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Abstract
OpenEdX source has been made available to the open source community as differ-

ent modules such as LMS(Learning Management System),CMS(Content Management
System),edx-ora(Open Response Assessment) etc.In this project we have tried to success-
fully integrate and run these different modules. OpenEdX hosts online university-level
courses in a wide range of disciplines to a worldwide audience at no charge, and con-
ducts research into learning.OpenEdX-platform generates tremendous amounts of data
related to student, instructor, staff and course.Analysis of OpenEdX data enables us to
answer the fundamental questions about learning nature of students. For Data analy-
sis of the OpenedX data, the generated data must be extracted from different sources,
cleaned and properly structured and finally stored in the Hadoop and Spark cluster be-
cause of its Big Data nature. This report elaborates and summarizes the working of
a Data Analytics group created at IIT Bombay for managing such voluminous data to
obtain structured results from unstructured and unarranged data sources. Additionally
it further enhances user experience by providing a set of tools for visualising this data so
that both researchers and professors can infer vital results with respect to EdX data. The
Adaptation of OpenedX Insight has been optimized using the latest Big Data technologies
to create both an efficient and fault tolerant architecture.
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Chapter 1

Introduction

1.1 Educational Data Mining In Big Data
Educational Data Mining refers to techniques, tools, and research designed for auto-
matically extracting meaning from large repositories of data generated by or related to
peoples learning activities in educational settings. Quite often, this data is extensive,
fine-grained, and precise.At a high level, the field seeks to develop and improve methods
for exploring this data, which often has multiple levels of meaningful hierarchy, in order
to discover new insights about how people learn in the context of such settings.In doing
so, EDM has contributed to theories of learning investigated by researchers in educational
psychology and the learning sciences.

1.2 Improving Trend in EDM
As numerous articles in both the academic and popular press have pointed out, the ability
of eDX to generate a tremendous amount of data opens up considerable opportunities
for educational research. edX and Coursera, which together claim almost four and a half
million enrollees, have developed platforms that track students every click as they use
instructional resources ,complete assessments ,and engage in social interactions. These
data have the potential to help researchers identify ,at a finer resolution than ever before
,what contributes to students learning and what hampers their success. eDX generates
large amounts of data which needs to be processed. Why collect and store large amounts
of data if you cant analyze it in full context? Or if you have to wait hours or days to get
results? The idea is that if we know everything about a student, well be better able to
help that student and future students who fit a similar profile.

1.3 What is OpenEdX?
OpenEdX is the open-source release of the EDX platform developed by the non-profit
organization founded by Harvard and MIT.As OpenEdX is open source, other univer-
sities and educational providers can use it freely to support their own online learning
initiatives.Universities and other organizations using OpenEdX also control the license
for their content. They may release or redistribute that content in a variety of forms such
as original, revised or remixed,to multiple audiences without special permissions from a
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platform owner. This flexibility gives educators the freedom to experiment and to greatly
expand the reach of their instructional materials.

1.4 What is OpenEdX Insights?
OpenEdX Insights makes information about courses available to course team members,
which consists of Course Staff or Instructor role.OpenEdX Insights provides these course
team members with data about student activity, background, and performance through-
out the course.OpenEdX Insights can help one to monitor how students are doing, and
validate the choices one made in designing there course. OpenEdX Insights includes a
brief description for each reported value.It can also help to re-evaluate choices and in-
form efforts to improve the course and the experience of the learners. Putting the data
provided by OpenEdX Insights to work involves the following points:

1. Evaluating reported data against the expectations and hypotheses.

2. Understanding the context of the course run,which includes the environmental fac-
tors and choices that make each run unique.

3. Deciding whether action is called for.

4. Selecting the action to take, and when.

1.5 Important results obtained
A data analytics system is required to setup a workflow to take different types of data
generated as a source pipeline the data and process accordingly according to its type to
ensure that it is ready to be transformed and loaded.The logs generated are unstructured
so they need to be structured and cleaned so that they can be queried for useful informa-
tion. It is also needed for analysing the large amounts of data that is generated and thus
derive some useful results from it. Data visualisation is a modern branch of descriptive
statistics. It involves the creation and study of the visual representation of data, mean-
ing information that has been abstracted in some schematic form, including attributes
or variables for the units of information.To provide with a better understanding of the
results obtained from the analysis of theeDX data,data visualization can be used. The
second aim of this project is to make the data analytics system suitable for edX data
such that it is able to provide visualizations for different results.
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Chapter 2

Architecture of OpenEDX Insights

2.1 Introduction
This chapter pertains to the functioning and detailed explanation of the entire OpenEdX
platform. The various components of the system are explained in detail with their spec-
ification and working.

2.2 Architecture

Figure 2.1: Insights Architecture

2.2.1 LMS

• The data taken as the summary data (state) stored in the MySQL database edxapp
with the forum and discussion data stored in the mongoDB in the modulestore
and cs_comments_services .
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• All the user interactions with the system on millissecond basis are recorded by the
system as event log record. These records are generated as json objects and stored
in text files which are zipped, on daily basis. For their usage in the system they are
stored on an Amazon S3 cloud from where they are fetched as and when required.

2.2.2 Pipeline

• The intermediate storage :

– It takes data from zipped log files saved on hdfs on S3 and the summary data
from SQL database and mongoDB.

• The edx analytics pipeline :

– It uses SQOOP to transfer the appropriate SQL tables directly from the
database to the pipeline.

– Using the summary data and the log data performs map reduce jobs on Hadoop
to generate the tables of the result store.

– It reads the log files and finds the appropriate events , combines them with
appropriate summary data by transferring it every time and does processing for
a model. This transfer/scanning of log data takes place every time the batch
process is run for populating the data into the respective models. Everytime
the batch process is run log data is scanned and cleaned for every model

• Scheduler :

– All the above tasks ranging from transferring log files from LMS to hdfs, to the
map reduce job tasks are each separately written as luigi tasks. Luigi schedule
these tasks in a batch process which is then run from time to time updating
the result store .

Figure 2.2: Python Luigi Task Workflow
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• ResultStore :

– It is the mySQL database with the name Analytics which is being populated
with all the results which are being visualized directly on the dasboard (fron-
tend) with the help of data API client through simple SQL queries on the
database.

Figure 2.3: The Analytics Database

2.2.3 Applications(The Data API and the Dashboard)

• The Data API fetches data from the Analytics DB (Resultstore).

• It provides the fetched data to the Insights Dashboard to visualize depending on
the request of the Insights Dashboard.
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Chapter 3

Technologies Used

• HTML HyperText Markup Language, commonly referred to as HTML,is the lan-
guage that describes the structure and the semantic content of a web document.HTML
elements form the building blocks of all websites.

• CSS Cascading Style Sheets, most of the time abbreviated as CSS, is a stylesheet
language used to describe the presentation of a document written in HTML or XML
(including various XML languages like SVG or XHTML). CSS describes how the
structured element must be rendered on screen, on paper, in speech, or on other
media.

• JavaScript JavaScript is a powerful and popular language for programming on the
web.It is a lightweight, dynamic, interpreted programming language. It is designed
for creating network-centric applications. It is complimentary to and integrated
with Java.

• jQuery It is a free and open source JavaScript library that is used by Web devel-
opers to navigate HTML documents, handle events, perform animations and add
Ajax interactions to Web pages. It is designed to simplify the client-side scripting
of HTML.

• R R is a free software environment for statistical computing and graphics. It
compiles and runs on a wide variety of UNIX platforms, Windows and MacOS.

– Why use R? R is powerful software for interacting with data. With R you
can create sophisticated graphs, you can carryout statistical analyses, and you
can create and run simulations. R is also a programming language with an
extensive set of built-in functions, so you can, with some experience, extend
the language and write your own code to build your own statistical tools.
Advanced users can even incorporate functions written in other languages,
such as C, C++, and Fortran

– Why use R for introductory statistics? There are several reasons that
make R an excellent choice of statistical software for an introductory statistical
course. First, R is free and available on the Web. You can use it on your home
computers and are not tied to campus labs. Second, R is a powerful, widely-
used software. The knowledge of R you gain during the course potentially
translates to a marketable skill. You will learn to use a tool that has many
practical uses outside the classroom. Third, even though it is not the simplest
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statistical software, the basics are easy enough to master that learning to
use R need not interfere overly much with learning the statistical concepts
encountered in an introductory course.

plyr plyr is an R package that makes it simple to split data apart, do stuff to it,
and mash it back together. This is a common data-manipulation step. Importantly,
plyr makes it easy to control the input and output data format from a syntactically
consistent set of functions.

RMySQL RmySQL is a Database Interface and MySQL driver for R. It im-
plements DBI-compliant Interface to MySQL and MariaDB Databases.

googleVis is an R interface to Google Charts API, allowing users to create
interactive charts based on data frames. Charts are displayed locally via the R
HTTP help server. A modern browser with Internet connection is required and for
some charts a Flash player. The data remains local and is not uploaded to Google.

• Django Django is an advanced Web framework written in Python that makes use
of the model view controller (MVC) architectural pattern. Its key objective is to
ease the development of complicated, database-driven websites.

• Luigi Luigi is a Python package that helps you build complex pipelines of batch
jobs. It handles dependency resolution, workflow management, visualization, han-
dling failures, command line integration, and much more.

• Apache Spark Spark is a fast and general cluster computing system for Big Data.
It provides high-level APIs in Scala, Java, and Python, and an optimized engine
that supports general computation graphs for data analysis. It also supports a rich
set of higher-level tools including Spark SQL for SQL and DataFrames, MLlib for
machine learning, GraphX for graph processing, and Spark Streaming for stream
processing.

• Apache Hadoop Hadoop is an open-source framework that allows to store and
process big data in a distributed environment across clusters of computers using
simple programming models. It is designed to scale up from single servers to thou-
sands of machines, each offering local computation and storage.

• Apache Hive The Apache Hive data warehouse software facilitates querying and
managing large datasets residing in distributed storage. Hive provides a mechanism
to project structure onto this data and query the data using a SQL-like language
called HiveQL. At the same time this language also allows traditional map/reduce
programmers to plug in their custom mappers and reducers when it is inconvenient
or inefficient to express this logic in HiveQL.

• SqoopApache Sqoop is a tool designed for efficiently transferring bulk data between
Apache Hadoop and structured datastores such as relational databases.

• Python Python is a multiparadigm, general-purpose, interpreted, high-level pro-
gramming language. Python allows programmers to use different programming
styles to create simple or complex programs, get quicker results and write code
almost as if speaking in a human language.
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• MySQL MySQL is the most popular Open Source Relational SQL database man-
agement system. MySQL is one of the best RDBMS being used for developing
web-based software applications. Both MySQL server and workbench were used.

• Python Packages The various python packages used are sasl, pyhs2, pymongo,
pygoip,pydoop.hdfs,mysqlDB(mysql-connector-python)

• Apache Tomcat Server Apache Tomcat, often referred to as Tomcat, is an open-
source web server and servlet container developed by the Apache Software Foun-
dation (ASF). Tomcat implements several Java EE specifications including Java
Servlet, JavaServer Pages (JSP), Java EL, and WebSocket, and provides a "pure
Java" HTTP web server environment for Java code to run in.
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Chapter 4

Installation

This Chapter covers all the description and installation of all the tools required in this
project. All the softwares and packages used are Open Source software and are freely
available.

Figure 4.1: Technologies used
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4.1 System Requirements
For Single Node : We have developed the whole system on the following hardware, and
have used the following software.

4.1.1 Hardware Requirements

4.1.1.1 Hardware

• Dual core Intel Pentium compatible processor or
multiprocessor-based computer with a 2Ghz or greater processor

• 64-bit system

• Network interface card

4.1.1.2 Disk Space

5 GB free disk space (minimum).
Requirements increase as data is gathered and stored in HDFS.

4.1.1.3 Memory

4 GB or more (recommended)

4.1.2 Software Requirements

• Operating System : Linux (Ubuntu 14.04 LTS)

• Web browser : Mozilla Firefox 28.0

• Text Editor : Vim
• Optional software : RStudio, edx-analytics-dashboard,

edx-analytics,pipeline, edx-analytics-data-api

4.2 Hadoop 2.6.0
Apache Hadoop is an open-source software framework for storage and large-scale process-
ing of data-sets on clusters of commodity hardware.

Hadoop Distributed File System (HDFS) is a distributed file-system that stores data
on commodity machines, providing very high aggregate bandwidth across the cluster.

The Apache Hadoop framework is composed of the following modules:

• Hadoop Common : Contains libraries and utilities needed by other Hadoop modules

• Hadoop Distributed File System (HDFS) : A distributed file-system that stores
data on commodity machines, providing very high aggregate bandwidth across the
cluster.
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• Hadoop YARN : A resource-management platform responsible for managing com-
pute resources in clusters and using them for scheduling of usersâĂŹ applications.

• Hadoop MapReduce : A programming model for large scale data processing

4.2.1 Hadoop Stack

1. HDFS
The Hadoop Distributed File System is the customized file system made for the
Hadoop Ecosystem which supports large block sizes and coordinates storage be-
tween multiple DataNodes

2. MapReduce
Programming paradigm that allows for massive scalability across hundreds or thou-
sands of servers in a Hadoop cluster

3. Hive
Hive allows SQL developers to write Hive Query Language (HQL) statements that
are similar to standard SQL statements; now you should be aware that HQL is
limited in the commands it understands

Figure 4.2: Technologies used

4.2.2 Prerequisites for Installation

1. Installing Oracle Java 8

sudo apt-get install openjdk-8-jdk

2. Creating a Hadoop user for accessing HDFS and MapReduce

sudo addgroup hadoop
sudo adduser --ingroup hadoop hduser
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3. Installing SSH

sudo apt-get install openssh-server

4. Configuring SSH

# First login with hduser (and from now use only hduser account for further steps)
sudo su hduser
ssh-keygen -t rsa -P ""
cat $HOME/.ssh/id_rsa.pub >> $HOME/.ssh/authorized_keys

5. Disabling IPv6 For getting your IPv6 disable in your Linux machine, you need to
update /etc/sysctl.conf by adding following line of codes at end of the file,

# disable ipv6
net.ipv6.conf.all.disable_ipv6 = 1
net.ipv6.conf.default.disable_ipv6 = 1
net.ipv6.conf.lo.disable_ipv6 = 1

4.2.3 Steps for Installation

Download latest Apache Hadoop source from Apache mirrors

## Locate to hadoop installation parent dir
cd /usr/local/

## Extract Hadoop source
sudo tar -xzvf hadoop-2.6.0.tar.gz

## Move hadoop-2.6.0 to hadoop folder
sudo mv hadoop-2.6.0 /usr/local/hadoop

## Assign ownership of this folder to Hadoop user
sudo chown hduser:hadoop -R /usr/local/hadoop

## Create Hadoop temp directories for Namenode and Datanode
sudo mkdir -p /usr/local/hadoop_tmp/hdfs/namenode
sudo mkdir -p /usr/local/hadoop_tmp/hdfs/datanode

## Again assign ownership of this Hadoop temp folder to Hadoop user
sudo chown hduser:hadoop -R /usr/local/hadoop_tmp/

4.2.4 User based configuration

1. Update Hadoop configuration files
User profile : Update /.bashrc
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## User profile : Update $HOME/.bashrc
sudo gedit .bashrc

## Update hduser configuration file by appending the
## following environment variables at the end of this file.

# -- HADOOP ENVIRONMENT VARIABLES START -- #
export JAVA_HOME=/usr/lib/jvm/java-8-oracle
export HADOOP_HOME=/usr/local/hadoop
export PATH=$PATH:$HADOOP_HOME/bin
export PATH=$PATH:$HADOOP_HOME/sbin
export HADOOP_MAPRED_HOME=$HADOOP_HOME
export HADOOP_COMMON_HOME=$HADOOP_HOME
export HADOOP_HDFS_HOME=$HADOOP_HOME
export YARN_HOME=$HADOOP_HOME
export HADOOP_COMMON_LIB_NATIVE_DIR=$HADOOP_HOME/lib/native
export HADOOP_OPTS="-Djava.library.path=$HADOOP_HOME/lib"
# -- HADOOP ENVIRONMENT VARIABLES END -- #

Configuration file : hadoop-env.sh

## To edit file, fire the below given command
/usr/local/hadoop/etc/hadoop$ sudo gedit hadoop-env.sh

## Update JAVA_HOME variable,
JAVA_HOME=/usr/lib/jvm/java-8-oracle

Configuration file : core-site.xml

## To edit file, fire the below given command
/usr/local/hadoop/etc/hadoop$ sudo gedit core-site.xml

## Paste these lines into <configuration> tag
<property>
<name>fs.default.name</name>
<value>hdfs://localhost:9000</value>
</property>

Configuration file : hdfs-site.xml

## To edit file, fire the below given command
/usr/local/hadoop/etc/hadoop$ sudo gedit hdfs-site.xml

## Paste these lines into <configuration> tag
<property>
<name>dfs.replication</name>
<value>1</value>
</property>
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<property>
<name>dfs.namenode.name.dir</name>
<value>file:/usr/local/hadoop_tmp/hdfs/namenode</value>
</property>
<property>
<name>dfs.datanode.data.dir</name>
<value>file:/usr/local/hadoop_tmp/hdfs/datanode</value>
</property>

Configuration file : yarn-site.xml

## To edit file, fire the below given command
/usr/local/hadoop/etc/hadoop$ sudo gedit yarn-site.xml

## Paste these lines into <configuration> tag
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
<property>
<name>yarn.nodemanager.aux-services.mapreduce.shuffle.class</name>
<value>org.apache.hadoop.mapred.ShuffleHandler</value>
</property>

##properties for memory management of yarn clusters
<property>
<name>yarn.nodemanager.resource.memory-mb</name>
<value>5200</value>
<description>Amount of physical memory, in mb that can be allocated for containers </description>
<property>
<name>yarn.nodemanager.aux-services</name>
<value>mapreduce_shuffle</value>
</property>
</property>

<property>
<name>yarn.scheduler.minimum-allocation-mb</name>
<value>1500</value>
<description>Amount of physical memory, in mb that can be allocated for containers </description>
<property>

Configuration file : mapred-site.xml

## Copy template of mapred-site.xml.template file
cp /usr/local/hadoop/etc/hadoop/mapred-site.xml.template /usr/local/hadoop/etc/hadoop/mapred-site.xml

## To edit file, fire the below given command
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/usr/local/hadoop/etc/hadoop$ sudo gedit mapred-site.xml

## Paste these lines into <configuration> tag
<property>
<name>mapreduce.framework.name</name>
<value>yarn</value>
</property>
## The following properties can be changed depending on the memory requirements of map and reduce
<property>
<name>mapreduce.map.memory.mb</name>
<value>2000</value>
</property>
<property>
<name>mapreduce.reduce.memory.mb</name>
<value>2000</value>
</property>
<property>
<name>yarn.app.mapreduce.am.resource.mb</name>
<value>4000</value>
<source>mapred-site.xml</source>
</property>

2. Format Namenode

hdfs namenode -format

4.2.5 Start Hadoop Cluster

1. Start all Hadoop daemons

Start hdfs daemons

/usr/local/hadoop$ start-dfs.sh

Start MapReduce daemons:

/usr/local/hadoop/start-yarn.sh

2. Track/Monitor/Verify

##Java Virtual Machine Process Status Tool
jps

The output should look like as shown in figure 4.3
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Figure 4.3: List of Hadoop services started

Another way to check is using netstat

netstat -plten | grep java

Figure 4.4: Output of Netstat Command
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4.2.6 How Hadoop works

Figure 4.5: List of Hadoop services started

Hadoop and its various components fit together to ensure a fault-tolerant,durable
and highly efficient model for storage and management of Big Data

(a) Namenode
Namenode is the node which stores the filesystem metadata i.e. which file
maps to what block locations and which blocks are stored on which datanode.
The namenode maintains two in-memory tables, one which maps the blocks
to datanodes (one block maps to 3 datanodes for a replication value of 3) and
a datanode to block number mapping. Whenever a datanode reports a disk
corruption of a particular block, the first table gets updated and whenever a
datanode is detected to be dead (because of a node/network failure) both the
tables get updated.

