Parallel Algorithms for Four-Dimensional Variational Data Assimilation

Mike Fisher

ECMWF

October 24, 2011

Brief Introduction to 4D-Var

- Four-Dimensional Variational Data Assimilation 4D-Var is the method used by most national and international Numerical Weather Forecasting Centres to provide initial conditions for their forecast models.
- 4D-Var combines observations with a prior estimate of the state, provided by an earlier forecast.
- The method is described as Four-Dimensional because it takes into account observations that are distributed in space and over an interval of time (typically 6 or 12 hours), often called the analysis window.
- It does this by using a complex and computationally expensive numerical model to propagate information in time.
- In many applications of 4D-Var, the model is assumed to be perfect.
- In this talk, I will concentrate on so-called weak-constraint 4D-Var, which takes into account imperfections in the model.

Brief Introduction to 4D-Var

- Weak-Constraint 4D-Var represents the data-assimilation problem as a very large least-squares problem.

$$
\begin{aligned}
J\left(x_{0}, x_{1}, \ldots, x_{N}\right)= & \frac{1}{2}\left(x_{0}-x_{b}\right)^{\mathrm{T}} B^{-1}\left(x_{0}-x_{b}\right) \\
& +\frac{1}{2} \sum_{k=0}^{N}\left(y_{k}-\mathcal{H}_{k}\left(x_{k}\right)\right)^{\mathrm{T}} R_{k}^{-1}\left(y_{k}-\mathcal{H}_{k}\left(x_{k}\right)\right) \\
& +\frac{1}{2} \sum_{k=1}^{N}\left(q_{k}-\bar{q}\right)^{\mathrm{T}} Q_{k}^{-1}\left(q_{k}-\bar{q}\right)
\end{aligned}
$$

where $q_{k}=x_{k}-\mathcal{M}_{k}\left(x_{k-1}\right)$.

- Here, the cost function J is a function of the states $x_{0}, x_{1}, \ldots, x_{N}$ defined at the start of each of a set of sub-windows that span the analysis window.

Brief Introduction to 4D-Var

$$
\begin{aligned}
J\left(x_{0}, x_{1}, \ldots, x_{N}\right)= & \frac{1}{2}\left(x_{0}-x_{b}\right)^{\mathrm{T}} B^{-1}\left(x_{0}-x_{b}\right) \\
& +\frac{1}{2} \sum_{k=0}^{N}\left(y_{k}-\mathcal{H}_{k}\left(x_{k}\right)\right)^{\mathrm{T}} R_{k}^{-1}\left(y_{k}-\mathcal{H}_{k}\left(x_{k}\right)\right) \\
& +\frac{1}{2} \sum_{k=1}^{N}\left(q_{k}-\bar{q}\right)^{\mathrm{T}} Q_{k}^{-1}\left(q_{k}-\bar{q}\right)
\end{aligned}
$$

- Each x_{i} contains $\approx 10^{7}$ elements.
- Each y_{i} contains $\approx 10^{5}$ elements.
- The operators \mathcal{H}_{k} and \mathcal{M}_{k}, and the matrices B, R_{k} and Q_{k} are represented by codes that apply them to vectors.
- We do not have access to their elements.

Brief Introduction to 4D-Var

$$
\begin{aligned}
J\left(x_{0}, x_{1}, \ldots, x_{N}\right)= & \frac{1}{2}\left(x_{0}-x_{b}\right)^{\mathrm{T}} B^{-1}\left(x_{0}-x_{b}\right) \\
& +\frac{1}{2} \sum_{k=0}^{N}\left(y_{k}-\mathcal{H}_{k}\left(x_{k}\right)\right)^{\mathrm{T}} R_{k}^{-1}\left(y_{k}-\mathcal{H}_{k}\left(x_{k}\right)\right) \\
& +\frac{1}{2} \sum_{k=1}^{N}\left(q_{k}-\bar{q}\right)^{\mathrm{T}} Q_{k}^{-1}\left(q_{k}-\bar{q}\right)
\end{aligned}
$$

- \mathcal{H}_{k} and \mathcal{M}_{k} involve integrations of the numerical model, and are computationally expensive.
- The covariance matrices B, R_{k} and Q_{k} are less expensive to apply.

