavax/swingflComponent =elect Refine Placenmemt
group —® javaxfswingfIFrame
of —® javax/swing/lLabel
co- —® Javax/swing/JPanel

—# javaxfswing/RootPaneContai

anchored, —# speech/SpeechWindow
classes —# speech/SpeechiWindowh
(speech |1 Mobile Classes
related) # RemateExit

speech/SpeechEngine it
ol | AN R] |+

| | Total Classes: 31 [Mobile Classes: 21| Anchored Classes: 29 anchored Groups: 4 [l

Figure 4-1: Example user interaction with J-Orchestra. An application controlling speech output is
partitioned so that the machine doing the speech synthesis is different from the machine controlling the
application through a GUI.

4.2 User View of J-Orchestra

Figure 4-1 shows a screenshot of J-Orchestra in the process of partitioning a small
but realistic example application. The original example Swing application showcases the
Java Speech API and works as follows: the user chooses predefined phrases from a drop-

down box and the speech synthesizer pronounces them. As a motivation for partitioning,

63

imagine a scenario in which this application needs to be run on a small device such as a
PDA that either has no speakers (hardware resource) or does not have the Speech API
installed (software resource). The idea is to partition the original application in a client-
server mode so that the graphical partition (i.e., the GUI), running on a PDA, would control
the speech partition, running on a desktop machine. We chose this particular example
because it fits well into the realm of applications amenable for automatic application parti-
tioning. The locality patterns here are very clear and defined by the specific hardware
resources (graphical screen and speech synthesizer) and their corresponding classes (Swing

and Speech API).

Figure 4-1 shows J-Orchestra at a point when it has finished importing all the refer-
enced classes of the original application and has run its classification algorithm (Section
4.4) effectively dividing them into two major groups represented by tree folders anchored

and mobile.

» Anchored classes control specific hardware resources and make sense within the context
of a single JVM. Their instances must run on the JVM that is installed on the machine
that has the physical resources controlled by the classes. J-Orchestra clusters anchored
classes into groups for safety; intuitively, classes within the same anchored group refer-
ence each other directly and as such must be co-located during the execution of the par-
titioned application. If classes from the same group are placed on the same machine, the
partitioned application will never try to access a remote object as if it were local, which
would cause a fatal run-time error. J-Orchestra classification algorithm (Section 4.4) has
created four anchored groups for this example. One group contains all the referenced
speech API classes. The remaining groups specify various Swing classes. While classes
within the same anchored group cannot be separated, anchored groups can be placed on

different network sites. In our example, all the Swing classes anchored groups should be

64

placed on the site that will handle the GUI of the partitioned application to obtain mean-
ingful partitioning.

» Mobile classes do not reference system resources directly and as such can be created on
any JVM. Mobile classes do not get clustered into groups, except as an optimization
suggestion. Instances of mobile classes can move to different JVMs independently dur-
ing the execution to exploit locality. Supporting mobility requires adding some extra
code to mobile classes at translation time to enable them to interact with the runtime sys-
tem. Mobility support mechanisms create overhead that can be detrimental for perfor-
mance if no mobility scenarios are meaningful for a given application. To eliminate this
mobility overhead, a mobile class can be anchored by choice. We discuss anchoring by

choice and its implications on the rewriting algorithm in Section 4.5.2.

The J-Orchestra GUI represents each network node in the distributed application by
a dedicated tree folder. The user then drag-and-drops classes from the anchored and mobile
folders to their destination network site folder. Putting an anchored class in a particular net-
work folder assigns its final location. For a mobile class, it merely assigns its initial creation
location. Later, an instance of a mobile object can move as described by a given mobility
policy. When all classes are assigned to destination folders, the J-Orchestra rewriting tool
transforms the original centralized application into a distributed application. At the end, J-
Orchestra puts all the modified classes, generated supporting classes, and J-Orchestra run-

time configuration files into jar files, one per destination network site.

At run-time, J-Orchestra employs its runtime service to handle such tasks as remote

object creation, object mobility, and various bookkeeping tasks.

65

4.3 The General Problem and Approach

In abstract terms, the problem that J-Orchestra solves is emulating a shared memory
abstraction for unaware applications without changing the runtime system. The following
two observations distinguish this problem from that of related research work. First, the
requirement of not changing the run-time system while supporting unaware applications
sets J-Orchestra apart from traditional Distributed Shared Memory (DSM) systems. (The
related work chapter (Chapter VII) offers a more complete comparison.) Second, the
implicit assumption is that of a pointer-based language. It is conceptually trivial to support
a shared memory abstraction in a language environment in which no sharing of data
through pointers (aliases) is possible. Although it may seem obvious that realistic systems
will be based on data sharing through pointers,1 the lack of data sharing has been a funda-
mental assumption for some past work in partitioning systems—e.g., the Coign approach

[33].

It is worth asking why mature partitioning systems have not been implemented in
the past. For example, why no existing technology allows the use