(b) Secondary Namenode
The secondary namenode regularly connects to the primary namenode and
keeps snapshotting the filesystem metadata into local/remote storage. It does
so at a poor frequency and should not be heavily relied on.

(c) Datanode
The data node is where the actual data resides.
Points to Note:
1. All datanodes send a heartbeat message to the namenode every 3 seconds
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to say that they are alive.
2. If the namenode does not receive a heartbeat from a particular data node
for 10 minutes, then it considers that data node to be dead/out of service
and initiates replication of blocks which were hosted on that data node to be
hosted on another data node.
3. The data nodes can talk to each other to rebalance data, move and copy
data around and keep the replication high.
4. When the datanode stores a block of information, it maintains a checksum
for it as well.
5. The data nodes updates the namenode with the block information periodi-
cally and before updating verify the checksums.
6. If the checksum is incorrect for a particular block i.e. there is a disk level
corruption for that block, it skips that block while reporting the block infor-
mation to the namenode.
7. In this way, namenode is aware of the disk level corruption on that datanode
and takes steps accordingly.

(d) Node Manager
This is a yarn daemon which runs on individual nodes and receive updated
information on recource containers from their individual datanodes via back-
ground daemons. Different resources such as memory, cpu time, network band-
width etc. are put into one unit called the Resource Container The Node
manager in turn ensures fault tolerancy on the data nodes for any map reduce
jobs

(e) Resource Manager
This is a yarn daemon which manages the allocation of resources to the dif-
ferent jobs apart from comprising a scheduler which just takes care of the
scheduling jobs without worrying about any monitoring or status updates

4.2.7 Usage of Hadoop Commands

1. copyFromLocal

Usage:hadoop fs -copyFromLocal <local-file> <hadoop-fs-dir>
Details:Copies file from local file system to HDFS

2. copyToLocal

Usage:hadoop fs -copyToLocal <hadoop-fs-file> <local-dir>
Details:Copies file from local file system to HDFS

3. mkdir

Usage:hadoop fs -mkdir <hadoop-fs-dir>
Details:Create directory in the Hadoop Filesystem

4. ls

Usage:hadoop fs -ls <hadoop-fs-dir>
Details:List files inside a Hadoop Directory

18



CHAPTER 4. INSTALLATION

5. put

Usage:hadoop fs -put <localsrc> ... <HDFS_dest_Path>
Details:Transfer file from local directory to hadoop file directory

6. chmod

Usage: hadoop fs -chmod 777 <file path whose permission needs to be changed>
Details:Change the permission of the file

7. rm -rf

Usage: hadoop fs -rm -rf <folder path which is needed to be deleted>
Details:deletes the folder and its contents in hadoop file system

Note : Similarly other linux commands can also be used

4.2.8 Stopping Hadoop

The command used to stop hadoop is :

stop-dfs.sh
stop-yarn.sh

4.2.9 Hadoop Web Interfaces

4.2.9.1 Hadoop Web UI

Address : http://localhost:50070
This web UI is used to monitor the state of the cluster, namenodes, datanodes. It is

also used for browsing hdfs directory and the log files.

Figure 4.6: Web UI of Hadoop
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4.2.9.2 Secondary NameNode Status Panel

Address : http://localhost:50090/status.jsp

Figure 4.7: Hadoop Secondary NameNode

4.2.9.3 Hadoop Map Reduce Cluster UI

Address : http://localhost:8088

Figure 4.8: Hadoop MapReduce Cluster UI
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4.2.9.4 Hadoop Map Reduce Node UI

Address : http://localhost:8042

Figure 4.9: Hadoop MapReduce Cluster UI

4.2.10 Some known problems

1. Sometimes node becomes unhealthy, the only solution is to delete the hadoop_tmp/namenode
and hadoop_tmp/datanode and reformat the NameNode.Be sure to stop the Hadoop
before doing this.

2. Sometimes despite of starting the hadoop cluster properly, all the services may not
start. In that case check the logs of the corresponding service in the $HADOOP_HOME/logs/
. According to the problem mentioned in the log try to solve the problem.

Some known issues are :

(a) The error may be of ports being previously bind, due to which the service
may not be starting. The solution is to shutdown hadoop cluster , reboot the
system and start the Hadoop cluster

(b) Sometimes there may be a cluster mismatch between the namenode and the
datanode . The solution is to delete the namenode and datanode directories
and reformat the namenode as described above.

4.3 HIVE
Hive is used as a substitute to SQL for the Hadoop File System which makes it easy for
people acquainted with SQL to query data from it instead of having to learn Map-Reduce.
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4.3.1 Pre-requisites

Hadoop 2.x.0

4.3.2 Installation

1. Download the latest hive release from apache website.

wget http://apache.mirrors.hoobly.com/hive/stable/
apache-hive-0.13.0-bin.tar.gz

2. Extract the files and Set them up

sudo tar -zxvf <hive install>
sudo mv <hive-install> /usr/local/hive

3. Setup Environment Variables
Add the following entries to .bashrc

export HIVE PREFIX=/usr/local/hive
export PATH=$PATH:$HIVE PREFIX/bin

4.3.3 Setting up MySQL as metastore instead of Derby

1.Install MySQL (if not installed previously)
$ sudo apt-get install mysql-server

2.Install the MySQL Java Connector
$ sudo apt-get install libmysql-java

3.Create soft link for connector in Hive lib directory
$ ln -s /usr/share/java/mysql-connector-java.jar $HIVE_HOME/lib/mysql-connector-java.jar

4.Create the Initial database schema using the hive-schema-0.14.0.mysql.sql file ( or the file corresponding to your installed version of Hive) located in the $HIVE_HOME/scripts/metastore/upgrade/mysql directory.
$ mysql -u root -p
Enter password:
mysql> CREATE DATABASE metastore;
mysql> USE metastore;
mysql> SOURCE $HIVE_HOME/scripts/metastore/upgrade/mysql/hive-schema-0.14.0.mysql.sql;

5.You also need a MySQL user account for Hive to use to access the metastore. It is very important to prevent this user account from creating or altering tables in the metastore database schema.

mysql> CREATE USER ’hiveuser’@’%’ IDENTIFIED BY ’hivepassword’;
mysql> GRANT all on *.* to ’hiveuser’@localhost identified by ’hivepassword’;
mysql> flush privileges;

6. Create hive-site.xml ( If not already present) in $HIVE_HOME/conf folder with the configuration below
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<configuration>
<property>
<name>javax.jdo.option.ConnectionURL</name>
<value>jdbc:mysql://localhost/metastore?createDatabaseIfNotExist=true<;/value>
<description>metadata is stored in a MySQL server</description>
</property>
<property>
<name>javax.jdo.option.ConnectionDriverName</name>
<value>com.mysql.jdbc.Driver</value>
<description>MySQL JDBC driver class</description>
</property>
<property>
<name>javax.jdo.option.ConnectionUserName</name>
<value>hiveuser</value>
<description>user name for connecting to mysql server</description>
</property>
<property>
<name>javax.jdo.option.ConnectionPassword</name>
<value>hivepassword</value>
<description>password for connecting to mysql server</description>
</property>

## The value of the hive.metastore.uris depends on the system
or server on which the MySQL metastore is present, the port
remaining the same.

<property>
<name>hive.metastore.uris</name>
<value>thrif://localhost:9083</value>
<description>Thrift URI for the remote metastore used by the metastore client to connect to remote metastore .</description>

</property>

<property>
<name>datanucleus.autoCreateSchema</name>
<value>false</value>

</property>

<property>
<name>datanucleus.fixedDatastore</name>
<value>true</value>

</property>
</configuration>

7. We are all set now and we can start the hive console by
$HIVE_HOME/bin/hive
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4.3.4 Pre-requisite before launching Hive

In addition, you must create /tmp and /user/hive/warehouse (aka hive.metastore.warehouse.dir)
and set them chmod g+w in HDFS before you can create a table in Hive. Commands to
perform this setup:

$HADOOP_HOME/bin/hadoop fs -mkdir /tmp
$HADOOP_HOME/bin/hadoop fs -mkdir /user/hive/warehouse
$HADOOP_HOME/bin/hadoop fs -chmod g+w /tmp
$HADOOP_HOME/bin/hadoop fs -chmod g+w /user/hive/warehouse

You may find it useful, though it’s not necessary, to set HIVE_HOME:

\$ export HIVE_HOME=<hive-install-dir>

Before launching the hive server we need to start the metastore thriftserver with the
following command.

hive --service metastore &

## The command to check if metastore thrift server is running or not.

netstat -an | grep 9083

At the same time the MySQL server

4.3.5 Usage

1. Launch Hive

$hive

2. CREATE

CREATE TABLE books(id INT,name STRING,author STRING)
ROW FORMAT DELIMITED FIELDS
TERMINATED BY âĂŹ,âĂŹ STORED AS TEXTFILE;

3. LOAD

LOAD DATA (LOCAL) INPATH "books.txt" INTO TABLE books;

4. SELECT

SELECT * FROM books LIMIT 10;
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4.4 Spark 1.2.1
• Apache Spark is an open-source data analytics cluster computing framework.

• Spark fits into the Hadoop open-source community, building on top of the Hadoop
Distributed File System (HDFS).

• Spark is not tied to the two-stage MapReduce paradigm, and promises perfor-
mance up to 100 times faster than Hadoop MapReduce, for certain applications.

• Follows the concept of a Resilient Distributed Dataset (RDD), which allows to
transparently store data on memory and persist it to disc if itâĂŹs needed

• Provides Machine Learning Library MLLib for Data Analytics on the fly

• Spark provides interface to SQL and HQL (Hive Query Language) through SQL-
Context and HIVEContext libraries found in the pyspark.sql package.

• pyspark library is used for accessing spark through python with the help of spark-
Context. For more information on sample code see spark programming guide.

Figure 4.10: Name of the Figure

4.4.1 Steps for installation

4.4.1.1 Prerequisites Installation

1. Hadoop 2.6.0
2. Hive 1.2.0

4.4.1.2 Installation of commonly used python scipy tools

sudo apt-get -y install python-numpy python-scipy python-matplotlib ipython
ipython-notebook python-pandas python-sympy python-nose
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4.4.1.3 Installation of scala

wget http://www.scala-lang.org/files/archive/scala-2.11.1.deb
sudo dpkg -i scala-2.11.1.deb
sudo apt-get -y update
sudo apt-get -y install scala

4.4.1.4 Installation of sbt

#One Line Command
wget http://scalasbt.artifactoryonline.com/scalasbt/sbt-native-packages/org
scala-sbt/sbt//0.12.3/sbt.deb

sudo dpkg -i sbt.deb
sudo apt-get -y update
sudo apt-get -y install sbt

4.4.1.5 Downloading and Unpacking spark

wget http://d3kbcqa49mib13.cloudfront.net/spark-1.2.1.tgz
tar -zxf spark-1.2.1.tgz
##Move the setup to /usr/local as
sudo mv /path to/spark-1.2.1.tgz /usr/local/spark

4.4.1.6 Building spark and Integrating with Hadoop and Hive

##One Line Command

./sbt/sbt -Phive -Phive-thriftserver -Pyarn -Phadoop-2.3
-Dhadoop.version=2.4.0 assembly

4.4.1.7 Clean-up

rm scala-2.11.1.deb
rm sbt.deb
rm spark-1.2.1.tgz
rm install.sh

4.4.2 Configuring User Files

1. Set the path variables in .bashrc as:

export SPARK HOME=/usr/local/spark
export PATH=$PATH:$SPARK HOME/bin
export PATH=$PATH:$SPARK HOME/sbin

2. Add Configuration settings in /usr/local/spark/conf/ directory
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cp spark-default.conf.template spark-default.conf
sudo vi spark-default.conf
##Add the following line to file
spark.driver.memory 5g

Copy the hive-site.xml from
$HIVE_HOME/conf/ directory to $SPARK_HOME/conf

3. In the $SPARK_HOME/bin/computepath.sh add the line before the last echo

CLASSPATH="$CLASSPATH:/usr/share/java/mysql-connector-java-5.1.28.jar"

4. Run spark python shell:

pyspark

4.5 MongoDB

4.5.1 Introduction

MongoDB is a open source, document-oriented, NoSQL database system.In the edx plat-
form, the discussion form and some course related material is stored as collections of
JSON-like documents in a MongoDB database. We have used local MongoDb database
system to store the mongo dump files retrieved from the edX data package.

4.5.2 Installation Steps

1. Import the public key used by the package management system. sudo apt-key adv
–keyserver hkp://keyserver.ubuntu.com:80 –recv 7F0CEB10

2. Create a list file for MongoDB.

echo ’deb http://downloads-distro.mongodb.org/repo/ubuntu-upstart dist
10gen’ | sudo tee /etc/apt/sources.list.d/mongodb.list

3. Reload local package database.
sudo apt-get update

4. Install the MongoDB packages.
sudo apt-get install mongodb-org
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4.5.3 Basic Usage

After installing the MongoDB packages run the following commands to check whether
the MongoDB is properly installed.

1. To start MongoDB : sudo start mongodb

2. To stop MongoDB : sudo stop mongodb

3. To run mongo shell: mongo

4. By default, mongo looks for a database server listening on port 27017 on the local-
host interface.

4.6 MySQL 5.6

4.6.1 Introduction:

MySQL is a relational database management system (RDBMS), and ships with no GUI
tools to administer MySQL databases or manage data contained within the databases.The
data from the IITBX (eDX of IITB) i.e. the data from the IITBâĂŹs local server is the
mysql dump files.We can process this data by imoprting it into HDFS using sqoop.

4.6.2 Installation Steps:

1. Go to the download page for the MySQL APT repository at

http://dev.mysql.com/downloads/repo/apt/.

2. Select and download the release package for your platform

3. Install the downloaded release package with the following command, replacing
platform-and-version-specific-package-name with the name of the downloaded pack-
age:

sudo dpkg -i /PATH/platform-and-version-specific-package-name.deb

4. During the installation of the package, you will be asked to choose the versions of
the MySQL server and other components (for example, the MySQL Workbench)
that you want to install. If you are not sure which version to choose, do not change
the default options selected for you. You can also choose none if you do not want a
particular component to be installed. After making the choices for all components,
choose Apply to finish the configuration and installation of the release package.

5. Use the following command to get the most up-to-date package information from
the MySQL APT repository:

shell> sudo apt-get update

6. sudo apt-get install mysql-server
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7. Starting and Stopping the MySQL Server The MySQL server is started automat-
ically after installation. You can check the status of the MySQL server with the
following command:

sudo service mysql status

Stop the MySQL server with the following command:

sudo service mysql stop

To restart the MySQL server, use the following command:

sudo service mysql start

4.6.3 Installing Additional MySQL Products and Components

1. You can use APT to install individual components of MySQL from the MySQL
APT repository. Assuming you already have the MySQL APT repository on your
system’s repository list (see Adding the MySQL APT Repository for instructions),
first, use the following command to get the latest package information from the
MySQL APT repository:

shell> sudo apt-get update

2. Install any packages of your choice with the following command, replacing package-
name with name of the package (here is a list of available packages):

sudo apt-get install package-name

For example, to install the MySQL Workbench:

sudo apt-get install mysql-workbench-community

To install the shared client libraries:

shell> sudo apt-get install libmysqlclient18

4.7 Django 1.6.5

4.7.1 Introduction:

Django is a high-level Python Web framework that encourages rapid development and
clean, pragmatic design.It’s free and open source.
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4.7.2 Installation Steps:

1. sudo apt-get install python mysql-client mysql-server python-mysqldb

2. pip install django==1.6.5
check whether django is installed properly
python
import django
print(Django.get version())

4.8 Sqoop 1.4.5

4.8.1 Introduction

Sqoop is a tool designed to transfer data between Hadoop and relational databases. We
used Sqoop to import data from a relational database management system (RDBMS) such
as MySQL or Oracle into the Hadoop Distributed File System (HDFS). Sqoop automates
most of the process, relying on the database to describe the schema for the data to be
imported. Sqoop uses MapReduce to import and export the data, which provides parallel
operation as well as fault tolerance. This section describes how to get started using Sqoop
to move data between databases and Hadoop and provides reference information for the
operation of the Sqoop commandline tool suite.