Brief Introduction to 4D-Var

Brief Introduction to 4D-Var

The cost function contains 3 terms:

- $\frac{1}{2}\left(x_{0}-x_{b}\right)^{\mathrm{T}} B^{-1}\left(x_{0}-x_{b}\right)$ ensures that x_{0} stays close to the prior estimate.
- $\frac{1}{2} \sum_{k=0}^{N}\left(y_{k}-\mathcal{H}_{k}\left(x_{k}\right)\right)^{\mathrm{T}} R_{k}^{-1}\left(y_{k}-\mathcal{H}_{k}\left(x_{k}\right)\right)$ keeps the estimate close to the observations (blue circles).
- $\frac{1}{2} \sum_{k=1}^{N}\left(q_{k}-\bar{q}\right)^{\mathrm{T}} Q_{k}^{-1}\left(q_{k}-\bar{q}\right)$ keeps the jumps between sub-windows small.

Gauss-Newton (Incremental) Algorithm

- It is usual to minimize the cost function using a modified Gauss-Newton algorithm.
- Nearly all the computational cost is in the inner loop, which minimizes the quadratic cost function:

$$
\begin{aligned}
\hat{J}\left(\delta x_{0}^{(n)}, \ldots, \delta x_{N}^{(n)}\right)= & \frac{1}{2}\left(\delta x_{0}-b^{(n)}\right)^{\mathrm{T}} B^{-1}\left(\delta x_{0}-b^{(n)}\right) \\
& +\frac{1}{2} \sum_{k=0}^{N}\left(H_{k}^{(n)} \delta x_{k}-d_{k}^{(n)}\right)^{\mathrm{T}} R_{k}^{-1}\left(H_{k}^{(n)} \delta x_{k}-d_{k}^{(n)}\right) \\
& +\frac{1}{2} \sum_{k=1}^{N}\left(\delta q_{k}-c_{k}^{(n)}\right)^{\mathrm{T}} Q_{k}^{-1}\left(\delta q_{k}-c_{k}^{(n)}\right)
\end{aligned}
$$

$\delta q_{k}=\delta x_{k}-M_{k}^{(n)} \delta x_{k-1}$,
and where $b^{(n)}, c_{k}^{(n)}$ and $d_{k}^{(n)}$ come from the outer loop:

$$
b^{(n)}=x_{b}-x_{0}^{(n)}, \quad c_{k}^{(n)}=\bar{q}-q_{k}^{(n)}, \quad d_{k}^{(n)}=y_{k}-\mathcal{H}_{k}\left(x_{k}^{(n)}\right) \text { СЕЕМWF }
$$

Gauss-Newton (Incremental) Algorithm

$$
\begin{aligned}
\hat{J}\left(\delta x_{0}^{(n)}, \ldots, \delta x_{N}^{(n)}\right)= & \frac{1}{2}\left(\delta x_{0}-b^{(n)}\right)^{\mathrm{T}} B^{-1}\left(\delta x_{0}-b^{(n)}\right) \\
& +\frac{1}{2} \sum_{k=0}^{N}\left(H_{k}^{(n)} \delta x_{k}-d_{k}^{(n)}\right)^{\mathrm{T}} R_{k}^{-1}\left(H_{k}^{(n)} \delta x_{k}-d_{k}^{(n)}\right) \\
& +\frac{1}{2} \sum_{k=1}^{N}\left(\delta q_{k}-c_{k}^{(n)}\right)^{\mathrm{T}} Q_{k}^{-1}\left(\delta q_{k}-c_{k}^{(n)}\right)
\end{aligned}
$$

- Note that 4D-Var requires tangent linear versions of \mathcal{M}_{k} and \mathcal{H}_{k} :
- $M_{k}^{(n)}$ and $H_{k}^{(n)}$, respectively
- It also requires the transposes (adjoints) of these operators:
- $\left(M_{k}^{(n)}\right)^{\mathrm{T}}$ and $\left(H_{k}^{(n)}\right)^{\mathrm{T}}$, respectively

Why do we need more parallel algorithms?

