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Brief Introduction to 4D-Var

Four-Dimensional Variational Data Assimilation 4D-Var is the method
used by most national and international Numerical Weather
Forecasting Centres to provide initial conditions for their forecast
models.

4D-Var combines observations with a prior estimate of the state,
provided by an earlier forecast.

The method is described as Four-Dimensional because it takes into
account observations that are distributed in space and over an interval
of time (typically 6 or 12 hours), often called the analysis window.

It does this by using a complex and computationally expensive
numerical model to propagate information in time.

In many applications of 4D-Var, the model is assumed to be perfect.

In this talk, I will concentrate on so-called weak-constraint 4D-Var,
which takes into account imperfections in the model.
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Brief Introduction to 4D-Var

Weak-Constraint 4D-Var represents the data-assimilation problem as
a very large least-squares problem.

J(x0, x1, . . . , xN) =
1

2
(x0 − xb)

T B−1 (x0 − xb)

+
1

2

N∑
k=0

(yk −Hk(xk))T R−1
k (yk −Hk(xk))

+
1

2

N∑
k=1

(qk − q̄)T Q−1
k (qk − q̄)

where qk = xk −Mk(xk−1).

Here, the cost function J is a function of the states x0, x1, . . . , xN

defined at the start of each of a set of sub-windows that span the
analysis window.
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Brief Introduction to 4D-Var

J(x0, x1, . . . , xN) =
1

2
(x0 − xb)

T B−1 (x0 − xb)

+
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2

N∑
k=0

(yk −Hk(xk))T R−1
k (yk −Hk(xk))

+
1

2

N∑
k=1

(qk − q̄)T Q−1
k (qk − q̄)

Each xi contains ≈ 107 elements.

Each yi contains ≈ 105 elements.

The operators Hk and Mk , and the matrices B, Rk and Qk are
represented by codes that apply them to vectors.

We do not have access to their elements.
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Brief Introduction to 4D-Var

J(x0, x1, . . . , xN) =
1

2
(x0 − xb)

T B−1 (x0 − xb)

+
1

2

N∑
k=0

(yk −Hk(xk))T R−1
k (yk −Hk(xk))

+
1

2

N∑
k=1

(qk − q̄)T Q−1
k (qk − q̄)

Hk and Mk involve integrations of the numerical model, and are
computationally expensive.

The covariance matrices B, Rk and Qk are less expensive to apply.
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Brief Introduction to 4D-Var

  

time

x
0

x
1

x
2

q
1

q
2

x

q
3

x
3

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 6 / 37



Brief Introduction to 4D-Var
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The cost function contains 3 terms:
1
2 (x0 − xb)

T B−1 (x0 − xb) ensures that x0 stays close to the prior
estimate.
1
2

∑N
k=0 (yk −Hk(xk))T R−1

k (yk −Hk(xk)) keeps the estimate close
to the observations (blue circles).
1
2

∑N
k=1 (qk − q̄)T Q−1

k (qk − q̄) keeps the jumps between
sub-windows small.
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Gauss-Newton (Incremental) Algorithm

It is usual to minimize the cost function using a modified
Gauss-Newton algorithm.

Nearly all the computational cost is in the inner loop, which
minimizes the quadratic cost function:

Ĵ(δx
(n)
0 , . . . , δx

(n)
N ) =

1

2

(
δx0 − b(n)

)T
B−1

(
δx0 − b(n)

)
+

1

2

N∑
k=0

(
H

(n)
k δxk − d

(n)
k

)T
R−1

k

(
H

(n)
k δxk − d

(n)
k

)
+

1

2

N∑
k=1

(
δqk − c

(n)
k

)T
Q−1

k

(
δqk − c

(n)
k

)
δqk = δxk −M

(n)
k δxk−1,

and where b(n), c
(n)
k and d

(n)
k come from the outer loop:

b(n) = xb − x
(n)
0 , c

(n)
k = q̄ − q

(n)
k , d

(n)
k = yk −Hk(x

(n)
k )
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Gauss-Newton (Incremental) Algorithm

Ĵ(δx
(n)
0 , . . . , δx

(n)
N ) =
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Note that 4D-Var requires tangent linear versions of Mk and Hk :

• M
(n)
k and H

(n)
k , respectively

It also requires the transposes (adjoints) of these operators:

• (M
(n)
k )T and (H

(n)
k )T, respectively
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Why do we need more parallel algorithms?