Figure 4.11: Name of the Figure

4.8.2 Stable release and Download

Sqoop is an open source software product of the Apache Software Foundation.Sqoop
source code is held in the Apache GIT repository. You might clone the repository
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using following command: git clone https://git-wip-us.apache.org/repos/asf/sqoop.git
Latest stable release is 1.4.5. One can download it using following command: wget
http://mirror.symnds.com/software/Apache/sqoop/1.4.5/sqoop-1.4.5.bin hadoop- 1.0.0.tar.gz
. This command will download the latest stable release of sqoop 1.4.5 and store the tar
file in the working directory.

4.8.3 Prerequisites

Before you can use Sqoop, a release of Hadoop must be installed and configured. Sqoop is
currently supporting 4 major Hadoop releases - 0.20, 0.23, 1.0 and 2.0. We have installed
Hadoop 2.6.0 and it is compatible with sqoop 1.4.5.We are using a Linux environment
Ubuntu 14.04 to install and run sqoop. The basic familiarity with the purpose and
operation of Hadoop is required to use this product.

4.8.4 Installation

To install the sqoop 1.4.5 we followed the given sequence of steps. 1. Unzip the tar file:

sudo tar -zxvf sqoop-1.4.5.bin hadoop1.0.0.tar.gz

2. Move sqoop-1.4.5.bin hadoop1.0.0 to sqoop:

sudo mv sqoop-1.4.5.bin hadoop1.0.0 /usr/local/sqoop

3. Set the SQOOP HOME path in bashrc file:

export SQOOP_HOME=/usr/lib/sqoop
export PATH=PATH:SQOOP_HOME/bin

4. Test your installation by typing:

sqoop help

4.9 Python Packages
This section describes the installation of different python packages required for various
tasks such as query hive from client side, run bash commands, run Nosql(mongo) queries
etc.

1. sasl : To install the pyhs2 package [24], sasl package has to be installed. It covers
the authentication and security layers.
To install it run :

sudo pip install sasl

##If you get an error like this while installing sasl package :

sasl/saslwrapper.cpp:21:23: fatal error: sasl/sasl.h: No such file or directory
compilation terminated.

error: command âĂŹgccâĂŹ failed with exit status 1
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Then to rectify this error we installed the libsasl2-dev library using command :

sudo apt-get install libsasl2-dev

After installing this library, again try to install the sasl.

2. pyhs2 : This package enables us to run hive queries from python. Using pyhs2, we
made connection with hiveserver2 and submit hive queries from client machine.
To install pyhs2 run:

sudo pip install pyhs2

3. pymongo : Using pymongo, we wrote mongo queries in python, made connection
to mongoDB database system, run query and stored the result in a cursor.
To install it run :

sudo pip install pymongo

4. pygeoip : Using pygeoip, we found the location of the registered users from their
IP addresses.Along with pygeoip we have used two databases GeoLiteCity.dat and
GeoLiteCountry.dat. The locations found are used to visualize the number of users
registered from a particular country on the world map.
To install it run:

sudo pip install pygeoip

5. pydoop.hdfs :Its a python package that allows to connect to an hdfs installation,
rad and write files and get information on files, directories and global file properties.
It acts as an hdfs api.
To install it run:

sudo pip install pydoop

6. mySQLdb: MySQLdb is an interface for connecting to a MySQL database server
from Python. It implements the Python Database API v2.0 and is built on top of
the MySQL C API.
To install

tar -xvf MySQL-python-1.2.2.tar
cd MySQL-python-1.2.2
python setup.py build
python setup.py install
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4.10 R Installation
R: (version 3.2.0)

sudo apt-get install r-base-core

R packages:

• RMySQL:

install.packages("RMySQL")

• googleVis:

install.packages("googleVis")

4.11 Multinode Cluster Configuration

4.11.1 Hadoop Multi Node Setup

Prerequisites

1. Installation and Configuration of Single node Hadoop :
Install and Confiure Single node Hadoop which will be our Masternode.

2. Prepare your computer network (Decide no of nodes to set up cluster): Based on the
helping parameters like Purpose of Hadoop Multinode cluster, Size of the dataset
to be processed and Availability of Machines, you need to define no of Master nodes
and no of Slave nodes to be configured for Hadoop Cluster setup.

3. Basic installation and configuration : Step 3A : Hostname identification of your
nodes to be configured in the further steps. To Masternode, we will name it as
HadoopMaster and to 2 different Slave nodes, we will name them as HadoopSlave1,
HadoopSlave2 respectively in /etc/hosts directory. After deciding a hostname of
all nodes, assign their names by updating hostnames (You can ignore this step if
you do not want to setup names.) Add all host names to /etc/hosts directory in all
Machines (Master and Slave nodes).

# Edit the /etc/hosts file with following command
sudo gedit /etc/hosts

# Add following hostname and their ip in host table
192.168.2.14 HadoopMaster
192.168.2.15 HadoopSlave1
192.168.2.16 HadoopSlave2

Step 3B : Create hadoop as group and hduser as user in all Machines (if not created
!!).
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sudo addgroup hadoop
sudo adduser --ingroup hadoop hduser

If you require to add hdusers to sudoers, then fire following command

sudo usermod -a -G sudo hduser

OR

Add following line in /etc/sudoers/

hduser ALL=(ALL:ALL) ALL

Step 3C : Install rsync for sharing hadoop source with rest all Machines,

sudo apt-get install rsync

Step 3D : To make above changes reflected, we need to reboot all of the Machines.

sudo reboot

Hadoop Configuration Steps

(a) Applying Common Hadoop Configuration :

However, we will be configuring Master-Slave architecture we need to apply
the common changes in Hadoop config files (i.e. common for both type of
Mater and Slave nodes) before we distribute these Hadoop files over the rest
of the machines/nodes. Hence, these changes will be reflected over your single
node Hadoop setup. And from the step 6, we will make changes specifically
for Master and Slave nodes respectively.

Changes:

i. Update core-site.xml

Update this file by changing hostname from localhost to HadoopMaster

## To edit file, fire the below given command

hduser@HadoopMaster:/usr/local/hadoop/etc/hadoop$
sudo gedit core-site.xml

## Paste these lines into <configuration> tag OR
Just update it by replacing localhost with master
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<property>
<name>fs.default.name</name>
<value>hdfs://HadoopMaster:9000</value>
</property>

ii. Update hdfs-site.xml

Update this file by updating repliction factor from 1 to 3.

## To edit file, fire the below given command

hduser@HadoopMaster:/usr/local/hadoop/etc/hadoop$
sudo gedit hdfs-site.xml

## Paste/Update these lines into <configuration> tag

<property>
<name>dfs.replication</name>
<value>3</value>
</property>

iii. Update yarn-site.xml

Update this file by updating the following three properties by updating
hostname from localhost to HadoopMaster,

## To edit file, fire the below given command
hduser@HadoopMaster:/usr/local/hadoop/etc/hadoop$
sudo gedit yarn-site.xml

## Paste/Update these lines into <configuration> tag

<property>
<name>yarn.resourcemanager.resource-tracker.address</name>
<value>HadoopMaster:8025</value>
</property>
<property>
<name>yarn.resourcemanager.scheduler.address</name>
<value>HadoopMaster:8035</value>
</property>
<property>
<name>yarn.resourcemanager.address</name>
<value>HadoopMaster:8050</value>
</property>

iv. Update Mapred-site.xml

Update this file by updating and adding following properties,
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## To edit file, fire the below given command
hduser@HadoopMaster:/usr/local/hadoop/etc/hadoop$
sudo gedit mapred-site.xml

## Paste/Update these lines into <configuration> tag
<property>
<name>mapreduce.job.tracker</name>
<value>HadoopMaster:5431</value>
</property>
<property>
<name>mapred.framework.name</name>
<value>yarn</value>
</property>

v. Update masters
Update the directory of master nodes of Hadoop cluster

## To edit file, fire the below given command

hduser@HadoopMaster:/usr/local/hadoop/etc/hadoop$
sudo gedit masters

## Add name of master nodes
HadoopMaster

vi. Update slaves
Update the directory of slave nodes of Hadoop cluster

## To edit file, fire the below given command

hduser@HadoopMaster:/usr/local/hadoop/etc/hadoop$
sudo gedit slaves

## Add name of slave nodes
HadoopSlave1
HadoopSlave2

(b) Copying/Sharing/Distributing Hadoop config files to rest all nodes âĂŞ mas-
ter/slaves
Use rsync for distributing configured Hadoop source among rest of nodes via
network.

# In HadoopSlave1 machine

sudo rsync -avxP /usr/local/hadoop/ hduser@HadoopSlave1:/usr/
local/hadoop/

# In HadoopSlave2 machine
sudo rsync -avxP /usr/local/hadoop/ hduser@HadoopSlave2:/usr/
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local/hadoop/

The above command will share the files stored within hadoop folder to Slave
nodes with location âĂŞ /usr/local/hadoop. So, you dont need to again down-
load as well as setup the above configuration in rest of all nodes. You just need
Java and rsync to be installed over all nodes. And this JAVA_HOME path
need to be matched with

$HADOOP_HOME/etc/hadoop/hadoop-env.sh file of your Hadoop
distribution which we had already configured in Single node
Hadoop configuration.

(c) Applying Master node specific Hadoop configuration: (Only for master nodes)
These are some configuration to be applied over Hadoop MasterNodes (Since
we have only one master node it will be applied to only one master node.)

Step 6A : Remove existing Hadoop_data folder (which was created
while single node hadoop setup.

sudo rm -rf /usr/local/hadoop_tmp/

Step 6B : Make same (/usr/local/hadoop_tmp/hdfs) directory and
create NameNode ( /usr/local/hadoop_tmp/hdfs/namenode) directory

sudo mkdir -p /usr/local/hadoop_tmp/
sudo mkdir -p /usr/local/hadoop_tmp/hdfs/namenode

Step 6C : Make hduser as owner of that directory.

sudo chown hduser:hadoop -R /usr/local/hadoop_tmp/

(d) Applying Slave node specific Hadoop configuration : (Only for slave nodes)
Since we have three slave nodes, we will be applying the following changes over
HadoopSlave1, HadoopSlave2 and HadoopSlave3 nodes.

Step 7A : Remove existing Hadoop_data folder
(which was created while single node hadoop setup)

sudo rm -rf /usr/local/hadoop_tmp/hdfs/

Step 7B : Creates same (/usr/local/hadoop_tmp/) directory/folder,
an inside this folder again Create DataNode
(/usr/local/hadoop_tmp/hdfs/namenode) directory/folder

sudo mkdir -p /usr/local/hadoop_tmp/
sudo mkdir -p /usr/local/hadoop_tmp/hdfs/datanode

Step 7C : Make hduser as owner of that directory

sudo chown hduser:hadoop -R /usr/local/hadoop_tmp/
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(e) Copying ssh key for Setting up passwordless ssh access from Master to Slave
node :
To manage (start/stop) all nodes of Master-Slave architecture, hduser (hadoop
user of Masternode) need to be login on all Slave as well as all Master nodes
which can be possible through setting up passwrdless SSH login. (If you are
not setting this then you need to provide password while starting and stoping
daemons on Slave nodes from Master node).

Fire the following command for sharing public SSH key âĂŞ
$HOME/.ssh/id_rsa.pub file (of HadoopMaster node) to authorized_keys
file of hduser@HadoopSlave1 and also on hduser@HadoopSlave1
(in $HOME/.ssh/authorized_keys)

hduser@HadoopMaster: ~$
ssh-copy-id -i $HOME/.ssh/id_rsa.pub hduser@HadoopSlave1

hduser@HadoopMaster: ~$
ssh-copy-id -i $HOME/.ssh/id_rsa.pub hduser@HadoopSlave2

(f) Format Namenonde (Run on MasterNode) :

# Run this command from Masternode
hduser@HadoopMaster: usr/local/hadoop/$ hdfs namenode -format

(g) Starting up Hadoop cluster daemons : (Run on MasterNode)

Start HDFS daemons:
hduser@HadoopMaster:/usr/local/hadoop$ start-dfs.sh

Start MapReduce daemons:
hduser@HadoopMaster:/usr/local/hadoop$ start-yarn.sh

Instead both of these above command you can also use start-all.sh, but its now
deprecated so its not recommended to be used for better Hadoop operations.

(h) Track/Monitor/Verify Hadoop cluster : (Run on any Node)
Verify Hadoop daemons on Master :

hduser@HadoopMaster: jps

Verify Hadoop daemons on all slave nodes :

hduser@HadoopSlave1: jps
hduser@HadoopSlave2: jps

If you wish to track Hadoop MapReduce as well as HDFS, you can also try
exploring Hadoop web view of ResourceManager and NameNode which are
usually used by hadoop administrators. Open your default browser and visit
to the following links from any of the node.
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For ResourceManager âĂŞ Http://HadoopMaster:8088
For NameNode âĂŞ Http://HadoopMaster:50070

4.11.2 Spark 1.2.1 multinode

1. sbin/start-master.sh - Starts a master instance on the machine the script is executed
on.

2. sbin/start-slaves.sh - Starts a slave instance on each machine specified in the conf/slaves
file.

3. sbin/start-all.sh - Starts both a master and a number of slaves as described above.

4. sbin/stop-master.sh - Stops the master that was started via the bin/startmaster.sh
script.

5. sbin/stop-slaves.sh - Stops all slave instances on the machines specified in the
conf/slaves file.

6. sbin/stop-all.sh - Stops both the master and the slaves as described above.

4.11.3 Some Important Commands

1. ssh: It is an important linux command to connect to other servers and perform
actions remotely. If used with -X it enables X11 forwarding which helps in trans-
ferring the GUI from the server system to client.
Usage:

ssh [options] <username@ip of destination server>

2. scp: It is used to transfer data to and fro locally to server and vice versa.
Usage:

ssh [options] <location on host> <location on server>

3. Other Systems ports that are connected to that machines local host can be con-
nected by using that machines IP and port address.
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OpenEdX Analytics System

5.1 Installation
Install and run the OpenEdX Analytics backend locally

1. Make a directory where you wish to install Analytics.Navigate to that directory

2. Clone the following repositories in that directory

• edx/edx-analytics-data-api

• edx/edx-analytics-pipeline

• edx/edx-analytics-data-api-client

• edx/edx-analytics-dashboard

cd {PATH_TO_DIRECTORY}
cd {PATH_TO_DIRECTORY}
git clone https://github.com/edx/edx-analytics-pipeline.git
git clone https://github.com/edx/edx-analytics-data-api.git
git clone https://github.com/edx/edx-analytics-data-api-client.git
git clone https://github.com/edx/edx-analytics-dashboard.git

3. Create virtual environments for running the repositories

(a) Make a directory for storing virtual environments.Here we will make envs
directory in home-directory

cd
mkdir envs

(b) Make virtual environments

cd ~/envs
virtualenv edx-analytics-pipeline
virtualenv edx-analytics-data-api
virtualenv edx-analytics-data-api-client
virtualenv edx-analytics-dashboard
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4. Install MySQL locally and create database

sudo apt-get install mysql-server
mysql -u root -p

CREATE USER ’analytics’@’localhost’ IDENTIFIED BY ’edx’;
GRANT ALL PRIVILEGES ON *.* TO ’analytics’@’localhost’;
FLUSH PRIVILEGES;

5.1.1 Install the Dependencies for each component

• Switch one by one to each environment.

• Install dependencies.

• Check them by running tests.

1. Install OpenEdX Analytics-pipeline

cd {PATH_TO_DIRECTORY}/analytics
cd edx-analytics-pipeline/
source ~/envs/edx-analytics-pipeline/bin/activate
make requirements
make test
deactivate
cd

2. Install OpenEdX analytics-data-api

source ~/envs/edx-analytics-data-api/bin/activate
cd {PATH_TO_DIRECTORY}/edx-analytics-data-api
make develop
./manage.py migrate --noinput
./manage.py migrate --noinput --database=analytics
./manage.py set_api_key edx edx
make validate
deactivate
cd

3. Install OpenEdX analytics-data-api-client

cd {PATH_TO_DIRECTORY}/edx-analytics-data-api-client/
source ~/envs/edx-analytics-data-api-client/bin/activate
pip install -r requirements.txt
make test
deactivate
cd

4. Install OpenEdX analytics-dashboard
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cd {PATH_TO_DIRECTORY}/edx-analytics-dashboard/
source ~/envs/edx-analytics-dashboard/bin/activate
sudo apt-get update
sudo apt-get install gettext
sudo apt-get install npm
sudo apt-get install openjdk-7-jre
sudo apt-get install openjdk-7-jdk
sudo apt-get install libxml2-dev libxslt-dev python-dev zlib1g-dev
make develop
.\manage.py collectstatic
cd assets
mkdir dist
cp -R js dist/
cd ..
make validate
deactivate
cd

5.1.2 Verify completion by running pipeline task locally

1. Create a credentials file for the pipeline

cd {PATH_TO_DIRECTORY}
vi mysql_creds

Insert following lines in the file

{
"host": "127.0.0.1",
"port": "3306",
"username": "analytics",
"password": "edx",
"database": "analytics"
}

2. Create configuration file override.cfg for pipeline

cd edx-analytics-pipeline
vi override.cfg

Insert following lines in override.cfg

[database-export]
database = analytics
credentials = {PATH_TO_DIRECTORY}/mysql_creds

[database-import]
database = edxprod
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destination = s3://<bucket for intermediate hadoop products>/intermediate/database-import
credentials = s3://<secrets bucket>/edxapp_prod_ro_mysql_creds

[event-logs]
expand_interval = 2 days
pattern = .*tracking.log-(?P<date>[0-9]+).*
source = s3://<bucket to where all tracking logs are synched>/tracking/

[hive]
warehouse_path = s3://<bucket for intermediate hadoop products>/warehouse/hive/

[manifest]
path = s3://<bucket for intermediate hadoop products>/user-activity-file-manifests/manifest
lib_jar = s3://<secrets bucket>/oddjob-1.0.1-standalone-modified.jar
input_format = oddjob.ManifestTextInputFormat

[enrollments]
blacklist_date = 2001-01-01
blacklist_path = /tmp/blacklist

[answer-distribution]
valid_response_types = customresponse,choiceresponse,optionresponse,multiplechoiceresponse,numericalresponse,stringresponse,formularesponse

3. Acquire a log file (or create a dummy one)

cd
mkdir logs
cd logs
vi tracking.log

Copy data from
https://github.com/Sagarwal610/edx-analytic-pipeline-setup/blob/master/
tracking.log

4. Run the API locally and query for results of the pipeline’s aggregation

cd {PATH_TO_DIRECTORY}/edx-analytics-pipeline
source ~/envs/edx-analytics-pipeline/bin/activate
launch-task AnswerDistributionToMySQLTaskWorkflow \
--local-scheduler --remote-log-level DEBUG --include *tracking.log* \
--src ~/logs --dest /tmp/answer_dist \
--mapreduce-engine local --name test_task

deactivate

Now check the output in mysql database

mysql -u root -p

USE ANALYTICS;
SELECT COUNT(*) FROM answer_distribution;
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Note :
–src defines source folder of log files

–dest defines output folder

If you get sql error that a particular column is not found then drop answer_distribution
table from analytics database.
Remove the file from /tmp/answer_distribution folder. Now again run the
previous command.