- In its usual implementation, 4D-Var is solved by applying a conjugate-gradient solver.
- This is highly sequential:
- Iterations of CG.
- Tangent Linear and Adjoint integrations run one after the other.
- Model timesteps follow each other.
- Computers are becoming ever more parallel, but processors are not getting faster.
- Unless we do something to make 4D-Var more parallel, we will soon find that 4D-Var becomes un-affordable (even with a 12-hour window).
- We cannot make the model more parallel.
- The inner loops of 4D-Var run with a few 10 's of grid columns per processor.
- This is barely enough to mask inter-processor communication costs.
- We have to use more parallel algorithms.

Parallelising within an Iteration

- The model is already parallel in both horizontal directions.
- The modellers tell us that it will be hard to parallelise in the vertical (and we already have too little work per processor).
- We are left with parallelising in the time direction.

Weak Constraint 4D-Var: Inner Loop

Dropping the outer loop index (n), the inner loop of weak-constraints 4D-Var minimises:

$$
\begin{aligned}
\hat{\jmath}\left(\delta x_{0}, \ldots, \delta x_{N}\right)= & \frac{1}{2}\left(\delta x_{0}-b\right)^{\mathrm{T}} B^{-1}\left(\delta x_{0}-b\right) \\
& +\frac{1}{2} \sum_{k=0}^{N}\left(H_{k} \delta x_{k}-d_{k}\right)^{\mathrm{T}} R_{k}^{-1}\left(H_{k} \delta x_{k}-d_{k}\right) \\
& +\frac{1}{2} \sum_{k=1}^{N}\left(\delta q_{k}-c_{k}\right)^{\mathrm{T}} Q_{k}^{-1}\left(\delta q_{k}-c_{k}\right)
\end{aligned}
$$

where $\delta q_{k}=\delta x_{k}-M_{k} \delta x_{k-1}$, and where b, c_{k} and d_{k} come from the outer loop:

$$
\begin{aligned}
b & =x_{b}-x_{0} \\
c_{k} & =\bar{q}-q_{k} \\
d_{k} & =y_{k}-\mathcal{H}_{k}\left(x_{k}\right)
\end{aligned}
$$

Weak Constraint 4D-Var: Inner Loop

We can simplify this further by defining some 4D vectors and matrices:

$$
\delta \mathbf{x}=\left(\begin{array}{l}
\delta x_{0} \\
\delta x_{1} \\
\vdots \\
\delta x_{N}
\end{array}\right) \quad \delta \mathbf{p}=\left(\begin{array}{l}
\delta x_{0} \\
\delta q_{1} \\
\vdots \\
\delta q_{N}
\end{array}\right)
$$

These vectors are related through $\delta q_{k}=\delta x_{k}-M_{k} \delta x_{k-1}$.
We can write this relationship in matrix form as:

$$
\delta \mathbf{p}=\mathbf{L} \delta \mathbf{x}
$$

where:

$$
\mathbf{L}=\left(\begin{array}{ccccc}
l & & & & \\
-M_{1} & I & & & \\
& -M_{2} & l & & \\
& & \ddots & \ddots & \\
& & & -M_{N} & I
\end{array}\right)
$$

Weak Constraint 4D-Var: Inner Loop

$$
\mathbf{L}=\left(\begin{array}{ccccc}
l & & & & \\
-M_{1} & I & & & \\
& -M_{2} & l & & \\
& & \ddots & \ddots & \\
& & & -M_{N} & I
\end{array}\right)
$$