In its usual implementation, 4D-Var is solved by applying a
conjugate-gradient solver.

This is highly sequential:
• Iterations of CG.
• Tangent Linear and Adjoint integrations run one after the other.
• Model timesteps follow each other.

Computers are becoming ever more parallel, but processors are not
getting faster.

Unless we do something to make 4D-Var more parallel, we will soon
find that 4D-Var becomes un-affordable (even with a 12-hour
window).

We cannot make the model more parallel.
• The inner loops of 4D-Var run with a few 10’s of grid columns per

processor.
• This is barely enough to mask inter-processor communication costs.

We have to use more parallel algorithms.
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Parallelising within an Iteration

The model is already parallel in both horizontal directions.

The modellers tell us that it will be hard to parallelise in the vertical
(and we already have too little work per processor).

We are left with parallelising in the time direction.
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Weak Constraint 4D-Var: Inner Loop
Dropping the outer loop index (n), the inner loop of weak-constraints
4D-Var minimises:

Ĵ(δx0, . . . , δxN) =
1

2
(δx0 − b)T B−1 (δx0 − b)

+
1

2

N∑
k=0

(Hkδxk − dk)T R−1
k (Hkδxk − dk)

+
1

2

N∑
k=1

(δqk − ck)T Q−1
k (δqk − ck)

where δqk = δxk −Mkδxk−1,
and where b, ck and dk come from the outer loop:

b = xb − x0

ck = q̄ − qk

dk = yk −Hk(xk)
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Weak Constraint 4D-Var: Inner Loop
We can simplify this further by defining some 4D vectors and matrices:

δx =


δx0

δx1
...
δxN

 δp =


δx0

δq1
...
δqN


These vectors are related through δqk = δxk −Mkδxk−1.
We can write this relationship in matrix form as:

δp = Lδx

where:

L =


I

−M1 I
−M2 I

. . .
. . .

−MN I
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Weak Constraint 4D-Var: Inner Loop

L =


I

−M1 I
−M2 I

. . .
. . .

−MN I


δp = Lδx can be done in parallel: δqk = δxk −Mkδxk−1.
We know all the δxk−1

′s. We can apply all the Mk
′s simultaneously.

δx = L−1δp is sequential: δxk = Mkδxk−1 + δqk .
We have to generate each δxk−1 in turn before we can apply the next Mk .
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Brief Introduction to 4D-Var
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Weak Constraint 4D-Var: Inner Loop

We will also define:

R =


R0

R1

. . .

RN

 , D =


B

Q1

. . .

QN

 ,

H =


H0

H1

. . .

HN

 , b =


b
c1
...
cN

 d =


d0

d1
...
dN

 .
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Weak Constraint 4D-Var: Inner Loop

With these definitions, we can write the inner-loop cost function either as
a function of δx:

J(δx) = (Lδx− b)TD−1(Lδx− b) + (Hδx− d)TR−1(Hδx− d)

Or as a function of δp:

J(δp) = (δp− b)TD−1(δp− b) + (HL−1δp− d)TR−1(HL−1δp− d)
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Forcing Formulation

J(δp) = (δp− b)TD−1(δp− b) + (HL−1δp− d)TR−1(HL−1δp− d)

This version of the cost function is sequential.
• It contains L−1.

It closely resembles strong-constraint 4D-Var.

We can precondition it using D1/2:

J(χ) = χTχ + (HL−1δp− d)TR−1(HL−1δp− d)

where δp = D1/2χ + b.

This guarantees that the eigenvalues of J ′′ are bounded away from
zero.

We understand how to minimise this.
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4D State Formulation

J(δx) = (Lδx− b)TD−1(Lδx− b) + (Hδx− d)TR−1(Hδx− d)

This version of the cost function is parallel.
• It does not contain L−1.