Everytime you run the command an output file is generated .You have to
delete that file before running the command again.

5. Run OpenEdX analytics data-api

cd {PATH_TO_DIRECTORY}/edx-analytics-data-api
source ~/envs/edx-analytics-data-api/bin/activate
./manage.py runserver --settings=analyticsdataserver.settings.local_mysql

Verify that API connects to the database

• Navigate to 127.0.0.1:8000 in your web browser

– If the page does not display and you see ImproperlyConfigured:
Error loading MySQLdb module in the logs, run: ’pip install mysql-python’

– If the page indicates a 401 access forbidden error, you need to
rerun:
./manage.py set_api_key edx edx

• Get result

– Click on api
– Click on /api/v0/problems/problem_id/answer_distribution/
– Enter problem id

In this enter module_id from your logs
if you are using dummy log file then enter -
i4x://edX/DemoX-S/problem/a58470ee54cc49ecb2bb7c1b1c0ab43a

Note:

• If you are behind a proxy :

– add following lines in activate file of each virtual environment. This
file is located in bin of virtualenvironment

export HTTP_PROXY="http://username:password@yourdomain.com:PORT"

export HTTPS_PROXY="https://username:password@yourdomain.com:PORT"
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You can also add these lines in .bashrc file in your home directory.

And use sudo -E instead of sudo .

– Configure git to work behind proxy

git config --global http.proxy http://username:password@yourdomain.com:PORT

git config --global https.proxy https://username:password@yourdomain.com:PORT

• Error in installing npm :

Try installing node.js and nodejs-legacy

sudo apt-get install nodejs
sudo apt-get install nodejs-legacy

• OpenEdX Analytics Pipeline configuration

Configuration for pipeline can be done by modifying override.cfg file

– Configure [event-logs]

Change source to
hdfs://IP:PORT/path_to_logFilesDirectory

for reading logs from hdfs file system.

• Authentication problem in data-api

If you get authentication error in data-api

– Check local_mysql.py file in analyticsdataserver/settings folder of
edx-analytics-data-api and configure databases

– Activate edx-analytics-data-api environment ans run ./manage.py
syncdb in edx-analytics-data-api folder

• Logging in OpenEdX analytics-dashboard

cd
source envs/edx-analytics-dashboard/bin/activate
cd {PATH_TO_DIRECTORY}/edx-analytics-dashboard
./manage.py runserver 9000
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5.2 Frontend

Figure 5.1:

Figure 5.2:
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Our Pipeline

6.1 Architecture

Figure 6.1: Architecture
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6.1.1 How the system works

The data is extracted from the log files and the summary data, it is
cleaned and stored in the SQL database which is then transferred into
hive database. The other appropriate data from the summary database
is directly transferred to the result store (Analytics Database). The data
in the hive tables is processed using Spark MapReduce and stored into
the result store depending upon the model being processed.
This result store is then used by the dashboard using the data API to
visualise the results.

6.2 Components of the Pipeline

In this section we discuss about the the different stages of the pipeline
one by one in detail.

6.2.1 The ETL stage

6.2.1.1 In the actual edX analytics pipeline

In the actual pipeline whenever a batch process is run for populating a
particular model , the entire log data is scanned and cleaned for each
model searching for the appropriate events and data. Then the data is
processed using Hadoop MapReduce to populate the ResultStore.
This data is stored in Amazon S3 Cloud and hence an EMR CLuster has
to be set up on Amazon S3 to process the required data.

6.2.1.2 In Our Pipeline

In our pipeline we have used Python Luigi Tasks to clean the data and
store it for only once new data enters the system. Every time a batch pro-
cess is run the required data is directly fetched from the Hive Database
and thus the repitiitve cleaning is not required saving processing time.
Due to this there is no need to store data on Amazon S3 Cloud , and
the local servers can be used to store and retrive the data as and when
required.
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6.2.2 The Python Code

Figure 6.2: Cleaning task

6.2.2.1 Data Source

The data is taken from 3 diffrent sources:

1. The Log Data : This is the data that gets stored on milliseconds basis
as JSON Records based on the User Interaction with the system.

2. The SQL Data : This is the summary data that stores the state of
the LMS in tables. The name of the Database is edxapp. It stores
information ranging from User Authorisation to Student Problem
Details. The Detailed Schema is as follows:
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Figure 6.3: Edxapp Tables Part 1

Figure 6.4: Edxapp Tables Part 2
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Figure 6.5: Edxapp Tables Part 3

3. The MongoDB Data : This is the Unstructured Data stored as JSON
Collections. It consists data about CourseDiscussions, CourseFo-
rums, CourseGrading Policy etc.

6.2.2.2 The Processing

The Python Project Consists of Diffrent Python Codes which can be run
as Combined Luigi Process or Standalone Luigi Process. The Processing
comprises of removing the unwanted data and organiznig the data in a
meaningful manner.
All this Data is first inseretd into MySQL Database and the same schema
is used to transfer the data to HIVE Tables using SQOOP.

• The LogReader : This Python Code reads the JSON format Log Files
and based on the events it classifies them. The Table the data is stored
in has 58 fields. It is not necessary that all the fields are filled pertaining
to a particular event record.
The Schema of The Log Table is :
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Figure 6.6: Schema of Log Data

An Example Conversion is:

Figure 6.7: Json Data to Organised MySQL Data

The Classififed Events Are :

============================================
* load_video - 11
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* pause_video - 12
* play_video 13
* seek_video 14
* speed_change_video 15
* stop_video 16
* hide_transcript 17
* show_transcript 18
* save_user_state 19
* transcript_translation 20
* transcript_download 21
* /transcript/translation/ 22 (in edx properties save_video_position)
*
* /transcript/download") 23
*
* PROBLEM 45 - 65
* ===============================================
* problem_check 45
* problem_check_fail 46
* problem_reset 47
* problem_rescore 48
* problem_rescore_fail 49
* problem_save 50
* problem_show 51
* reset_problem 52
* reset_problem_fail 53
* save_problem_success 54
* problem_graded 55
* showanswer 56
* save_problem_fail 57
* problem_get 58
*
* NAVIGATION 80 - 105
* ===============================================
* seq_goto 80
* seq_next 81
* seq_prev 82
* page_close 83
* goto_position 84
* /dashboard 85
* / 86
* /jsi18n/ 87
* /i18n.js 88
* jump_to_discussion 89
* progress 90
* view_courses 91
* logout 92
* how_it_works 93
* calculate 94
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* city 95
* jump_to_vertical 96
* login 97
*
* DISCUSSION 120 - 135
* ================================================
* threads 120
* users 121
* reply 122
* thread_create 123
* upvote 124
* flagAbuse 125
* follow 126
* unfollow 127
* upload 128
* forum_searched 129
*
* COURSE 150 - 160
* ==============================================
* courseware 150
* chapter 151
* session 152
*
* courses_chapter 153
* courses_access 154
*
*
* WIKI 175 - 180
* ===================================================
* wiki 175
*
*
*INSTRUCTOR EVENTS 195 - 205
*====================================================
*
*list_instructor_tasks 195
*list-staff 196
*dump-graded-assignments-config 197
*
*
*OPEN ASSESMENT 220 - 240
* ========================================================
* render_self_assessment 220
* render_submission 221
* render_leaderboard 222
* render_peer_assessment 223
* render_message 224
* render_grade 225
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* render_student_training 226
* save_submission 227
* submit_feedback 228
* training_assess 229
* peer_assess 230
* submit 231
* render_staff_info 232
*
*
* ENROLLMENT 255 - 265
* ====================================================
*
* edx.course.enrollment.activated 255
* edx.course.enrollment.deactivated 256
* edx.course.enrollment.mode_changed 257
* change_enrollment 258
* /register 259
* /create_account 260
*
* TEXTBOOK INTERACTION EVENTS 280 - 285
* ===============================================
* book 280
*
*
*
* ADMIN 290 - 300
* ===============================================
* /admin 290
* pref_status 291
* password_reset 292
* password_reset_confirm 293
*
*/

• The SQLDataReader : This Python Code reads diffrent summary tables
and produces the following tables with the table name suggesting the
information stored:
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Figure 6.8: Summary Data

Figure 6.9: Other Details about courses

Figure 6.10: Data related to course quizzes and problems
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Figure 6.11: Currently Running Course Details

Figure 6.12: Data About Videos Related to Courses

Figure 6.13: Data about Wiki Related To Courses
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Figure 6.14: Data about Access Roles Pertaining to Courses

Figure 6.15: Data about Course Enrollment

Figure 6.16: Data About Course Grades
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Figure 6.17: Data about Users

• The MongoDBReader : It reads the data from the Mongo Database and
genrates the CourseForum and CourseDiscussions Table.

6.2.3 The Analysis Models

In our system we attempt to incorporate the existinfg models on OpenEdx-
Insights and add some of our own indigenious Data Models some of which
are based on Statistical Data Mining, while some on Machine Learning

The OpenEdxInsight has the following 3 Analysis Models:

1. Course Enrollment : The Enrollment statistics of a particular course
based on age, gender, location etc.

2. Course Engagement : The Engagement of Users in Diffrent Course
Resources (Quiz, Video, Forums etc.) over time.

3. Course Performance : Statistical Analysis of Performance of stu-
dents in a particualr course over time;

6.2.3.1 The Process

Data is extracted from the Hive Tables whose source is Log Data and
summary Data depending upon the model.
The Data is then processed using Spark and SparkSQL to process the
data in a form which can be inserted into the Analytics Data Store for
visualisation.

59



CHAPTER 6. OUR PIPELINE

6.2.4 The Course Enrollment Model in Detail

Figure 6.18: Detail Course Enrollment Model

6.2.5 Our ResultStore : Analytics

Structure is the same as in the OpenEdx Insight. The different tables
are:

6.3 Log Processing

6.3.1 The Need

The Need for Log Processing in the present scenario is , because it
records the momentry footsteps of the users and shows whatever the
user does. Thus helping to map the Students Learning Curve.
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6.3.2 The Significance

Diffrent Events have diffrent fields showing diffrent information ranging
from the time the user spent on a particular video, number of questions
he answered correct, the number of chapters he acessed etc. helping to
genrate the diffrent models.
Each Log Record contains information pertaining to a user and a resource
(Chapter, Quiz, Video, Problem, Book etc.) thus giving the approriate
information which is recorded in th Tables.

6.4 Challenges Faced

The Challenge is that we don’t have acess to the enitre log Record Base.

6.5 Advantages

The Advantage over OpenEdx Insight System:

1. We are doing the cleaning process per batch process only once for all
models compared to repitive scanning and cleaning in Edx Analytics.

2. There is no requirement of Amazon S3 Cloud for storage of data
thus economical.

3. Usage of Spark instead of Hadoop for Processing MapReduce thus
saving time.
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Our Dashboard

This section contains information about the data that IITBombayX Data
Analytics presents. A detailed report about the graphs, metrics and
reports that can be accessed in IITBombayX Data Analytics has been
provided along with information about the computation of the values
that are reported.

7.1 Enrollment Activity

How many students are enrolled in the course? IITBombayX Data An-
alytics helps you monitor how many students are enrolled for the course
and how that number changes over time.

7.1.1 Gaining Insight into Course Enrollment

IITBombayX Data Analytics delivers enrollment activity data in a chart,
and a report that you can view. Information about the computation
reference has also been included.

7.1.2 Daily Student Enrollment Chart

The daily student enrollment chart is a stepped area chart: the filled
area represents the total number of honor and verified enrolled learners
on a particular date. For courses that offer more than one enrollment
option or track, different colors represent the number of students who
are enrolled with each option.

The chart currently includes these enrollment options and tracks, if they
are offered for your course.

– Honor Certificate

– Verified Certificate
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Moving your cursor over the chart shows a tool tip with the counts for
each enrollment type - honor and verified.

The chart includes enrollment data for every day, beginning with the first
enrollment (typically of the course creator). This data is also available
for review in tabular format.

7.1.3 Enrollment Over Time Report

The daily total enrollment count, through the date of the last update, is
available for review. Columns show each Date and its Total Enrollment
for each mode.

7.1.4 Computation Reference

7.1.4.1 Enrollment Over Time chart

– The filled area of this stepped area chart represents the total number
of users enrolled in the course each day in each mode.

– The x-axis shows dates from course creation through the end of the
last update period.

– The y-axis shows the total number of enrolled users.

– For courses that offer more than one enrollment option or certifica-
tion track, different colors in the filled area represent the contribu-
tion of each option and track to the enrollment total.

– Each enrolled student is included in one, and only one, of the possible
enrollment tracks on a given date.

7.1.4.2 Enrollment Over Time Report

– If a course offers students the option to pursue a verified certificate,
the report includes columns for Verified Enrollment and Honor Code
Enrollment.

– The Honor Code Enrollment column reports the count of students
who opted to receive an honor code certificate for the course.

7.2 Enrollment Demographics

Who is taking my course? Demographic data about your enrolled stu-
dents helps quantify characteristics of the people who are taking your
course.

IITBombayX Data Analytics delivers demographic data for three popu-
lation characteristics: age, educational background, and gender. When
students register, they can provide this information about themselves.
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In IITBombayX Data Analytics, after you select Enrollment and then
Demographics, you can choose Age, Education, or Gender to access a
chart and reports to view.

7.3 Demographic Computations

During IITBombayX user account registration, students can provide de-
mographic data about themselves. Demographic distributions are com-
puted every day to reflect changes in course enrollment.

Students cannot change the selections that they make after registration
is complete.

7.4 Age Demographics

How old are my students? Awareness of the ages reported by your
students can help you understand whether a target audience is enrolled
in your course.

7.4.1 Gaining Insight into Student Age

Students can report a year of birth when they register. Student ages,
derived from year of birth, are provided in a chart and a report that you
can view. Computation reference has also been included.

7.4.2 Self-Reported Student Age Chart

Each bar on this chart represents the total number of enrolled learners
who are a given age, based on reported year of birth. Moving your cursor
over a bar in the chart shows a tip with the number of students of that
age.

The chart includes every reported age. This data is also available for
review in tabular format. Note that students report ages of 0 and 100+

7.4.3 Age Breakdown Report

The number of students reporting each age, as of the date of the last
update, is available for review. The report includes a row for each age,
with columns for Number of Students and Percentage.
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7.4.4 Computation Reference

7.4.4.1 Age Chart

– Students can select a year of birth. Student age is computed as the
difference between the current year and the selected year of birth.

– Each bar in the Column Chart represents the number of enrolled
users (y-axis) of that age (x-axis).

– Students who did not provide a year of birth at registration are not
represented in the Column Chart.

7.5 Education Demographics

What educational background do my students have? Evaluating the
stages of formal education that your students have completed can help
you understand whether your course is enrolling people with the learning
background that you expect.

7.5.1 Gaining Insight into Student Education

Students can select a âĂĲhighest level of education completedâĂİ when
they register. Education data for the students enrolled in your course
is provided in a chart and a report that you can view. Computation
reference has also been included.

7.5.2 Self Reported Student Education Chart

The bars on this chart represent the percentage of enrolled learners who
reported completion of a level of education. Moving your cursor over
the chart shows the percentage for each level.

Depending on the goals of the course team, these distributions can be
interpreted as indicators of the success of enrollment efforts, or indicate
that changes may be needed to reach the target demographic.

Student education data is also available for review in tabular format.

7.5.3 Education Breakdown Report

The number of students reporting completion of each educational level,
through the date of the last update, is available for review.

The report includes a row for each educational level and a column for
the Number of Students and the percentage corresponding to each edu-
cational level.
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7.5.4 Computation Reference

7.5.4.1 Educational Background Chart

– Students can select a highest level of education completed.
– Each bar in the histogram represents the percentage of enrolled users
(y-axis) who selected a completion level (x-axis).

– Percentages are calculated for the total number of students who
reported an educational level, not from the total number of students
enrolled in the course.

– The table that follows shows each IITBombayX label, the option
that students can select at registration, and a brief description.

7.6 Gender Demographics

What is the gender balance in my course? Knowing the male-female
ratio in your course can help you understand who is enrolling in your
course and whether the balance changes over time.

7.6.1 Gaining Insight into Student Gender

Students can identify themselves with a gender by selecting Female,
Male, or Other when they register. Student gender data is provided
in a chart and a report that you can view. Computation reference has
also been included. Students who do do not provide this data upon
registration are classified under "NOt Specified".

7.6.2 Self-Reported Student Gender Chart

The bars on this chart represent the most recently calculated percentage
of enrolled learners who reported a gender of Female, Male, or Other.
Moving your cursor over the chart shows the percentage for that gender.

Each of these course teams might use information about the percentages
of enrolled men and women as a starting point for an investigation into
how students learn about their course offering and make the decision to
enroll in the course.

Student gender data is also available for review in tabular format.