$\delta \mathbf{p}=\mathbf{L} \delta \mathbf{x}$ can be done in parallel: $\delta q_{k}=\delta x_{k}-M_{k} \delta x_{k-1}$.
We know all the $\delta x_{k-1}{ }^{\prime} s$. We can apply all the $M_{k}{ }^{\prime} s$ simultaneously.
$\delta \mathbf{x}=\mathbf{L}^{-1} \delta \mathbf{p}$ is sequential: $\delta x_{k}=M_{k} \delta x_{k-1}+\delta q_{k}$.
We have to generate each δx_{k-1} in turn before we can apply the next M_{k}.

Brief Introduction to 4D-Var

Weak Constraint 4D-Var: Inner Loop

We will also define:

$$
\begin{gathered}
\mathbf{R}=\left(\begin{array}{cccc}
R_{0} & & & \\
& R_{1} & & \\
& & \ddots & \\
& & & R_{N}
\end{array}\right), \quad \mathbf{D}=\left(\begin{array}{llll}
B & & & \\
& Q_{1} & & \\
& & \ddots & \\
& & & Q_{N}
\end{array}\right), \\
\mathbf{H}=\left(\begin{array}{llll}
H_{0} & & & \\
& H_{1} & & \\
& & \ddots & \\
& & & H_{N}
\end{array}\right), \quad \mathbf{b}=\left(\begin{array}{l}
b \\
c_{1} \\
\vdots \\
c_{N}
\end{array}\right) \quad \mathbf{d}=\left(\begin{array}{l}
d_{0} \\
d_{1} \\
\vdots \\
d_{N}
\end{array}\right) .
\end{gathered}
$$

Weak Constraint 4D-Var: Inner Loop

With these definitions, we can write the inner-loop cost function either as a function of $\delta \mathbf{x}$:

$$
J(\delta \mathbf{x})=(\mathbf{L} \delta \mathbf{x}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\mathbf{L} \delta \mathbf{x}-\mathbf{b})+(\mathbf{H} \delta \mathbf{x}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \delta \mathbf{x}-\mathbf{d})
$$

Or as a function of $\delta \mathbf{p}$:

$$
J(\delta \mathbf{p})=(\delta \mathbf{p}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\delta \mathbf{p}-\mathbf{b})+\left(\mathbf{H L}^{-1} \delta \mathbf{p}-\mathbf{d}\right)^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{H L}^{-1} \delta \mathbf{p}-\mathbf{d}\right)
$$

Forcing Formulation

$$
J(\delta \mathbf{p})=(\delta \mathbf{p}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\delta \mathbf{p}-\mathbf{b})+\left(\mathbf{H L}^{-1} \delta \mathbf{p}-\mathbf{d}\right)^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{H L}^{-1} \delta \mathbf{p}-\mathbf{d}\right)
$$

- This version of the cost function is sequential.
- It contains \mathbf{L}^{-1}.
- It closely resembles strong-constraint 4D-Var.
- We can precondition it using $\mathbf{D}^{1 / 2}$:

$$
J(\chi)=\chi^{\mathrm{T}} \chi+\left(\mathbf{H L}^{-1} \delta \mathbf{p}-\mathbf{d}\right)^{\mathrm{T}} \mathbf{R}^{-1}\left(\mathbf{H L}^{-1} \delta \mathbf{p}-\mathbf{d}\right)
$$

where $\delta \mathbf{p}=\mathbf{D}^{1 / 2} \chi+\mathbf{b}$.

- This guarantees that the eigenvalues of $J^{\prime \prime}$ are bounded away from zero.
- We understand how to minimise this.