We could precondition it using δx = L−1(D1/2χ + b).

This would give exactly the same J(χ) as before.

But, we have introduced a sequential model integration (i.e. L−1)
into the preconditioner.
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Plan A: State Formulation, Approximate Preconditioner

In the forcing (δp) formulation, and in its Lagrangian dual
formulation (4D-PSAS) L−1 appears in the cost function.

• These formulations are inherently sequential.
• We cannot modify the cost function without changing the problem.

In the 4D-state (δx) formulation, L−1 appears in the preconditioner.
• We are free to modify the preconditioner as we wish.

This suggests we replace L−1 by a cheap approximation:

δx = L̃−1(D1/2χ + b)

If we do this, we can no longer write the first term as: χTχ.

We have to calculate δx, and explicity evaluate it as

(Lδx− b)TD−1(Lδx− b)

This is where we run into problems: D is very ill-conditioned.
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Plan A: State Formulation, Approximate Preconditioner

When we approximate L−1 in the preconditioner, the Hessian of the
first term of the cost function (with respect to χ) is no longer the
identity matrix, but:

DT/2L̃−TLTD−1LL̃−1D1/2

Because D is ill-conditioned, This is likely to have some very small
(and some very large) eigenvalues, unless L̃ is a very good
approximation for L.

So far, I have not found a preconditioner that gives condition
numbers for the minimisation less than O(109).

We need a Plan B!
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Plan B: Saddle Point Formulation

J(δx) = (Lδx− b)TD−1(Lδx− b) + (Hδx− d)TR−1(Hδx− d)

At the minimum:

∇J = LTD−1(Lδx− b) + HTR−1(Hδx− d) = 0

Define:
λ = D−1(b− Lδx), µ = R−1(d−Hδx)

Then:

Dλ + Lδx = b
Rµ + Hδx = d

LTλ + HTµ = 0

 =⇒

 D 0 L
0 R H
LT HT 0

  λ
µ
δx

 =

 b
d
0
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Saddle Point Formulation

 D 0 L
0 R H
LT HT 0

  λ
µ
δx

 =

 b
d
0



This is called the saddle point formulation of 4D-Var.

The matrix is a saddle point matrix.

The matrix is real, symmetric, indefinite.

Note that the matrix contains no inverse matrices.

We can apply the matrix without requiring a sequential model
integration (i.e. we can parallelise over sub-windows).

We can hope that the problem is well conditioned (since we don’t
multiply by D−1).
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Saddle Point Formulation
Alternative derivation:

min
δp,δw

J(δp, δw) = (δp− b)TD−1(δp− b) + (δw − d)TR−1(δw − d)

subject to δp = Lδx and δw = Hδx.

L(δx, δp, δw, λ, µ) = (δp− b)TD−1(δp− b) + (δw − d)TR−1(δw − d)

+λT(δp− Lδx) + µT(δw −Hδx)

∂L
∂λ = 0⇒ δp = Lδx
∂L
∂µ = 0⇒ δw = Hδx

∂L
∂δp = 0⇒ D−1(δp− b) + λ = 0

∂L
∂δw = 0⇒ R−1(δw − d) + µ = 0
∂L
∂δx = 0⇒ LTλ + HTµ = 0
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Saddle Point Formulation

Lagrangian: L(δx, δp, δw, λ, µ)

4D-Var solves the primal problem: minimise along AXB.

4D-PSAS solves the Lagrangian dual problem: maximise along CXD.

The saddle point formulation finds the saddle point of L.

The saddle point formulation is neither 4D-Var nor 4D-PSAS.
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Saddle Point Formulation

To solve the saddle point system, we have to precondition it.

Preconditioning saddle point systems is the subject of much current
research. It is something of a dark art!

• See e.g. Benzi and Wathen (2008), Benzi, Golub and Liesen (2005).

Most preconditioners in the literature assume that D and R are
expensive, and L and H are cheap.

The opposite is true in 4D-Var!