7.6.3 Gender Breakdown Over Time Report

The daily total enrollment count with gender breakdown is available for
review. Columns show each date, the total enrollment on that date, and
breakdown columns for the number of people who reported each gender
category and who did not provide this information at registration.
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7.6.4 Computation Reference

7.6.4.1 Gender chart and report

– Students can select a gender. The chart depicts the percentage of
students who selected each choice (Female, Male, Other).

– The chart only includes students who reported their genders. The
percentages shown in the chart are computed for the total number
of students who did and who didn’t select a gender.

– The report includes all enrolled students. For each day, the report
includes the daily total enrollment count followed by columns that
break down the total by Female, Male, Other or Not Specified.

7.7 Enrollment Geography

Where are my students from? Enrollment geography data helps you
understand the overall reach of your course.

7.7.1 Gaining Insight into Student Location

IITBombayX Data Analytics delivers data about student location in a
map and a report that you can view. Computation reference has also
been included.

7.7.2 Geographic Distribution Map

The map uses a color scale to indicate the percentage of total enrollment
represented by students from each state. The darker the shade, the
higher the enrollment percentage. You can view the enrollment total for
each state: move your mouse over the map.

7.7.3 Geographic Breakdown Report

The columns in this report show each State and its Percentage and Total
Enrollment.

7.7.4 Computation Reference

User location is determined without regard to a specific course. Users
who are enrolled in more than one course are identified as being in the
same location for all of their courses.
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7.7.4.1 Geographic Distribution Map

– The number of users and the percentage of the total enrollment is
provided for each state.

– User data as entered at the time of registration for state is used for
computation.

– The computational frequency and approaches used to determine user
location and user enrollment status are different. As a result, you
may note discrepancies between the total number of students re-
ported by the Enrollment Activity and Enrollment Geography sec-
tions of IITBombayX Data Analytics.

7.8 Student Engagement

To learn about what students are doing in your course, from the IIT-
BombayX Data Analytics menu select Engagement. Select Content to
investigate how many students are interacting with course content over-
all, and what they are doing. For data specifically about the navigation,
select user navigation.

7.9 Engagement With Course Content

How many of the enrolled students are actually keeping up with the
work? What are they doing? Content engagement data helps you mon-
itor how many students are active in your course and what they are
doing.

7.9.1 Gaining Insight Into Student Engagement

EdX Insights delivers data about student engagement in a chart and a
report that you can view. Details follow. Computation reference has
also been included.

7.9.2 Weekly Student Engagement Chart

The markers on this chart represent the number of unique students who
interacted with course content. The graph plots three categories of en-
gagement: an overall total for students who completed any type of course
activity, and totals for students who clicked play for any course video and
for students who submitted an answer for a problem. Each total is for
activity completed within a one week period. To see the total count for
each activity type for a given week, move your cursor over the chart to
display a tip.
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Activity is included beginning with the week in which the first page visit
took place. The first page visit is typically by a member of the course
staff shortly after course creation. This data is also available for review
in tabular format.

7.9.3 Content Engagement Breakdown Report

The weekly breakdown of student engagement with course content is
available for review.lumns show each Week Ending date and counts of
active students, students who watched a video, and students who tried
a problem.

7.9.4 User Navigation

This visualization shows the navigation of a particular user for a par-
ticular course. It shows the toal time spent by the user for different
events along the course. The data has been fetched from the log files of
the user using Big Data analytical tools (Spark). The events which have
been captured from the log files are:

– Courses These are log files events pertaining to miscellaneuos course
interaction events.

– Navigation These are the events that of the log files corresponding
to navigations, i.e. search throughout the course module.

– Problem These are the events captured from the log files pertaining
to the problems either attempted, solved or accessed by the students.

– Video These are the events taken from the log files pertaining to
video access events which include watching, seeking and navigating
throyught the video.

– Discussion These are the events taken from the log files corresspond-
ing to discussion forums.

– Enrollment These are the event taken from the log files pertaining
to enrolling students.

7.10 Student Performance

To assess how students are doing in your course, make a selection from
the Performance menu. How are students answering questions?

7.10.1 Answer Distribution

This shows the learning pattern of students by their performance in the
quizzes of the respective courses .For each course,we get a list of quizzes
for that course and for each quiz we get a graph representation.
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7.10.2 Answer Distribution Chart

Every Stepped Bar Chart in the graph represents the problems of the
concerned quiz of the respective course .The Stepped Bar Chart shows
the number of correct and incorrect responses for the selected problem.

7.11 Video Interaction

This visualization analyses the difficulty-level of any video of a particular
course .The x-axis represents number of video-accesses for that video in
the video-frames of 4 seconds and the y-axis represents the number of
video-accesses for that video-frame.

The following are a few graphs that we have plotted:

7.12 Instructor Dashboard

The link made on the Instructor dashboard for OpenEdX Insight.The
steps is as follows:

1. By clicking on the Insight link on the Instructor Dashboard,the user
gets redirected to the OpenEdX page.

2. Thus,the user can be able to see the OpenEdX Insight Dashboard
on his/her screen.

Figure 7.15: Instructor Dashboard

What required changes made to the Dashboard:

1. Go to the following path and made required changes:
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edx/edx-platform/tree/master/lms/templates/instructor/instructor_dashboard_2/instructor_analytics.html
CHANGES MADE:

<%page args="section_data"/>
<center>
<li="nav-item">
<a href="https://www.google.co.in" data-section="instructor_analytics" class="active-section"><b> INSIGHT</b></a></li></center>

2. Template Description:

course_info.html:
Consists of the following functions which is taken into consideration:
1. %if settings.FEATURES.get(’DISPLAY_ANALYTICS_ENROLLMENTS’)
2. %if settings.FEATURES.get(’ENABLE_SYSADMIN_DASHBOARD’, ’’):
3. %if settings.FEATURES.get(’ENABLE_INSTRUCTOR_BACKGROUND_TASKS’):

membership.html:
Consider the following link for the description of membership.html code:

https://github.com/edx/edx-platform/blob/master/lms/templates/instructor/instructor_dashboard_2/membership.html

student_admin.html:
Consider the following link for the description of student_admin.html code:

https://github.com/edx/edx-platform/blob/master/lms/templates/instructor/instructor_dashboard_2/student-admin.html
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Figure 7.1: The Dashboard

72



CHAPTER 7. OUR DASHBOARD

Figure 7.2:

Figure 7.3: Course List Page
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Figure 7.4: Graph showing number of students enrolled under honor and verified mode

Figure 7.5: Graph showing age-wise student distribution
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Figure 7.6: Graph showing age-wise student distribution

Figure 7.7: Graph showing student distribution based on education level
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Figure 7.8: Graph showing student distribution based on eduation level

Figure 7.9: Graph showing gender-wise student distribution
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Figure 7.10: Graph showing geographical distribution based on student location

Figure 7.11: Graph showing geographical distribution based on student location
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Figure 7.12: Graph showing User Navigation

Figure 7.13: Graph showing Student engagement - content
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Figure 7.14: Graph showing Video access done by students
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Chapter 8

Detection of difficulty areas in videos
based on student activity

8.1 Introduction and outline of the chapter

This part of the project report talks about the project work done re-
garding the development of data models for the detection of difficulty
regions in videos based on the students behaviour, recorded through the
log events in IITBombayX. The chapter is outlined as follows. First, we
introduce the problem statement that we wish to address through our
work, and provide a basic outline of our idea to deal with the problem.
Then, we talk about the steps that we have followed in order to create
and formulate the data model. Finally, we describe how we had designed
the data model and the functionality both at the processing and visu-
alization level for a final implementation of the analytics module in the
scenario of Big Data. After the final implementation and testing, the
module was integrated with the OPENedX Insight analytics system for
IITBombayX, and made available for use by the course instructors par-
ticipating in the Blended MOOCs model. The entire work of this part
was completed in 3 weeks of the internship.

8.2 Discussing the problem statement

IITBombayX is provides a number of Massively Open Online Courses
(MOOCs) to be accessed by students from students all over India, irre-
spective of any barriers whatsoever. For the students participating in
MOOCs, from the point of view of the course instructor, the primary
mode imparting the lessons to the students, and the basic mode of com-
municating the knowledge to the students is through the lecture videos
that the instructor publishes as part of the course. The videos are dis-
tributed among the various weeks and lessons in the courses, with each
lesson having possibly multiple videos. Ideally these videos are watched
by the students in succession, as the course progresses, and the student’s
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learning is successively evaluated through the tests and questions he has
to complete online. Occasionally, a student may diverge from the normal
train of events and watch the videos at his own pace, and out of order,
but that is not our primary concern here.

Even though the student watches the videos online as part of the course,
the student may (and they often do) face problems and difficulties in
understanding certain concepts, much like in a classroom environment
where the teachers deliver the lectures. In contrast to the classroom
environment, here, the student can go back to a part of the lecture video
over and over again, and watch and note the concerned part repeatedly
until his or her doubt in the particular topic is cleared. While this is
quite common, we have to note the causes for such occurrences. Among
myriad other reasons why this could happen, we believe that the reason
why students would have to repeatedly watch a certain section of the
video is because:

– The course videos are difficult for the students to understand.

– The course videos do not provide sufficient clarity on the subject
that it deals with.

Now, student behaviour such as this (namely, repeatedly watching cer-
tain sections of the videos) is a an information of interest to the course
instructors managing and designing a particular course, as they would
always be willing to improve upon the course and help the students in
their learning process. If this data were made available to the instructor
in an understandable interface, then the instructor would be able to tell
whether the the participants in his MOOC are indeed finding the videos
in the course useful for their purpose, or are simply spending their time
perplexed over certain regions of the videos and are thus not being able
utilize the learning advantages of the MOOC system - missing the forest
for the trees, as it were, and ending up learning little, none, or worse -
going back with mistaken understandings regarding the subject of the
course. Thus, we understand how important it is in order to address this
issue - and we intend to solve this through data analytics tools and data
modelling.

8.3 Basic outline of the idea

The solution that we came up with was based on the fact that the
OPENedX InSight platform, on which IITBombayX is based, records
all the student activities on the platform as the logs. In other words,
everything that the students do on the platform while accessing and in-
teracting with the course content - including video actions, are recorded
by OPENedX, and made available to all those who need to use it. We
can also identify not only the users responsible for an acitivty, but also
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the particular course module (problem, question, page or video) that
the user interacts with. In this way, we can also track the behaviour and
activities of a student with respect to a particular video in a course, and
the various video events such as pausing a video, playing it, seeking to
a certain part in it, and so on. These events can then be analysed to
determine meaning and inferences regarding the behaviour of a student
on a particular video.

Primarily, we could focus on only the events such as pausing a video,
playing a video, or seeking back and forth on a certain region of the
video, and collect the locations of the pauses and seeks in the video to
determine how much of the video has been watched by the user, and how
have the different parts of the video been watched by the user. Once
these events are collected, and the data processed, appropriate visualiza-
tions - such as graphs, charts, or some other means - could be developed
on this data, or tools and alerting systems developed in order to tell the
instructors of the course about the different regions in the video where
the students have indeed faced difficulties. An alerting system would
require the system itself to be able to compare the data of different
videos within the same course, undertaken by the same instructor, to
be compared to each other and then determine from among them which
are the regions of the videos where the students are facing difficulty in
understanding.

Once such regions of the videos have been detected and the alerts issued
or visualizations provided - the instructor, knowing the subject matter
that corresponds to the regions of difficulty, would then take appropriate
measures on his side to make the course contents more lucid for the
students participating in his course. Solutions to this problem by the
instructor could range from the following:

– Adding more explanatory material, such as text materials, links,
PDFs, and so one - or similar materials,

– Release of an additional video explaining the matter in a more lucid
fashion for the students; covering materials which would enhance
the understanding of particular subject matter by the students; or
even the re-release of the same video, with edits and additional
content for explaining the subject relating to regions of difficulty to
the students,

– More quizzes and practice exercises, so that the students may be
able to learn better by progressing through the matter using practi-
cal examples and hands-on experiences of the problems, answering
questions, and going through corrections based on evaluations of
their performances,

And so on and so forth, as the instructor may see fit for the situation.
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Our project mainly aims to solve the problem mentioned in the previous
section through the development of a data analytics module as a part of
the IITBombayX InSight data analytics system. The broad functioning
of the system would be as follows. The system would periodically go
through the log data generated for the platform for every single video,
assess the behavioural trends and activities of the students, and process
it to determine the difficult areas in the corresponding videos on the ba-
sis of different parameters such as the amount of views for the different
regions of the videos, time spent, etc. Once the processing of the data
is completed, we would have the analysed summary data which could
then be used for drawing inferences, learning, or visualizations for the
analytics dashboards. One approach is to directly visualize the data on
the InSight dahsboard interface provided to the instructor for a course
using the summary data for a video directly. Alternatively, we could
determine the regions of difficulty in the videos and compare these per-
formances over all of the videos, and determine a trend of watching the
videos; based on which, it would be able to tell, or classify whether a
video has been deemed by the students as too difficult or just perfect for
the students. In the current project however, we have focused chiefly
on the process of generating the summary data, starting from the log
data, and visualizing it at the end on the OPENedX InSight dashboard,
allowing the instructor to make intuitive decisions based on the graphs
plotted based on the data showing the metrics developed on the video
events.

8.4 The Project Flow

In this section of the report, the details of the work done to achieve the
final application are described. Starting with the raw data in the form of
the log files, a considerable amount of effort has gone into several steps
involved that transform the raw, uncleaned and unintelligible data into
cleaned, well formatted data, to processed summary data and finally,
its visualization on the dashboard. The steps can be clearly outlined as
follows:

– Extracting the data: This step involves the extraction of the data
from the huge amounts of the log data that is generated by the IIT-
BombayX platform every day, periodically, followed by converting
it into a format and saving it on a store which can be regularly
and efficiently accessed for processing by the further stages of the
applications.

– Processing the data: This step involves the accessing of the required
data from the saved stores in an efficient manner and properly pro-
cess it and clean it prior to feeding it to the data model. It will be
explained later in detail, but it so happens that even after retrieving
the data from the stores, it is required to do certain processing on

83



CHAPTER 8. DETECTION OF DIFFICULTY AREAS IN VIDEOS BASED ON
STUDENT ACTIVITY

the data before it can be given to the data model for generating the
relevant feature data from the events.

– Creation and prototyping of the data model: Following the extrac-
tion and processing of the data, a data model is used for extracting
the feature data that we would be using for our summaries. In this
stage, a working prototype of the data model was developed to work
on a sample of real-world data, so that it could be developed, re-
vised and corrected as fast as possible, and then taken to the final
implementation. The prototype development stage involved the use
of MySQL and Python scripts and libraries. the extraction of the
required data was done from MySQL tables using carefully crafted
SQL queries. The data cleaning and processing code, and the code
to implement the prototype of the data model to generate summary
data, was done using a Python program.

– Final implementation of the data model: The working prototype of
the model was then scaled up and coded for frameworks to work in
a Big Data environment, where the data model and the processing
tasks would be working on log data generated in a scale of potentially
tens of gigabytes per day. This stage involved the final implemen-
tation of the data model and its deployment in the IITBombayX
InSights dashboard, including appropriate visualizations to aid the
monitoring and decision making process of the course instructors.
The Big Data technologies used to achieve the final implementation
include the Hadoop Distributed FileSystem, Hive data warehouses
(which use Hadoop for storing the databases and tables created and
accessed in Hive), and SparkSQL to provide a fast and very efficient
method process the massive amounts of data using a MapReduce
workflow and parallelized functions.A visualization for the final sum-
mary data, which determines the total number of accesses and total
time spent in the different regions of the video by the people who
have seen the video, is made available on the front end — which
use Django framework, and R visualization scripts using GoogleVis
libraries.

8.4.1 Source of data for the model

To begin with, the prototyping of the data model or even the creation
of the basic application required for us to have some real data to work
on, giving us the details of the student’s activities on the IITBombayX
platform. Now, the OPENedX platform generates the log data regard-
ing each and every student activity, and records it in log files, which
are stored on the servers. Typically, these log files span over several
gigabytes in size, and therefore, any processing on these would be re-
quire application of Big Data tools. The individual logs themselves are
recorded as JSON strings. A JSON string consists of several key-value
pairs, and a single key itself may lead to a nested structure having more
key-value pairs. A sample of the log event looks as shown 8.1:
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Figure 8.1: A sample log event generated .

Now, the accessing the logs themselves in such a manner is a difficult
and tedious task. The structures of the JSON strings is not the same
for all events, and while all events have certain common keys, they also
have certain key-value pairs that are descriptive of the particular events
themselves. For example, a log event describing a video event would
have keys for the users, time of event, event-source, and so on - so would
an event that corresponds to a student-dashboard access. However, the
video event would also contain details of the video event, the video id,
the current location of play or pause, and the current video speed; which
would not be there in a dashboard access event. Thus, we explain the
difficulty of accessing these events in their raw form.

To solve this problem, the log events were flattened out, to create tuples
having fields that would have data according to the type of the event
in question. So, fields that do not relate to the data for a particular
event would be left NULL, while the other fields related to the same
would be having valid data. These flattened out logs were then put in
the MySQL table corresponding to the User logs in the Data Analytics
database, so that they could be accessed and queried as required through
simple MySQL queries. This data served as the source data for my task.
There were certain errors and discrepancies in the database tables cre-
ated from the logs, which are discussed in the subsection on ’Extracting
and Cleaning’ the data.

8.4.2 Processing the data

In order for us to determine the model on which we were to base our
system, we drew our data from the IITBombayX log files, which were
cleaned and made appropriately accessible through MySQL queries. Now
prior to actual processing of the log data for the videos and with respect
to the user activities, the data needs to under go further extraction,
cleaning and pre-processing - as the log data also contained several re-
dundancies and errors. All of these tasks were done at this stage of the
project. This step also required us to understand the nature of the logs
at a fundamental level, since in the following stages, we would have to
design our data models to work on the processed and filtered events. A
description of the activities undertaken in this stage are in the following
subsections.
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8.4.2.1 Extracting and Cleaning the required data

A first step involved exploration of the log events and the associated
attributes of the logs, to identify the features that we would require to
identify each video element for each course, each video event, and to
extract the data. These are the features that we would later use for
the creation and framing of our data model. At this stage, SQL queries
were used to filter and select the relevant data for each video and each
user watching it. The tables that we used in this stage for our queries
included the following:

– UserSessionOldLog : The MySQL table which contained the events
from the user logs put into a single table, in a flattened format.
The table had a total of 58 columns, and contained nearly 4 million
entries. However, upon exploration of the values of the attribute
using specialized queries, the attributes we found to be of interest
to us were as follows:

∗ userName : The name of the user who is responsible for the
event in the user log,

∗ moduleSysName : The system id of the module (in this case,
usually the video) which is being used or accessed by the user
concerned.