4D State Formulation

$$
J(\delta \mathbf{x})=(\mathbf{L} \delta \mathbf{x}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\mathbf{L} \delta \mathbf{x}-\mathbf{b})+(\mathbf{H} \delta \mathbf{x}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \delta \mathbf{x}-\mathbf{d})
$$

- This version of the cost function is parallel.
- It does not contain \mathbf{L}^{-1}.
- We could precondition it using $\delta \mathbf{x}=\mathbf{L}^{-1}\left(\mathbf{D}^{1 / 2} \chi+\mathbf{b}\right)$.
- This would give exactly the same $J(\chi)$ as before.
- But, we have introduced a sequential model integration (i.e. \mathbf{L}^{-1}) into the preconditioner.

Plan A: State Formulation, Approximate Preconditioner

- In the forcing ($\delta \mathbf{p}$) formulation, and in its Lagrangian dual formulation (4D-PSAS) \mathbf{L}^{-1} appears in the cost function.
- These formulations are inherently sequential.
- We cannot modify the cost function without changing the problem.
- In the 4D-state $(\delta \mathbf{x})$ formulation, \mathbf{L}^{-1} appears in the preconditioner.
- We are free to modify the preconditioner as we wish.
- This suggests we replace \mathbf{L}^{-1} by a cheap approximation:

$$
\delta \mathbf{x}=\tilde{\mathbf{L}}^{-1}\left(\mathbf{D}^{1 / 2} \chi+\mathbf{b}\right)
$$

- If we do this, we can no longer write the first term as: $\chi^{\mathrm{T}} \chi$.
- We have to calculate $\delta \mathbf{x}$, and explicity evaluate it as

$$
(\mathbf{L} \delta \mathbf{x}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\mathbf{L} \delta \mathbf{x}-\mathbf{b})
$$

- This is where we run into problems: \mathbf{D} is very ill-conditioned.

Plan A: State Formulation, Approximate Preconditioner

- When we approximate \mathbf{L}^{-1} in the preconditioner, the Hessian of the first term of the cost function (with respect to χ) is no longer the identity matrix, but:

$$
\mathbf{D}^{\mathrm{T} / 2} \tilde{\mathbf{L}}^{-\mathrm{T}} \mathbf{L}^{\mathrm{T}} \mathbf{D}^{-1} \mathbf{L} \tilde{\mathbf{L}}^{-1} \mathbf{D}^{1 / 2}
$$

- Because \mathbf{D} is ill-conditioned, This is likely to have some very small (and some very large) eigenvalues, unless $\tilde{\mathbf{L}}$ is a very good approximation for \mathbf{L}.
- So far, I have not found a preconditioner that gives condition numbers for the minimisation less than $\mathrm{O}\left(10^{9}\right)$.
- We need a Plan B!

Plan B: Saddle Point Formulation

$$
J(\delta \mathbf{x})=(\mathbf{L} \delta \mathbf{x}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\mathbf{L} \delta \mathbf{x}-\mathbf{b})+(\mathbf{H} \delta \mathbf{x}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \delta \mathbf{x}-\mathbf{d})
$$

At the minimum:

$$
\nabla J=\mathbf{L}^{\mathrm{T}} \mathbf{D}^{-1}(\mathbf{L} \delta \mathbf{x}-\mathbf{b})+\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1}(\mathbf{H} \delta \mathbf{x}-\mathbf{d})=\mathbf{0}
$$

Define:

$$
\lambda=\mathbf{D}^{-1}(\mathbf{b}-\mathbf{L} \delta \mathbf{x}), \quad \mu=\mathbf{R}^{-1}(\mathbf{d}-\mathbf{H} \delta \mathbf{x})
$$

Then:

$$
\left.\begin{array}{rc}
\mathbf{D} \lambda+\mathbf{L} \delta \mathbf{x} & =\mathbf{b} \\
\mathbf{R} \mu+\mathbf{H} \delta \mathbf{x} & =\mathbf{d} \\
\mathbf{L}^{\mathrm{T}} \lambda+\mathbf{H}^{\mathrm{T}} \mu & =\mathbf{0}
\end{array}\right\} \Longrightarrow\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)\left(\begin{array}{c}
\lambda \\
\mu \\
\delta \mathbf{x}
\end{array}\right)=\left(\begin{array}{c}
\mathbf{b} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right)
$$