Example: Diagonal Preconditioner:

PD =

 D̂ 0 0

0 R̂ 0
0 0 −S


where S ≈ −LTD−1L−HTR−1H
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Saddle Point Formulation

One possibility is an approximate constraint preconditioner
(Bergamaschi, et al., 2007 & 2011):

P̃ =

 D 0 L̃
0 R 0

L̃T 0 0



⇒ P̃−1 =

 0 0 L̃−T

0 R−1 0

L̃−1 0 −L̃−1DL̃−T


Note that P̃−1 does not contain D−1.
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Saddle Point Formulation

With this preconditioner, we can prove some nice results for the case
L̃ = L: 0 0 L−T

0 R−1 0
L−1 0 −L−1DL−T

  D 0 L
0 R H
LT HT 0

  λ
µ
δx

 = τ

 λ
µ
δx



⇒ I +

 0 L−THT 0
0 0 R−1H
0 −L−1DL−THT 0

  λ
µ
δx

 = τ

 λ
µ
δx


⇒ HL−1DL−THTµ + (τ − 1)2Rµ = 0

⇒ (τ − 1) is imaginary (or zero) since HL−1DL−THT is positive
semi-definite and R is positive definite.
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Saddle Point Formulation

The eigenvalues τ of P̃−1A lie on the line <(τ) = 1 in the complex
plane.

Their distance above/below the real axis is:

±

√
µT

i HL−1DL−THTµi

µT
i Rµi

where µi is the µ component of the ith eigenvector.

The fraction under the square root is, roughly speaking, the ratio of
background+model error variance to observation error variance
associated with the pattern µi .

In the usual implementation of 4D-Var, the condition number is given
by the ratio of these variances, not the square-root.
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Saddle Point Formulation

For the preconditioner, we need an approximate inverse of L.

One approach is to use the following identity (exercise for the reader!):

L−1 = I + (I− L) + (I− L)2 + . . . + (I− L)N−1

Since this is a power series expansion, it suggests truncating the series
at some order < N − 1.

(A very few iterations of a Krylov solver may be a better idea. I’ve
not tried this yet.)
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Results

The practical reaults shown in the next few slides are for a simplified
(toy) analogue of a real system.

The model is a two-level quasi-geostrophic channel model with 1600
gridpoints.

The model has realistic error-growth and time-to-nonlinearity

There are 100 observations of streamfunction every 3 hours, and 100
wind observations every 6 hours.

The error covariances are assumed to be horizontally isotropic and
homogeneous, with a Gaussian spatial structure.
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Saddle Point Formulation
OOPS QG model. 24-hour window with 8 sub-windows.
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Ritz Values of A.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.
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Saddle Point Formulation
OOPS QG model. 24-hour window with 8 sub-windows.
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Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.
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Saddle Point Formulation

It is much harder to prove results for the case L̃ 6= L.

Experimentally, it seems that many eigenvalues continue to lie on
<(τ) = 1, with the remainder forming a cloud around τ = 1.
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Ritz Values of P̃−1A for L̃ = I.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.
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Saddle Point Formulation
OOPS, QG model, 24-hour window with 8 sub-windows.
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series expansion for L. (“F” = Forcing formulation.)
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Saddle Point Formulation
OOPS, QG model, 24-hour window with 8 sub-windows.
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Conclusions

4D-Var was analysed from the point of view of parallelization.

4D-PSAS and the forcing formulation are inherently sequential.

The 4D-state problem is parallel, but ill-conditioning of D makes it
difficult to precondition.
The saddle point formulation is parallel, and seems easier to
precondition.

• A saddle point method for strong-constraint 4D-Var was proposed by
Thierry Lagarde in his PhD thesis (2000: Univ Paul Sabatier,
Toulouse). It didn’t catch on:

• Parallelization was not so important 10 year ago.
• In strong constraint 4D-Var, we only get a factor-of-two speed-up. This

is not enough to overcome the slower convergence due to the fact that
the system is indefinite.

The ability to also parallelize over sub-windows allows a much bigger
speed-up in weak-constraint 4D-Var.

The saddle point formulation is already fast enough to be useful.

Better solvers and preconditioners can only make faster.
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