∗ courseName : The name of the course in which the module is
located. This allows us to detect the videos corresponding to a
particular course while creating summary data for a video.

∗ currVideoTime : The current location of the video when the log
event was recorded.

∗ oldVideoTime : The old location of the video when the log was
recorded (required for certain video events such as seeking),

∗ createDateTime : The system (real-world) time when the log
event was created by the system - allowing us to arrange the
events in a chronological fashion to determine the temporal se-
quences and semantics of the events generated.

– CourseVideos : This is the MySQL table which contained all the
details of all the videos in the different courses that were available
on the IITBombayX platform courses. The table itself contained
14 attributes, and contained 1628 entries. Upon exploration of this
MySQL table too, we found that there were only certain attributes
of interest to us, that were as follows:

∗ videoSysId : Similar to UserSessionOldLog.moduleSysId, this is
also a system id which is used to determine the individual video
modules that are begin referenced in each event or even each
activity.

∗ videoUTubeId : This field is a string field containing the YouTube
id of the corresponding lecture video whose videoSysId is pro-
vided; the videos are actually published on Youtube, and a link
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to these videos is provided in the corresponding units and sec-
tions in the actual course.

∗ videolength (added) : This is an additional field which was com-
puted and added to the fields later by work done as part of this
project. This field would contain the floating-point values indi-
cating the length of the YouTube videos (i.e., the lecture videos)
obtained from the YouTube attributes of the videos. The process
of extracting this data is elaborated in a later section entitled
’Video length extraction using Google YouTube API’.

One point that needs to be noted here is that while the code had been
written to flatten out and clean the log JSON strings, it was not complete
in extracting all the log information correctly from the logs. A number
of erroneous situations were encountered while going through the tables
UserSessionOldLog and CourseVideos. For example:

– There was one CourseVideos entry
(id=’2017625218ba4309b4cd42309f5d82e2’ )which did not have an
YouTube id, chapter title and which meant that no information
about the video could be extracted from the YouTube API even
if we wanted to.

– In certain cases, the events such as save_user_state were supposed
to record values in the fields for oldVideoTime and currVideoTime,
but instead, they showed up to be NULL. This may have happened
in the log files due to a network error, due to which erroneous data
was recorded in the files, or due other factors beyond our control at
this point.

– For all the save_user_state events, despite clearly being video events
associated with a definitely identifiable video, the attribute mod-
uleSysId did not contain the videoSysId of the corresponding video
in CourseVideos. It was NULL for such cases, making it impossi-
ble to identify which video the event was associated with. This was
a problem at the time of working on the project, but which was
subsequently fixed in the course of the project.

– The sequence of events that was observed on practice simulations of
the platform was not necessarily observed in the log data collected
for the events. In many cases, the events were recorded out of order
— and hence required inference rules to associate them correctly to
avoid errors. Again, this could be due to network errors, or some
erroneous situations or faults that cannot be controlled or monitored
by us at this point.

All of these errors, nevertheless, were dealt with using appropriate gener-
alization cases and writing the codes and conditions for them accordingly.
These are discussed later in these section, under ’Redundancy removal
and Error correction’.
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Now, in order to start working on the prototype, we needed to find the
most efficient and complete queries that would extract all the necessary
data that we would require for our data model. As far as we were con-
cerned, we simply needed to select for a video, and for a user who had
watched the video, to get all the events of that user accessing that video.
This could then be processed upon by our programs.

To start with and develop our data model and our queries, we first fo-
cused our search on videos belonging only to the CS101.1x course. This
course alone had 155 videos, out of the nearly 1600 videos of all the
courses that are currently provided on the platform. In order to further
restrict our search for designing the model, we selected the video with
the most number of views, based on the log data, and then selected the
user who has accessed that video the most number of times. The end
result of this process was a sufficient amount of log data for a single
user viewing a single video of a particular course, which would provide
enough insight into the patterns of general behaviour of a student or
learner.

Some of the MySQL queries that we actually used for our data model
prototype are as follows:

– Fetching top 50 most watched videos in CS101.1x

select t.*, CV.videoUTubeId, CV.videolength
from (
select moduleSysName, count(eventName) eventCount
from UserSessionOldLog
where courseName=’CS101.1x’
and moduleSysName is not NULL
and eventType=’video’
group by moduleSysName order by eventCount desc limit 50
) t,
(
select * from CourseVideos where courseName=’CS101.1x’
) CV
where t.moduleSysName = CV.videoSysName
order by eventCount desc;

– Highest watched video : videoSysId
’67a8559582864d6a8148e2ef5c997e8f’; So, number of viewers in de-
scending order of activity were found as follows:

select userName, count(eventName) watched
from UserSessionOldLog
where courseName=’CS101.1x’ and
moduleSysName=’67a8559582864d6a8148e2ef5c997e8f’
group by userName order by watched desc limit 10;
\end{tiny}
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– Finally, for a given user, we found out the distinct events of interest
giving us the behaviour of the user in the following manner (say, for
the same video as before, but userName=’ricky’):

select distinct eventType, eventName, moduleSysName, eventSource,
oldVideoTime, currVideoTime, createDateTime
from UserSessionOldLog
where userName=’ricky’ and (eventType in (’video’)
and moduleSysName=’67a8559582864d6a8148e2ef5c997e8f’
or eventType in (’video’, ’navigation’) and
eventName in (’pageclose’, ’saveuserstate’) )
order by createDateTime;

8.4.2.2 Video length extraction using Google YouTube API

In order to determine a way to measure the relative amount of time
spent by the student on a particular video (such as the fraction of the
video playing time), we needed to have an idea of how long the video
actually is. A student may spend the same amount of time on two differ-
ent videos, but the different lengths of the videos in relation to the time
spent on the videos would be a clear indication of actually how much at-
tention and dedicated effort the student is providing to the video in the
course. A higher percentage of time would mean a more engrossed at-
tention, while a lower percentage would probably mean a casual learner.

However, this data regrading the duration of each of the YouTube videos
was not available to us in the first place, as the table CourseVideos did
not contain any field to determine the length of the videos . So, an
additional work was done to extract the actual duration of the videos
on the all courses using the YouTube id’s available for the videos in
the CourseVideos table (i.e., the videoUTubeId attribute). The lengths
of the videos extracted from the JSON style strings returned by the
Google APIs were processed into float values, and the result stored in
a new column in the tables, called ’videolength’, through a Python script.

It should be noted here that the Google API requires an authorisation
key to be supplied by the developer or the program in order to access the
API. For the script used, I have hard-coded a developer key I obtained
from the service, and it can be used effectively, subject to certain daily
quota restrictions (50,000,000 calls per day, 3000 calls/second/user).

The Google YouTube API basically sends GET requests online to the
API together with the Youtube video id and the fields of the ’video’ el-
ement that it has to return. For our case, we required only the content-
Details attribute of the video element, in which, the value corresponding
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to the key ’duration’ gave us the duration of the video in a ISO 8601
format (PT59M59S). This was processed and converted to a float value,
which was then stored in the MySQL table through the script using a
MySQL connector for Python.

The following is the code for the same:

#Proxy settings - change accordingly
import os
os.environ[’http_proxy’]=

’http://arinjoy15:arinjoy15*@proxy.cse.iitb.ac.in:80’
os.environ[’https_proxy’]=

’http://arinjoy15:arinjoy15*@proxy.cse.iitb.ac.in:80’

from apiclient.discovery import build
from apiclient.errors import HttpError
import mysql.connector

#creating connection and obtaining cursor
cnx = mysql.connector.connect(user=’root’, password=’’,

host=’127.0.0.1’, database=’IITBxDataAnalytics’)
cursor = cnx.cursor()

#accessing list of video id’s from the table.
query =
("SELECT videoUTubeId FROM CourseVideos WHERE videoUTubeId IS NOT NULL")

cursor.execute(query);
videoslist=dict()

for video in cursor:
videoslist.setdefault(str(video[0]),0.0)

#creating Youtube API service through the key
api_key = INSERT_OWN_DEVELOPER’S_KEY_HERE
youtube = build("youtube", "v3", developerKey=api_key)

#processing for each video
for video in videoslist.keys():
timestring =

str(youtube.videos()
.list(id=video, part="contentDetails,snippet")
.execute().get("items",[])[0]["contentDetails"]["duration"])
.split("PT")[1]

timestring = timestring
.replace("H",":").replace("M",":").replace("S",":")

timestring = timestring.split(":")
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second=0
minute=0

if not timestring[1]=="":
second = int(timestring[1])
minute = int(timestring[0])
videoslist[video] = minute*60.0 + second

#updating the table columns
for videoName in videoslist.keys():
query=("UPDATE CourseVideos SET videolength=%s WHERE videoUTubeId=%s")

#to change to include the list of video id’s to process
#in a single query

data = ( str(videoslist[videoName]), str(videoName) )
cursor.execute(query, data)

cnx.commit()
#closing the cursor
cursor.close()
cnx.close()

It should be noted at this stage that in the table for the course videos,
there were certain errors int e details of the videos recorded. In par-
ticular, the video with the id ’2017625218ba4309b4cd42309f5d82e2’ had
neither youtube id nor a title name. Hence this video had no duration
calculated from it, as it was evicted from the result set by the IS NOT
NULL condition in the WHERE clause.

8.4.2.3 Redundancy removal and Error correction

In this stage of processing the data prior to applying to the data model,
we worked on removing the errors, redundancies and reordering of events
in the logs. This was necessary because based the log data that we re-
ceived, even if they were flattened out, the simple SQL queries would
not be sufficient enough to get the precisely clean and concise data that
we would require for the data model. There were many instances of
the same events that were recorded multiple times at the same instant,
several instances of the same event recorded over consecutive times, er-
roneous occurrences of events recorded at the wrong times, and several
other errors. So, we approached this problem as follows: From the list
of events, keep only those events that corresponded well with the corre-
sponding video watched by the user, and eliminate the rest of the events
as they were redundant or wrong, or just useless in our current context.
Doing the operations specified in the following lines not only removed
the wrong and unnecessary events, but also increased processing time
in view of the fact that the number of distinct events that needed to be
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processed were reduced by a large factor.

Firstly, in order to remove multiple occurrences of the same data (for
example, log entries having the same eventType, eventName, video mod-
ule, and positions of timing, and even the time of recording the video),
we introduced the DISTINCT clause into the MySQL queries to remove
such occurrences. We found upon comparing that the use of the DIS-
TINCT clause alone reduced the number of necessary and important
events by a very large number. Also, the query ascertained that the
events returned were arranged in the chronologically increasing order of
time, so that the events could be processed in the order in which they
actually occurred for the particular video and the user, allowing correct
processing for our data model program.

However, this as far as the error correction and redundancy reduction
by queries goes. Once these data were returned as lists of events by
the queries run on the mysql connector functions ( cursor.execute() ),
the rest of the error detection and correction were done as part of the
Python programs written for the data model, although, the data model
and the error removal scripts are separated from each other. The pro-
gram was written in order to eliminate such rows, instead of using a
join operation, because the join operation would take a longer amount
of time (given the large number of events as entries in the table, requir-
ing a self-join, therefore), and furthermore, it could be afforded, as the
data was only required for the video once in a specified period (gener-
ally, a day), and so this computation could be done without much hassle.

Following the entries returned by the MySQL queries, we proceeded to
investigate into the results that were returned by the queries. It was
found that despite the fact that the events returned by the query were
all distinct with respect to the attributes being selected by the SELECT
operator, there were several occurrences where the same event was being
recorded multiple times, but over different times (over successive values
of the createDateTime attribute, separated by say, 1 second in real world
time). In such cases, we would consider only one occurrence of such an
event, by comparing these events pairwise in sequential order. So, if
for two successive events, all the attributes fetched had the same value,
except for the createDateTime attribute, we kept only one of them in
the new list which is being prepared and the repetitive instances were
ignored.

if not (( activity1.eventType == activity2.eventType ) and
( activity1.eventName == activity2.eventName ) and
( activity1.oldVideoTime == activity2.oldVideoTime )

and ( activity1.currVideoTime == activity2.currVideoTime ))
{

Then keep the video in the final list of events.
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}
else Discard

Now, our simple query also returned events such as page_close and
save_user_state for events which did not correspond to the current
video under consideration. However, such specific requirements for re-
turning the rows/entries could not be specified in the queries, and we
thought it better to process it through the Python program itself. So,
we came up with the following programmatic solution: Keep ignoring
events until the first event for the video under consideration is de-
tected, and then apply the necessary filters to include events for the
videos (as mentioned before), until the page_close event for the video
occurs, which is the last event for a video under consideration. Once a
pageclose event occurs, include the most relevant save_user_state event
for that page_close event, and wait till the next relevant event for the
video under question. Also, the data model in our design required that
the page_close event be followed by the most relevant save_user_state
event (in case multiple save_user_state events were recorded for the
video in the list of events), because ideally, each page_close event would
be followed by a save_user_state event. The logic for doing so is dis-
cussed in the next section where we talk about the general flow of events
while a video is being played. Thus, all the events for a video being
played are covered.

Furthermore, if there were such events for the current video where the
video positions given were wrong (such as, being out of the duration
of the videos), then these events would be evicted from the list imme-
diately. There were also certain blatantly wrong instances of user log
events, where certain necessary and characteristic fields were left NULL
completely. Such cases of events too were evicted from the lists imme-
diately.

Following this stage, we were able to get a cleaned, concise view of the
activity of users for that video. This usually contained a much more
manageable number of rows than the original data, which could be ef-
ficiently processed via a program as well as examined manually. We
proceeded to design an algorithm to implement the criteria to extract
this data from the log files, examined in order of the createDateTime
field in the tuples. We aimed to cover all the tuples in the result in a
single traversal, and calculate the data for the different features for the
video.

8.4.3 Creation and prototyping of the data module

In this part of the activities, we analysed the various video events and
determined a model to extract the features we will use to determine
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the time spent by the students on the videos they have watched, and
accordingly use it for our summary and visualizations. We had decided
on two features that we would map in order to find out the viewing
activity of the students with respect to a particular video, which are as
follows:

1. Count of the number of times the different regions of the videos
were accessed by the different students.

2. Total duration spent on a particular region of the video by the stu-
dent.

The hypotheses that formed the basis for our selecting these two features
is as follows:

The more number of times a particular region is visited by stu-
dents, and the longer time students spend there, the more
difficult it is for them.

This hypotheses is justified because if the students repeatedly access a
particular region of the video, and go through to actually watching it,
then there would be an increase in not only the time spent by the user
in that region, but also the number of accesses to the particular video
section. In the worst case - the section might be the entire video. This
would happen if the student was indeed stuck/perplexed by a particular
topic discussed in the video.

Now, in order to find out the given metrics for a particular region of
the video, it is essential to divide the video into several parts in the first
place. For this, we had considered the concept of a timeFrame to divide
the different regions of the video. A timeFrame is essentially a region
of the video, x seconds wide, which is accessed by a user whenever he
watches through the part of the video being spanned by that timeFrame,
or completes more than half of that time frame during one play-pause
session. So basically, we considered each video to be divided into a se-
ries of timeFrames of a specific width, and computed our metrics for
assessing the difficulty regions by counting the number of accesses to the
different timeFrames, and the total times spent by a user (or multiple
users) in a particular timeFrame region. For the purpose of determin-
ing the timeFrames too, we would definitely need the video durations
for each video, and this was also another reason why we proceeded to
retrieve the video lengths from the YouTube data regarding the videos
obtained using their YouTube id’s.

In order to give an outline of analysing the log events, we must first
discuss how the video events are actually appearing in the log files gen-
erated by IITBombayX. In order to truly understand this entire process,
simulations and experiments were done by hand using multiple machines
and real time supervision to observe the sequence and the types of log
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events that were being recorded in response to each event in the IIT-
BombayX courseware pages. A sample video was opened in a particular
window, and it was played, closed, stopped, rewinded, fast-forwarded,
closed abruptly and then reopened - and we even went as far as to re-
move the internet connections and make and break the connections to
see how the events were being generated. The log files were also analysed
by hand, as were the results of running specific queries on the UserS-
essionOldLog table. Based on these, we were able to understand about
the basic and ideal anatomy of a session of a video playing, right from
the start when the video is loaded, upto the point when the user either
closes the page or goes to another video.

All the video events are signified by the eventType attribute value ’video’.
For each of the video events, the set of events can be as follows:

– load_video : Which indicates the loading of a video on a particular
page, or a particular lesson.

– play_video : Which indicates the action of a user having clicked on
the video on the webpage to start playing it.

– pause_video : Which indicates the action of a user having clicked
on the play/pause button to pause the video in the middle of playing
it, without stopping it or ending the video completely.

– seek_video : Which indicates the action of the user in using the
mouse to drag the scroll button of the video/ the video pointer
forwards, backwards, or moving it back and forth throughout the
video to start playing the video at a different point in the video.

– stop_video : Which indicates the fact event of the video playing all
the way till the end point, and then stopping, such that playing it
again would mean that the video would start from the beginning.

– save_user_state : The event which records the last point in the
video till which the video was watched by the user. This event is
fired in a lot of different cases, which will be discussed later.

Other than these events, we also considered an additional event called
’page_close’, which comes under the eventType ’navigation’. This event
is responsible for actually determining whether the user has is still on
the page containing the video, or has actually switched to some other
video and has left the earlier one. This event needed to be recorded,
as it indicates the point of end of a user’s activities for the time being,
until the next time the video is loaded by the user for watching, and ac-
cordingly note the time watched by the user upto the closing of the page.