Saddle Point Formulation

$$
\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)\left(\begin{array}{l}
\lambda \\
\mu \\
\delta \mathbf{x}
\end{array}\right)=\left(\begin{array}{l}
\mathbf{b} \\
\mathbf{d} \\
\mathbf{0}
\end{array}\right)
$$

- This is called the saddle point formulation of 4D-Var.
- The matrix is a saddle point matrix.
- The matrix is real, symmetric, indefinite.
- Note that the matrix contains no inverse matrices.
- We can apply the matrix without requiring a sequential model integration (i.e. we can parallelise over sub-windows).
- We can hope that the problem is well conditioned (since we don't multiply by \mathbf{D}^{-1}).

Saddle Point Formulation

Alternative derivation:

$$
\begin{aligned}
\min _{\delta \mathbf{p}, \delta \mathbf{w}} J(\delta \mathbf{p}, \delta \mathbf{w})= & (\delta \mathbf{p}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\delta \mathbf{p}-\mathbf{b})+(\delta \mathbf{w}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\delta \mathbf{w}-\mathbf{d}) \\
& \text { subject to } \delta \mathbf{p}=\mathbf{L} \delta \mathbf{x} \text { and } \delta \mathbf{w}=\mathbf{H} \delta \mathbf{x} .
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{L}(\delta \mathbf{x}, \delta \mathbf{p}, \delta \mathbf{w}, \lambda, \mu)= & (\delta \mathbf{p}-\mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1}(\delta \mathbf{p}-\mathbf{b})+(\delta \mathbf{w}-\mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1}(\delta \mathbf{w}-\mathbf{d}) \\
+ & \lambda^{\mathrm{T}}(\delta \mathbf{p}-\mathbf{L} \delta \mathbf{x})+\mu^{\mathrm{T}}(\delta \mathbf{w}-\mathbf{H} \delta \mathbf{x})
\end{aligned}
$$

- $\frac{\partial \mathcal{L}}{\partial \lambda}=\mathbf{0} \Rightarrow \quad \delta \mathbf{p}=\mathbf{L} \delta \mathbf{x}$
- $\frac{\partial \mathcal{L}}{\partial \mu}=\mathbf{0} \Rightarrow \quad \delta \mathbf{w}=\mathbf{H} \delta \mathbf{x}$
- $\frac{\partial \mathcal{L}}{\partial \delta \mathbf{p}}=\mathbf{0} \Rightarrow \quad \mathbf{D}^{-1}(\delta \mathbf{p}-\mathbf{b})+\lambda=\mathbf{0}$
- $\frac{\partial \mathcal{L}}{\partial \delta \mathbf{w}}=\mathbf{0} \Rightarrow \quad \mathbf{R}^{-1}(\delta \mathbf{w}-\mathbf{d})+\mu=\mathbf{0}$
- $\frac{\partial \mathcal{L}}{\partial \delta \mathrm{x}}=\mathbf{0} \Rightarrow$
$\mathbf{L}^{\mathrm{T}} \lambda+\mathbf{H}^{\mathrm{T}} \mu=\mathbf{0}$

Saddle Point Formulation

Lagrangian: $\mathcal{L}(\delta \mathbf{x}, \delta \mathbf{p}, \delta \mathbf{w}, \lambda, \mu)$

- 4D-Var solves the primal problem: minimise along $A X B$.
- 4D-PSAS solves the Lagrangian dual problem: maximise along CXD.
- The saddle point formulation finds the saddle point of \mathcal{L}.
- The saddle point formulation is neither 4D-Var nor 4D-PSAS.