Let us now talk about the basic anatomy of a video playing event. The
following diagram depicts a simple and very simplified flow of events for
a single session spent by a user watching a particular lecture video 8.2.
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Figure 8.2: A simplified and ideal sequence of video watching.

As shown, the life of a video session begins when a user (generally a
student) clicks on a link to go to a week or a lesson and lands up on
a page which contains a video. As soon as the page is loaded, the
video is loaded on to the browser side, and the several ’video’ type
events are triggered, such as: show_transcript, translation_transcript,
hide_transcript, and of course, load_video. Usually, this event is fol-
lowed by a save_user_state event, which records the last point of the
video which was watched by this user. In case this is the first time
this video is being watched, the currentVideoPosition attribute it would
be set to 0.0; otherwise, it would correspond to the last position of the
video upto which the user had watched and has been recorded by the last
save_user_state event for the video. Once the video has been loaded,
in the ideal case, the user would go on to play the video, and go on to
execute the sequence of normal video processes as show in the diagram.
He may play, and then pause; or he may play, seek, and continue playing;
or pause, seek, and then start playing, and so on —— there are lots of
such permutations of these events.

It should be noted at this stage that each pause video event would be fol-
lowed by a save_user_state event, which records the last position upto
which the video has been watched by the user, at the time of the pause.
Also, when a seek_video event occurs, ideally, there is a save_user_state
event which is fired which saves the last point upto which the video was
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watched before it was the seek operation took the video scroll to a dif-
ferent point in the video for the user. Following this, the video may
continue playing or remain paused, as it were before scrolling backwards
or forwards. Finally, when the user has finished watching the video, the
stop_video event is triggered, which records the fact that the video has
ended. Following this, the user may start watching the video from the
beginning again, or seek to a particular point in the video and start the
same activities as before; or as in the normal, ideal case — go to another
video’s page, or a different lesson or week on the courseware. This would
trigger a page_close event, which would be recorded by the event logs
to give the page which has been closed by the user. Additionally, this
would also trigger the event ’save_user_state’ for the video in concern,
to record the last location in the video which was playing, or which had
been paused by the user/student. Thus, the simple anatomy of the video
session is discussed.

However, as we discovered upon examining the logs for individual users
arranged in chronological order by the MySQL queries used on the
UserSessionOldLogs table — the sequence of events of the users were
not as simple as the appeared to be. While the basic outline of the
events stays the same, we have to account additionally for the fact that
the users may skip to different parts at different times, may open new
videos in new tabs on the browser —– or even certain errors and discrep-
ancies in the events that were quite obviously, due to factors beyond the
control of someone who is only looking at the logs generated. The errors
included mistaken orderings of events, or events which were recorded
at far different positions in the logs than where they were supposed to
be. Most of these events would be due to the disturbances in the net-
works, so that successively generated events reached the record logs in
an order different from the order generated. It could also be due to
the scheduling behaviour of the tasks and the processes by the servers,
which would again result in a similar situation. An example of this could
be as follows: a save_user_state event, instead of appearing after the
page_close event, appears before it in the log tables. Among other ex-
planations for this discrepancy, one of the basic reasons why this could
occur is because of the network errors. Thus, as part of the data model,
we also had to develop logic to deal with such sequences of events ap-
propriately, so that we could correctly extract the desired feature data
we are desperately trying to get.

Basically, our plan has been to observe these video events and and iden-
tify the sequence of the events for a particular student to determine
whether the student has been watching the video or not - and if so, then
how long he has been watching, which parts he has been watching, and
whether he has skipped to certain parts in the video, or even repeated
watching a certain part of the lecture video. In other words, the video
events were closely analysed to get an overall view of the student’s ac-
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tivities and interactions with the video in a single session, as discussed
previously. For this we needed to track when the video was played and
paused, and when the page was being loaded or the page was being closed
by the user.

Now, we proceeded to design an algorithm to extract this data from the
log files, examined in order of the createDateTime field in the tuples.
We aimed to cover all the tuples in the result in a single traversal, and
calculate the data for the different features for the video. In order to
capture the different regions in the video that were visited by a user (and
subsequently, all the users), we divided the entire duration of the video
into a number of timeFrames, each of which was of width 4 seconds. So,
the time frames were like: 0-4secs, 4-8secs, etc. The exact width of the
timeFrames is still a matter of optimisation, and after running several
examples and simulations, we can decide on the correct width of the
timeFrames which would be most apt to capture the student activities.
Each of these timeFrames were like a bucket, which were incremented
each time they were traversed during a session of the video being watched
by the user. The algorithm sequentially went through all the events, one
by one, and maintained a track of the state of the video being watched
internally through separate flag variables. Variables were also used to
keep track of the range of the video that was watched by the user in a
part of the video session, so that we could calculate exactly what part of
the video was watched by the user until a change occurs in the behaviour
of the user. A change in the behaviour of the user is explained thus: if a
user, for example, plays a video, then pauses it, or seeks to a particular
region of the video, or even closes the page —– then we would account
it as a change in the behaviour of the user. It does not mean that the
pattern of behaviour of the user changes, — it simply means that the
user does something else other than simply watching the video, and this
leads to a certain disruption in the normal viewing activity. hence, going
in an incremental or rather, a step–by–step fashion, we will need to keep
track of all the time in the video that the user has watched upto the
time such a disruption occurs. each time such a disruption occurs, we
may or may not change the internal state of the video (as maintained
by our algorithm), and we increment the bucket for all the timeFrames
in the video that have been covered upto the point of traversal. The
following is a list of the steps and the disruptions that we considered
while designing the algorithm, and how we dealt with the disruption to
appropriately extract the time period in the video that has been watched
by the user.

– From the time a video is loaded (namely, encountering the ’load_video’
event, we consider the video to be in the paused state. We simply
initialise our internal pointers to the time ranges, and wait for the
video to start playing.

– As soon as the video starts playing, we note the starting point of
the video playing event and keep on watching the successive times
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(or timeFrames) in the video the user watches upto. This continues
as long as the video is playing, and is indicated internally by setting
flags to indicate so. This is because the IITBombayX system, as we
said earlier, pulses the events such as play and pause several times
second, and over times times too. this worked to our advantage,
as it allowed us to explicitly track all incrementally the point upto
which the user had watched the video at that point.

– However, if it so happens that the same video is being watched si-
multaneously by the same user in separate tabs, then it would be
necessary to capture all such events, and the same time Frames that
are being covered by the user (because the effort counts!). The
order wouldn’t matter, as long as all the timeFrames are being ef-
fectively covered by our algorithm. So, as a special-case-handling
mechanism, in case we noticed a different play_video time for the
event, we considered a new video watching session was in order —
so, we counted the time upto that point, and restarted a new video
watching session from that point.

– In the most general case, the interval between a play and a pause
event was considered as the time spent by a student. This is ex-
plained intuitively.

– Similar to the case as discussed with the play_video events, we
would also need to track the pause_video events for videos playing
in other tabs as well. In the general case, the student would quite ob-
viously close the video he is watching in one tab before switching to
the other one. However, he might even watch them simultaneously,
for the purpose of comparing, and hence we would need to consider
this effort being put in by the user. So, in this case, we wait and
note for other different pause_video events that may have occurred,
and accordingly, account for the time watched by the students.

– The time spent upto a seek was considered the time spent by a
student, and the final point of seek marking a region that is probably
being visited a second time (although, it may be a case of seek
forward – where a student skips past a part of the lecture to go to a
different part of the video, because he/she already has the knowledge
being imparted in that part). In any case, we will consider the video,
if ’playing’, to go into a pause state immediately, until the next
play_video event for the video. The time spent by the user upto
the start of the seek_video event (in which case, the start point of
seek would be given by the oldVideotime attribute o the log entry)
is then recorded as the region of the video watched by the students.
if the video is already paused (due to being paused prior to seeking
by the user, or simply because a seek event has already happened
for the video by the user), then we only account for the change in
the starting time (or timeFrame) of the video — indicating the point
from which the user would start playing the video, if there is a new
play_video event.

– In case of a stop_video event, we simply account for the times in the
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video that have been watched by the user upto the end point of the
video, and consider the video closed. of course, the save_user_state
events would account for the current time upto which the upto which
the video has been watched, thus keeping an additional track or
check on the video activity. In the beginning of the playing of the
video, this would indicate the point where the video was stopped
earlier.

– Finally, once all is said and done, we come to the situation where we
the video and page(or tab) is closed for good. This may occur once
the video has stopped playing, or is paused, or even while the video
is playing. In all of these cases, the closing of the page of the video
is recorded by the IITBombayX platform as being a page_close
event, as mentioned before, and is immediately (usually) followed
by a save_user_state event. As we have mentioned earlier in the
section on error detection, we also had cases beyond our control
where the events appeared out of the logical order of occurrences
— in this case, save_user_state appearing before the page_close
event. So, in the processing stage prior to the data model, we had
reordered the save_user_state event that was most relevant related
to the page_closed event following right after the page_close event.

– In case the page of the video is closed and the video is paused, we
do not have anything to worry about. We have already updated
the regions of the video that the student has watched up to the
pause_video event. However, if the video is still playing when the
page is closed, then we would do better by counting the time in
the video upto the point where the page_was closed. This can be
indicated by the fields in the save_user_state event associated with
that page_close event.Of course, the internal flags would be set to
indicate that indeed the page has been closed, and that the video is
currently paused

– As a final correctional measure, we included the situation where the
page_close event has not been recorded for the last video session
of the user in the logs. However, we still need to include the time
watched by the user — so, we consider the time watched by the user
upto the last point in the video.

From the timeFrameBuckets list, we can get the count for the accesses
to different regions of the video. The process is thus continued for all
the users for a particular video, and ultimately, for all the videos in a
particular course, as is given by the logs provided. Thus, the output
is produced by our program, which are basically sets of tuples for ev-
ery video watched in the logs, every user who has watched it, and the
timeFrames in the videos. At the prototype stage, the feature data gen-
erated after the data-model stage would be would be tuples or entries in
a MySQL table, which would then be used for inference generation, or
visualizations (in words, out final steps of work). The tuples would have
have the following characteristics:
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– Primary key : 〈 an incrementing unique numeric id 〉, videoSysId,
userName, timeFrameId

– Non-key attributes : frameAccessCount and frameDuration

Once the table is populated with this data, as we said, we can gener-
ate our summaries from this table, to be used by visualizations and for
learning methods, reports, and so on. Some of the possible summary
information we can extract from this data could be as follows:

– Total time spent by a user on a particular video : We could execute
an aggregate query on the final summary data to extract the total
amount of time that a user has spent on the total video, by summing
over all the timeFrames and all corresponding frameDuration entries
for that particular video in that course.

– Total time spent by all users in a particular timeFrame : An aggre-
gate sum function could be executed on a particular timeFrameId,
individually for all the users who have watched that particular video
timeFrame. Typically, this would be a SUM function executed on
the frameAccessDuration attribute for the selected timeFrameId for
all the users for a video, grouping the entries by the videoName and
userName attributes in the summary tables.

– Total number of accesses to a particular timeFrame : An aggregate
sum function could be executed on a particular timeFrameId, indi-
vidually for all the users who have watched that particular video
timeFrame. Typically, this would be a SUM function executed on
the frameAccessCount attribute for the selected timeFrameId for all
the users for a video, grouping the entries by the videoName and
userName attributes in the summary tables.

As stated earlier, in order to develop the prototype of the data model
and test run the algorithm, for correcting and perfecting it, we needed
to run the program on some sample test, but very real data. Thus, we
ran our program on the videos of the CS101.1x course. We first tested
this on the top 10 most watched videos in the CS101.1x course, and on
the top 50 viewers for the corresponding videos. The queries used to
find the list of the videos and the users are similar to the ones we have
used before for extracting the data for a single video and for a single
user. The process was executed repeatedly for the different videos and
the users to extract the final feature data for the videos.

The following graph 8.3 was plotted on the basis of the data obtained by
running the module on a single video, and its top 50 users. The video
in consideration had the videoSysName =
’67a8559582864d6a8148e2ef5c997e8f’, or otherwise known as the video
on Elementary Graphics, in the CS101.1x course.
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Figure 8.3: An example graph. Legend:X-axis - Time frame number. (dimensionless)
Red curve - The total time spent by all the users in a particular timeFrame. (seconds)
Blue Columns - The number of accesses to those timeFrames. (dimensionless) .

8.4.4 Final Implementation and visualization

Once the data model was finalized and found to be working properly at
a prototype level, we took it the project to the final step — implement
the data model in Spark to draw the data from populated Hive tables
containing the cleaned Users’ log data, put the processed data back into
the Hive tables, and finally process the result data to create summary
data that would be populated into the MySQL Analytics database ta-
bles, which would be used for visualization on the IITBombayX platform
dashboard for the instructors.

The final data module would be working as a live application in a Big
Data environment, as has been said before — since it will deal with tens
of gigabytes of log data generated by the IITBombayX platform. To
appropriately handle this, we would require a tool that can efficiently
work with such vast amounts of data, but do it efficiently nevertheless.
Spark does that for us, using the concept of RDDs, and allows us to
run queries similar to SQL on the RDDs it creates from the data in the
memory. To work with such a setup, an installation and proper config-
uration of Hadoop (for distributed filesystems), Hive (for creating data
warehouses), and Spark (for running SparkSQL queries and executing
operations on the data). Once this is done, the workflow of the opera-
tions, and in a more broader sense, the algorithm for the Spark programs
were decided upon.

8.4.4.1 Extracting the data from Hive tables

The data that we originally worked upon (the UserSessionOldLog ta-
ble) was a MySQL table. However, working in a Big Data environment
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requires the maintenance and access of a fast data warehouse, such as
Hive. In order to transfer the data from the MySQL database to the
Hive tables for the same, we used the Sqoop utility to transfer the data.
The command for the Sqoop utility can be writen as follows:

sqoop import --connect jdbc:mysql://localhost:3306/IITBxDataAnalytics
--username root --password ’’ --table UserSessionOldLog
-m 1 --hive-import --hive-table default.userlog
--warehouse-dir /user/hive/warehouse

The command can be explained as follows. We specify the connector and
the database to connect to using the –connect option, and together with
it, the username and password to access the data base, and the table to
be imported. Then, we specify the name of the destination table in the
Hive database and where the warehouse for the hive tables is located on
the Hadoop HDFS (this can be verified by going to the Hadoop admin-
istration page for the namenode, and then browsing the filesystem. The
process was completed successfully for us, when we also transferred the
CourseVideos table and a sample of the UserSessionOldLog table to the
Hive databases.

While it is known that Spark runs very fast, it is required that the data
must be in the main memory in order for the processing to be very
efficient. So, this required us to specify a single query to draw the user
data from the Hive tables in a single go, and perform further processing
on it ’in-memory’, using the concept of RDDs where useful, and then
collecting the data from the RDDs when they needed to be used directly.
So, work was done to optimize and perfect the right queries that would
fetch the necessary event data in a single go from the databases. The
query which finally worked was as follows:

SELECT DISTINCT orgname, coursename, username, modulesysname,
eventtype, eventname, oldvideotime, currvideotime,
createdatetime

FROM userlogsmall
WHERE eventtype=’video’ OR (eventtype=’navigation’ AND

eventname=’page_close’)
ORDER BY orgname, coursename, username, createdatetime

This query can be explained thus. We divided all the events based on
the organisation which conducted the course, the name of the course,
the user who was involved in the event, the module being used or in-
volved, and the eventType and eventName for the corresponding event,
together with the oldVideoTime and currVideoTime if the events are of
the type ’video’, as is required by us. The events are then ordered by the
organisation, coursename, the username, and then the time of the event
— so that while processing the events, we can not only determine the
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temporal sequence of the events, but they will be processed depending
upon the user who was involved in the event, so that all the behaviour of
the user can be taken into account while processing his behaviour during
the watching of a single video.

To begin with, in order to test the final implementation of the data
model, we selected a subset of the original records to contain only the
records of the top 30 most active users on the platform, using the follow-
ing MySQL/Hive query (the records were first isolated into a separate
table ’userlogsmall’ in MySQL, and then exported to Hive via Sqoop):

create table userlogsmall (
select USOL.* from UserSessionOldLog USOL,
(select userName, count(eventType) cet

from UserSessionOldLog
where userName is not NULL and userName not in (’’)

and courseName=’CS101.1x’ group by userName
order by cet desc limit 30) t1

where USOL.userName = t1.userName and courseName=’CS101.1x’)

8.4.4.2 Filtering of events per user and per video

Following this step, the events for each user and each video were sep-
arated out from the event logs in the order in which they have been
extracted. The idea here was that instead of extracting the events per
video and then per user, we extract them per user, and then per video
because that captures any changes of patterns in the user’s behaviour in
watching the videos. The result of this process was a single key for each
orgname, coursename, videoname and username (for every user watch-
ing a video in a course), and its corresponding value being a list of events
for that user and that video in that course. A number of conditions were
considered while computing these lists by sequentially going through the
sequence of events extracted. They are outlined as follows:

– For each log event of the type ’video’, we are sure of the video id and
the user who has watched it. So, it is immediately appended to the
list of events for the corresponding key (i.e., (orgname, coursename,
videoname, username)).

– If a log event is the very first log event in the sequence of events
for a particular user (which is also the case of the first log event
in the result set of the queries executed before), then we check if
the event is a not a save_user_state or a page_close event. If so,
then it is a video event with a definite username and videoname, we
add it to the list of events for that key constructed. Otherwise, we
ignore it, as we have no use for an event taken out of its context.
For example, a page_close event maybe the first event in the result
set for a particular user, but it may be the page_close event for a
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module other than a video —— and this is the case, as has been
observed.

– If, however, we encounter a save_user_state event or a page_close
event for a user we are currently working with, we keep track of the
last (user,video) key we were working with, and add the event to
the list corresponding to that key, because it is most likely related
to that (user,video) combination.

The above operation was carried out all in Python code written in the
Spark module. This is because, performing join operations, given the
volume of records we are dealing with, will result in a huge amount of
memory usage and processor time, which can easily be tackled if we in-
stead go for the sequential verification strategy selected over here. The
events are verified, and associated with the corresponding video and the
user watching the video.

It should be noted at this stage that in the table for the course videos,
there were certain errors int e details of the videos recorded. In par-
ticular, the video with the id ’2017625218ba4309b4cd42309f5d82e2’ had
neither youtube id nor a title name. Hence this video had no duration
calculated from it, and the events corresponding to this video could not
be considered. In order to deal with this, we first allowed our filtering
algorithm detect and accumulate the events for the video and for all the
users that have watched the video. Then, the events for the correspond-
ing keys having that video name/id were eliminated from the final list of
key-value pairs, the value here being the list of events for the user and
the video.

8.4.4.3 Processing and generation of results for final summary table

Now that the events have been filtered out and associated with the cor-
responding videos and the users, it is time to process the events and
generate the statistics for the timeFrames that have been visited and ac-
cessed by the users while watching that video. At this stage and in the
summary stage, the concept of MapReduce workflow was used to speed
up the process of analysing the data generation and processing tasks.
The concept of MapReduce revolves around the fact that the data can
be converted into a set of key-value pairs by passing it to a mapper
function, and these key value pairs are then ’merged’ together using a
reducer function to create the final result. It is a workflow methodol-
ogy which basically uses parallelism, and given the scale of data we are
working with, it worked to a great advantage for us.

Prior to this, the RDD (Resilient Distributed Database) was created
for each of the (key,value) pairs, where the key was the a combination
of the orgName, courseName, videoSysId and the userName, and the
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corresponding value was the list of events for that key. The key value
pairs would look something like this:

(
(u’IITBombayX’, u’CS101.1x’, u’fa1f6040f46a43298cc25fc33db89a83’,
u’Shrikrishna’),
[
(u’video’, u’load_video’, 0.0, 0.0, u’2015-02-17 08:22:03.0’),
(u’video’, u’play_video’, 0.0, 0.0, u’2015-02-17 08:29:32.0’),

(u’video’, u’pause_video’, 0.0, 11.525, u’2015-02-17 08:29:32.0’),
...... and so on....

]
)

The RDD parallelized this combination to create the key,value pairs,
which were then sent to a mapper function called processing(), which
essentially performs the analysis required on the key-value pairs, as de-
scribed in the section on the development of the data model prototype.
The single function contains all the code needed to generate the details
for the timeFrame access for a single video and a single user who has
watched it. The code for these parts are given as follows:

eventMap=sc.parallelize(eventDict.items()).map(lambda p: (p[0], p[1]))
videoDetails = eventMap.map(processing)

While the input consisted of key value pairs where the value was a list of
events, the output produced key-value pairs having the same keys, but
having the timeFrameBuckets list as the value. To recall, the timeFrame-
Buckets list is a list of bi-tuples (x, y), where x denotes the number of
accesses to a particular timeFrame, and y denotes the time spent by the
user in that timeFrame of the video. After processing, the data would
look something like this:

(
(u’IITBombayX’, u’CS101.1x’,
u’fa1f6040f46a43298cc25fc33db89a83’, u’Shrikrishna’), [[4, 16.0],

[4, 15.05],
[2, 8.0],

.....and so on ....]
)

This step thus produces the necessary data of the analysis, which can
can be used various kinds of purposes later on, such as visualizations,
summary metrics, and learning activities. Also, this data could be stored
as itself, in the form of a tuple in the Hive tables, so that each time a
new visualization needs to be created, the processed (but not summary)
data can be accessed from the Hive tables.
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In case of final implementation of the data model and processing module,
the processed data generated would be stored in the corresponding Hive
table as tuples having the following fields:

– Primary key : 〈 an incrementing unique numeric id 〉, orgName,
courseName, videoSysId, userName, timeFrameId

– Non-key attributes : frameAccessCount and frameDuration

One of the possible visualizations that can be generated from this data is
the total number of times accessed and the total time spent by users in
a particular timeFrame of a particular video. What this would give is an
overall analysis of the number of views and the time of the views on the
video in question. An instructor would be able to use this analytical data
to determine what are the regions of the videos that are being watched
by users (who have watched this video), most frequently. Accordingly,
these could be the regions of investigation for the instructors, as these
are the regions of difficulty for the students as stated in our hypotheses.

The summary data is generated as follows. First, the results of the
previous analysis stage would be converted into an RDD through the
parallelise function, and then converted into appropriate key-value pairs
—- only this time, the key would not contain the user id. Instead, it
would contain the videoFrame number, because we are required to do a
sum over all of the users for a single videoFrame in a single video. This
is done by converting the key and list combination as given before into
a list of key-value pairs, and then reducing all of the lists into a single
list using a reduce() job, which basically concatenates the lists together.

Following this, the result of reduce() was again parallelized to get an
RDD, on which, we ran a final map-reduce job on the keys as stated
before, but this time, the reducer function we used added the tuples
together to sum up the total number of accesses and the total time
spent in a timeFrame. The results of this map-reduce were then written
to the MySQL summary table video_difficulty_analytics using Python
code.

The workflow stated can be summed up in the two code lines as follows,
which illustrates the power of Spark and of map-reduce:

videoUserTimeFrameAggregate
= sc.parallelize(

videoDetails.map(
lambda x:
[ (x[0], i, x[1][i]) for i in range(0,len(x[1])) ]

).reduce(lambda a,b: a+b)
)

#x[0]--> key as used in processing(),
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#i--> timeFrame id, x[1]-->timeFrameBuckets

result = videoUserTimeFrameAggregate
.map( lambda x:
( (x[0][0], x[0][1], x[0][2], x[1] ), x[2] ) )
.reduceByKey(lambda a,b: (a[0]+b[0], a[1]+b[1] ) )

#x[0][...]: orgName, courseName, videoSysId,
#x[1]--> timeFrameId, x[2]-->tuple of count and timeSpent.

The summary data generated for creating the visualizations would be
stored in the corresponding MySQL table (video_difficulty_details) as
tuples having the following fields:

– Primary key : id 〈 an incrementing unique numeric id 〉, orgName,
courseName, videoSysId, videoFrame

– Non-key attributes : count and timeSpent

The summary data was then drawn from these two tables using an R data
visualization script using the googleVis library to plot a graph on the
analytics dashboard. The graph had two y-axes: one for the timeSpent
on the video timeFrames (indicated on the X-axis), and one for the
’count’ field, giving the number of accesses to the timeFrame in the
video by all the users.

8.5 Future Work

Although we have so far been able to visualize the feature data such as
time spent in different regions of the video, and the number of times peo-
ple have visited the different regions of the video. However, the project
has greater potential than just this. Once we have the data to work with,
we determine the patterns in the overall viewing activity of not only a
single video, but also all the videos in a particular course undertaken by
an instructor. One possible approach could be to first determine clusters
of high video activity (namely, large number of views and number of ac-
cesses) across the various timeFrames of the videos. Once these clusters
have been determined, one could possibly create a type of scheme for
determining the score of such a cluster. The reason for this being that
we will have clusters in all the videos, depicting the regions of difficulty
in these videos. So, we need to be able to compare these clusters with
each other, in order to determine which clusters indicate a higher level
of difficulty than the others. The clustered regions for different videos
in a course could be compared with each other in order to find the re-
gions of diffculty, and report them to the instructor. The instructor, as
said in the beginning, would receive notifications for the same, and take
appropriate actions to alleviate the problem.
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A further improvement to this work could be the automation of the
recommendation and alert process. In such a system, the system itself
would recognize the regions of difficulty in the videos using the method
described above, and automatically recommend materials and course
videos to the students, thus automating the educational platform to make
it even more personalized for the people accessing the course, requiring
inly the instructor to manage the course, monitor student activity, and
address any queries the students may have regarding the lectures.

8.6 Technologies Used

A variety of technologies have been used by us during the development
of this data model and final application module. In particular, we used
the following during the mentioned stages of the development process:

1. Prototype stage :

– MySQL : The database management system used for storing
the UserSessionOldLog and CourseVideos table, and in the final
implementation, for storing the summary data extracted from
the video events of the users.

– Python : The language base used for programming in this project,
and for prototyping and testing the data model.

2. Final implementation stage :

– Hive : The data warehouse infrastructure utilising Hadoop as
well as allowing access to files as RDDs for executing queries.

– SparkSQL : The fast data processing engine, using in-memory
primitives, and faster than Hadoop.
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Integration

The final step is to integrate everything such that both data loading and
data visualization can be done at a single place from web framework
which requires no other software installation in clients machine.

To accomplish this, we have used Django - a python based web frame-
work. Django can easily execute python queries, make a Django web
template(interface) and has support of running Hive, R queries from
it.It is also capable of queuing the processes i.e., if a process takes large
time to execute, other processes are queued up and completed when the
previous one has finished its task.

9.0.1 Django- Basic Design and Layout

9.0.1.1 Django project layout

mysite/

– manage.py
– mysite/

1. settings.py
2. urls.py
3. wsgi.py

These files are as follows:

– mysite/: The outer mysite/ directory is just a container for your
project. Its name doesnt matter to Django; you can re- name it to
anything you like.

– manage.py: A command-line utility that lets you interact with this
Django project in various ways. Type python man- age.py help to
get a feel for what it can do. You should never have to edit this file;
its created in this directory purely for convenience.

– mysite/mysite: The inner mysite/ directory is the actual Python
package for your project. Its name is the Python pack- age name
youll need to use to import anything inside it (e.g. import mysite.settings).
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– A file required for Python to treat the mysite directory as a package
(i.e., a group of Python modules). Its an empty file, and generally
you wont add anything to it.

– settings.py: Settings/configuration for this Django project. Take a
look at it to get an idea of the types of settings available, along with
their default values.

– urls.py: The URLs for this Django project. Think of this as the
table of contents of your Django-powered site.

– wsgi.py: An entry-point for WSGI-compatible webservers to serve
your project. See How to deploy withWSGI (https://docs.djangoproject.com/en/1.4/howto/deployment/wsgi/)
for more details.

9.0.1.2 Libraries imported

– To return a HTTP object

from django.http import HttpResponse
from django.http import HttpResponseRedirect

– For a template

from django.template import Template, Context
from django.template import *
from django.shortcuts import render
from django.template.loader import get template
from django.shortcuts import render to response
from django.templatetags import *
from django.template.base import Library

– For using any date-time type object

import datetime

– For using csv

import csv

– For using POST as the method to send data via form

from django.core.context processors import csrf

– For including other processes in a process

import subprocess

– To include other views of the project

from mysite import *

– For including other settings

from django.conf import settings

– For zipping up different lists together so that they can be accessed
together

from itertools import izip
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9.0.1.3 Folders to be manually added

– static: Inside mysite/mysite/ to store external static files like javascript
libraries, .csv files, images etc

– templates: Inside mysite/mysite/ to store html templates

9.0.1.4 New settings.py file

– Addition of path to the static folder

STATIC URL = âĂŹ/static/âĂŹ
STATICFILES DIRS = (âĂŹpath to directory/mysite/mysite/static/âĂŹ,)

– Adding csrf library so as to enable data transport using âĂİpostâĂİ

MIDDLEWARE CLASSES = (
âĂŹdjango.middleware.csrf.CsrfViewMiddlewareâĂŹ,
other classes

Above class should be above any other class that uses csrf

– Addition of path to templates folder

Add TEMPLATE DIRS =
(âĂŹpath to folder/mysite/mysite/templatesâĂŹ,)

9.0.1.5 Points to remember while using Django

– Django folder should have read and write permission by all users
which can access it on the same system

– To make django run on server, start django server by typing

python manage.py runserver 0.0.0.0:8000

– For accessing any external static file Add

{% load staticfiles %}

once in the top of the template which uses static files. âĂİA.csvâĂİ
will be written as

âĂİ{% static âĂŹA.csvâĂŹ %}âĂİ

– To access python variables inside template, use

{% variable name %}

– To render any template, use

return render(request, âĂŹtemplatename.htmlâĂŹ, {âĂŹvariable nameâĂŹ:
"variable value",
âĂŹvariable2âĂŹ: variables value})

variable name implies the variable which will be used inside the
templates and its value to be substituted is passes while rendering
the template
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9.0.1.6 Django views syntax

import library1
import library2
def function1 name:
- description
def function2 name:
- description
..

9.0.2 urls.py

– Contains the url of various views and their respective templates

– urlpatterns = patterns(âĂŹâĂŹ,
other urls
url(râĂŹ^hello/$âĂŹ, "mysite.views.function1"),

– denotes start of the url and denotes the end. Therefore,above exam-
ple means that if url contains only âĂİhelloâĂİ, execute function1
of views view.

Figure 9.1: Special syntaxes to be used for specifying the url format

9.1 Visualization Using Google Charts:

Google Charts provides a perfect way to visualize data on your web-
site. From simple line charts to complex hierarchical tree maps, the
chart gallery provides a large number of ready-to-use chart types. The
most common way to use Google Charts is with simple JavaScript that
you embed in your web page. You load some Google Chart libraries,
list the data to be charted, select options to customize your chart, and
finally create a chart object with an id that you choose. Then, later in
the web page, you create a ÂądivÂ£ with that id to display the Google
Chart.ThatâĂŹs all you need to get started. Charts are exposed as
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JavaScript classes, and Google Charts pro- vides many chart types for
you to use. The default appearance will usually be all you need, and
you can always customize a chart to fit the look and feel of your website.
Charts are highly interac- tive and expose events that let you connect
them to create com- plex dashboards or other experiences integrated
with your web- page. Charts are rendered using HTML5/SVG technol-
ogy to pro- vide cross-browser compatibility (including VML for older
IE ver- sions) and cross platform portability to iPhones, iPads and An-
droid. Your users will never have to mess with plugins or any software.
If they have a web browser, they can see your charts. All chart types are
populated with data using the DataTable class, making it easy to switch
between chart types as you experiment to find the ideal appearance.
The DataTable provides methods for sorting, modifying, and filtering
data, and can be populated directly from your web page, a database,
or any data provider supporting the Chart Tools Datasource protocol.
(That protocol includes a SQL-like query language and is implemented
by Google Spread- sheets, Google Fusion Tables, and third party data
providers such as SalesForce. You can even implement the protocol on
your own website and become a data provider for other services.)

The various gvis functions read a data.frame and create text output
referring to the Google Visualisation API, which can be included into a
web page, or as a stand-alone page. The actual chart is rendered by the
web browser using SVG or VML.
The following are the charts used for visualization:

1. Line Chart
Usage:

gvisLineChart(data, xvar = "", yvar = "", options = list(), chartid)

2. Column Chart
Usage:

gvisColumnChart(data, xvar = "", yvar = "", options = list(), chartid)

3. Pie Chart
Usage:

gvisPieChart(data, labelvar = "", numvar = "", options = list(), chartid)

4. Bubble Chart
A bubble chart is used to visualize a data set with 2 to 4 dimensions.
The first two dimensions are visualized as coordinates, the 3rd as
color and the 4th as size.
The bubble chart is rendered within the browser using SVG or VML
and displays tips when hovering over points.
Usage:

gvisBubbleChart(data, idvar = "", xvar = "", yvar = "",

5. Motion Chart
Usage:
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gvisMotionChart(data, idvar="", timevar="")

6. Stacked Area Chart
Usage:

gvisSteppedAreaChart(data, xvar = "", yvar = "", options = list(), chartid

7. Geomap
A geo map is a map of a country, continent, or region map, with
colours and values assigned to specific regions. Values are displayed
as a colour scale, and you can specify optional hover-text for regions.
The map is rendered in the browser. Note that the map is not scroll-
able or drag-gable, but can be configured to allow zooming.
Usage:

gvisGeoMap(data, locationvar=âĂİ, numvar

8. Table
The gvisTable function reads a data.frame and creates text output
referring to the Google Visualisation API, which can be included
into a web page, or as a stand-alone page. The actual chart is
rendered by the web browser. A table that can be sorted and paged.
Table cells can be formatted using format strings, or by directly
inserting HTML as cell values. Numeric values are right-aligned;
boolean values are displayed as check marks. Users can select single
rows either with the keyboard or the mouse. Users can sort rows
by clicking on column headers. The header row remains fixed as the
user scrolls. The table fires a number of events corresponding to
user interaction.
Usage:

gvisTable(data, options = list(), chartid, formats = NULL)

9. Add edit button for on the fly customisation:
Usage:

gvisLineChart(df, "country", c("val1","val2"),

options=list(gvis.editor="Edit me!"))
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Figure 9.2: Graph with edit me option
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Bottleneck

The OpenEdX-Analytics-Pipeline was successfully installed and a hith-
erto unachieved aim of fetching data into the data api was achieved. The
hindrance at this point was the inability to provide LMS authorisation to
the available modules to get reflected on the dashboard.We tried search-
ing for the settings of the IIT BombayX consisting of the authorization
section or not.Also,we tried to make changes on the settings.py file of the
LMS but eventually failed to get it reflected.This was one of the problem
which we faced and could not resolved it.

We were successful in reaching the authentication page of LMS and pass-
ing the session back to the analytics system but there was a problem of
ssl certificate authentication and the state value.
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Conclusion and Future Work

Data Analytics enables organizations to analyze a mix of structured,semi-
structured and unstructured data in search of valuable bussiness informa-
tion and insights.We have designed a system capable of uploading both
the real time event log data(user interaction data) and summary data of
IIT BombayX. The system is presently capable of analyzing the student
interaction and produce various models like course-enrollment, course-
activity (user engagement with the resources) , course performance and
video analysis.

Our system would help the stakeholders (students as well as instructors)
to analyse the data easily and derive useful information from it so that
weak students could be helped to imporve and good ones can be praised.
The future work in this area would be :

1. Checking incremental update of the log data and Analytics Database
table.

2. Making Operetaor Dashboard so that ETL and Model Population
tasks can be automated.

3. Selection of log files can be automated.

4. Writing luigi task for Answer-Distribution and User-Navigation.

5. To come up with some more robust models like Recommendation
and Prediction based on ML Techniques.

6. Working on the OpenEdX-Analytics-Pipeline to take from data-api-
client to the dashboard.
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