Saddle Point Formulation

- To solve the saddle point system, we have to precondition it.
- Preconditioning saddle point systems is the subject of much current research. It is something of a dark art!
- See e.g. Benzi and Wathen (2008), Benzi, Golub and Liesen (2005).
- Most preconditioners in the literature assume that \mathbf{D} and \mathbf{R} are expensive, and \mathbf{L} and \mathbf{H} are cheap.
- The opposite is true in 4D-Var!

Example: Diagonal Preconditioner:

$$
\mathcal{P}_{D}=\left(\begin{array}{ccc}
\hat{\mathbf{D}} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \hat{\mathbf{R}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & -\mathbf{S}
\end{array}\right)
$$

where $\mathbf{S} \approx-\mathbf{L}^{\mathrm{T}} \mathbf{D}^{-1} \mathbf{L}-\mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} \mathbf{H}$

Saddle Point Formulation

- One possibility is an approximate constraint preconditioner (Bergamaschi, et al., 2007 \& 2011):

$$
\tilde{\mathcal{P}}=\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \tilde{\mathbf{L}} \\
\mathbf{0} & \mathbf{R} & \mathbf{0} \\
\tilde{\mathbf{L}}^{\mathrm{T}} & \mathbf{0} & \mathbf{0}
\end{array}\right)
$$

$$
\Rightarrow \tilde{\mathcal{P}}^{-1}=\left(\begin{array}{ccc}
\mathbf{0} & \mathbf{0} & \tilde{\mathbf{L}}^{-\mathrm{T}} \\
\mathbf{0} & \mathbf{R}^{-1} & \mathbf{0} \\
\tilde{\mathbf{L}}^{-1} & \mathbf{0} & -\tilde{\mathbf{L}}^{-1} \mathbf{D} \tilde{\mathbf{L}}^{-\mathrm{T}}
\end{array}\right)
$$

- Note that $\tilde{\mathcal{P}}^{-1}$ does not contain \mathbf{D}^{-1}.

Saddle Point Formulation

- With this preconditioner, we can prove some nice results for the case $\tilde{\mathbf{L}}=\mathbf{L}$:

$$
\begin{gathered}
\left(\begin{array}{ccc}
\mathbf{0} & \mathbf{0} & \mathbf{L}^{-\mathrm{T}} \\
\mathbf{0} & \mathbf{R}^{-1} & \mathbf{0} \\
\mathbf{L}^{-1} & \mathbf{0} & -\mathbf{L}^{-1} \mathbf{D} \mathbf{L}^{-\mathrm{T}}
\end{array}\right)\left(\begin{array}{ccc}
\mathbf{D} & \mathbf{0} & \mathbf{L} \\
\mathbf{0} & \mathbf{R} & \mathbf{H} \\
\mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)\left(\begin{array}{c}
\lambda \\
\mu \\
\delta \mathbf{x}
\end{array}\right)=\tau\left(\begin{array}{c}
\lambda \\
\mu \\
\delta \mathbf{x}
\end{array}\right) \\
\Rightarrow \mathbf{I}+\left(\begin{array}{ccc}
\mathbf{0} & \mathbf{L}^{-\mathrm{T}} \mathbf{H}^{\mathrm{T}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{R}^{-1} \mathbf{H} \\
\mathbf{0} & -\mathbf{L}^{-1} \mathbf{D} \mathbf{L}^{-\mathrm{T}} \mathbf{H}^{\mathrm{T}} & \mathbf{0}
\end{array}\right)\left(\begin{array}{c}
\lambda \\
\mu \\
\delta \mathbf{x}
\end{array}\right)=\tau\left(\begin{array}{c}
\lambda \\
\mu \\
\delta \mathbf{x}
\end{array}\right) \\
\Rightarrow \mathbf{H L}^{-1} \mathbf{D L}^{-\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mu+(\tau-1)^{2} \mathbf{R} \mu=\mathbf{0}
\end{gathered}
$$

$\Rightarrow(\tau-1)$ is imaginary (or zero) since $\mathbf{H L} \mathbf{L}^{-1} \mathbf{D L}^{-\mathrm{T}} \mathbf{H}^{\mathrm{T}}$ is positive semi-definite and \mathbf{R} is positive definite.

Saddle Point Formulation

- The eigenvalues τ of $\tilde{\mathcal{P}}^{-1} \mathcal{A}$ lie on the line $\Re(\tau)=1$ in the complex plane.
- Their distance above/below the real axis is:

$$
\pm \sqrt{\frac{\mu_{i}^{\mathrm{T}} \mathbf{H L}^{-1} \mathbf{D} \mathbf{L}^{-\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mu_{i}}{\mu_{i}^{\mathrm{T}} \mathbf{R} \mu_{i}}}
$$

where μ_{i} is the μ component of the i th eigenvector.

- The fraction under the square root is, roughly speaking, the ratio of background+model error variance to observation error variance associated with the pattern μ_{i}.
- In the usual implementation of 4D-Var, the condition number is given by the ratio of these variances, not the square-root.

Saddle Point Formulation

- For the preconditioner, we need an approximate inverse of \mathbf{L}.
- One approach is to use the following identity (exercise for the reader!):

$$
\mathbf{L}^{-1}=\mathbf{I}+(\mathbf{I}-\mathbf{L})+(\mathbf{I}-\mathbf{L})^{2}+\ldots+(\mathbf{I}-\mathbf{L})^{N-1}
$$

- Since this is a power series expansion, it suggests truncating the series at some order $<N-1$.
- (A very few iterations of a Krylov solver may be a better idea. I've not tried this yet.)

Results

- The practical reaults shown in the next few slides are for a simplified (toy) analogue of a real system.
- The model is a two-level quasi-geostrophic channel model with 1600 gridpoints.
- The model has realistic error-growth and time-to-nonlinearity
- There are 100 observations of streamfunction every 3 hours, and 100 wind observations every 6 hours.
- The error covariances are assumed to be horizontally isotropic and homogeneous, with a Gaussian spatial structure.

Saddle Point Formulation

OOPS QG model. 24-hour window with 8 sub-windows.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.

Saddle Point Formulation

OOPS QG model. 24-hour window with 8 sub-windows.

Saddle Point Formulation

- It is much harder to prove results for the case $\tilde{\mathbf{L}} \neq \mathbf{L}$.
- Experimentally, it seems that many eigenvalues continue to lie on $\Re(\tau)=1$, with the remainder forming a cloud around $\tau=1$.

Ritz Values of $\tilde{\mathcal{P}}^{-1} \mathcal{A}$ for $\tilde{\mathbf{L}}=\mathbf{I}$.

Saddle Point Formulation

OOPS, QG model, 24-hour window with 8 sub-windows.

Convergence as a function of iteration for different truncations of the series expansion for L. ("F" = Forcing formulation.)

Saddle Point Formulation

OOPS, QG model, 24-hour window with 8 sub-windows.

Convergence as a function of sequential sub-window integrations for different truncations of the series expansion for \mathbf{L}.

Conclusions

- 4D-Var was analysed from the point of view of parallelization.
- 4D-PSAS and the forcing formulation are inherently sequential.
- The 4D-state problem is parallel, but ill-conditioning of \mathbf{D} makes it difficult to precondition.
- The saddle point formulation is parallel, and seems easier to precondition.
- A saddle point method for strong-constraint 4D-Var was proposed by Thierry Lagarde in his PhD thesis (2000: Univ Paul Sabatier, Toulouse). It didn't catch on:
- Parallelization was not so important 10 year ago.
- In strong constraint 4D-Var, we only get a factor-of-two speed-up. This is not enough to overcome the slower convergence due to the fact that the system is indefinite.
- The ability to also parallelize over sub-windows allows a much bigger speed-up in weak-constraint 4D-Var.
- The saddle point formulation is already fast enough to be useful.
- Better solvers and preconditioners can only make faster.

