Parallel Algorithms for Four-Dimensional Variational
Data Assimilation

Mike Fisher

ECMWF

October 24, 2011

Parallel 4D-Var

Mike Fisher (ECMWF)

Brief Introduction to 4D-Var

@ Four-Dimensional Variational Data Assimilation 4D-Var is the method
used by most national and international Numerical Weather
Forecasting Centres to provide initial conditions for their forecast
models.

@ 4D-Var combines observations with a prior estimate of the state,
provided by an earlier forecast.

@ The method is described as Four-Dimensional because it takes into
account observations that are distributed in space and over an interval
of time (typically 6 or 12 hours), often called the analysis window.

@ It does this by using a complex and computationally expensive
numerical model to propagate information in time.

@ In many applications of 4D-Var, the model is assumed to be perfect.

@ In this talk, | will concentrate on so-called weak-constraint 4D-Var,

which takes into account imperfections in the model.
ECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 2 /37

Brief Introduction to 4D-Var

@ Weak-Constraint 4D-Var represents the data-assimilation problem as
a very large least-squares problem.

1
J(x0, %1, xn) = 5 (xo — xb)" B! (x0 — xp)
1 N
+35 Dk = Hai) T R (vk — Hielx))
k=0

LN
+2;(Qk—¢7)T Q:(gk — @)

where gy = xx — My (xk—1)-
@ Here, the cost function J is a function of the states xp, x1, ..., Xn

defined at the start of each of a set of sub-windows that span the

analysis window. CECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 3/37

Brief Introduction to 4D-Var

J(XQ,Xl,...,XN) = %(Xo—xb)T B_l (Xo—Xb)
N
+% D = Hala)) " R (v — Hi()
1 k;o
+5 > (g —3)" @ (ak —)

x
I
—

e Each x; contains ~ 107 elements.
e Each y; contains ~ 10° elements.

@ The operators Hy and M, and the matrices B, Ry and Qy are
represented by codes that apply them to vectors.

@ We do not have access to their elements.
CCECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 4 /37

Brief Introduction to 4D-Var

J(Xo,Xl,...,XN) = %(Xo —Xb)T B! (Xo —Xb)
N
+% > k= i) R (ke — k)
1 k;o
+5 D (ak—a)" Q' (ak —)

>
Il
—

@ Hy and M involve integrations of the numerical model, and are
computationally expensive.

@ The covariance matrices B, Rk and @ are less expensive to apply.

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 5/37

Brief Introduction to 4D-Var

time
ECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 6 /37

Brief Introduction to 4D-Var

time

The cost function contains 3 terms:

° % (x0 — xb)T B~!(xo — xp) ensures that xq stays close to the prior
estimate.

o LN ok — Hi(xx)) " R (v — Hi(xx)) keeps the estimate close
to the observations (blue circles).

° % 221:1 (9 — E])T Qk_l (gx — @) keeps the jumps between _
sub-windows small. CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 7 /37

Gauss-Newton (Incremental) Algorithm

@ It is usual to minimize the cost function using a modified
Gauss-Newton algorithm.

@ Nearly all the computational cost is in the inner loop, which
minimizes the quadratic cost function:

I, ey = L <5x0 - b(”))T B (9x0— b")
+ Z (H(")éx — d))T R (H,E")éxk - d,E"))

(5qk —)) Q! (6qk - Cﬁ'”)

\ =

>
Il

N
=1

l’

>
Il
—

0qK = Oxk — M,E")5Xk—1,
and where b(", CIE") and d,g") come from the outer loop:

p(n — Xp — Xé”), CI(<n) =g-— ql((n)7 dlgn) = Vi — Hk(Xl((n))CECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 8 /37

Gauss-Newton (Incremental) Algorithm

I,y = % (550 - b(n))T B (5x0 - b)
S (0) (0)
1 Y T
+5 z (5C7k - C,En)> Q! (5Qk - C,E"))

x
I
—

@ Note that 4D-Var requires tangent linear versions of M and H:
° M,((") and H,E"), respectively
e It also requires the transposes (adjoints) of these operators:
o (M{™MT and (H{™)T, respectively
ECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 9 /37

Why do we need more parallel algorithms?

@ In its usual implementation, 4D-Var is solved by applying a
conjugate-gradient solver.
@ This is highly sequential:
e lterations of CG.

e Tangent Linear and Adjoint integrations run one after the other.
o Model timesteps follow each other.

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 10 / 37

Why do we need more parallel algorithms?

@ In its usual implementation, 4D-Var is solved by applying a
conjugate-gradient solver.
@ This is highly sequential:
e lterations of CG.
e Tangent Linear and Adjoint integrations run one after the other.
e Model timesteps follow each other.
@ Computers are becoming ever more parallel, but processors are not
getting faster.
@ Unless we do something to make 4D-Var more parallel, we will soon
find that 4D-Var becomes un-affordable (even with a 12-hour
window).

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 10 / 37

Why do we need more parallel algorithms?

@ In its usual implementation, 4D-Var is solved by applying a
conjugate-gradient solver.

@ This is highly sequential:

e lterations of CG.
e Tangent Linear and Adjoint integrations run one after the other.
e Model timesteps follow each other.

@ Computers are becoming ever more parallel, but processors are not
getting faster.

@ Unless we do something to make 4D-Var more parallel, we will soon
find that 4D-Var becomes un-affordable (even with a 12-hour
window).

@ We cannot make the model more parallel.

e The inner loops of 4D-Var run with a few 10's of grid columns per
processor.
e This is barely enough to mask inter-processor communication costs.

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 10 / 37

Why do we need more parallel algorithms?

@ In its usual implementation, 4D-Var is solved by applying a
conjugate-gradient solver.

@ This is highly sequential:

e lterations of CG.
e Tangent Linear and Adjoint integrations run one after the other.
e Model timesteps follow each other.

@ Computers are becoming ever more parallel, but processors are not
getting faster.

@ Unless we do something to make 4D-Var more parallel, we will soon
find that 4D-Var becomes un-affordable (even with a 12-hour
window).

@ We cannot make the model more parallel.

e The inner loops of 4D-Var run with a few 10's of grid columns per

processor.
e This is barely enough to mask inter-processor communication costs.

@ We have to use more parallel algorithms. SECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 10 / 37

Parallelising within an lteration

@ The model is already parallel in both horizontal directions.

@ The modellers tell us that it will be hard to parallelise in the vertical
(and we already have too little work per processor).

@ We are left with parallelising in the time direction.

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 11 /37

Weak Constraint 4D-Var: Inner Loop

Dropping the outer loop index (n), the inner loop of weak-constraints
4D-Var minimises:

A

J(6xp,...,0xn) = (6x0 — b)Y B~ (6x0 — b)

N =

N
1 _
+5 kZ_O(Hkaxk — di)" R (Hdxi — di)

N
1 T A-1
+5 > (Gak—) Q' (Bak —)
k=1
where dqx = dxx — Midxp_1,
and where b, ¢, and d, come from the outer loop:

b = Xp — X0
Ck = q—Qqk
de = Yk — Hi(xx)

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011

CSECMWF

12 /37

Weak Constraint 4D-Var: Inner Loop

We can simplify this further by defining some 4D vectors and matrices:

5Xo 5Xo
Ox oq
ox=1 . ' op=1 . '
dIxn dqn

These vectors are related through dq, = dx — Midxp_1.
We can write this relationship in matrix form as:

where:
/
—M; /
L= — M2 /
—My CECMWF
Mike Fisher (ECMWF) Parallel 4D-Var

October 24, 2011 13 / 37

Weak Constraint 4D-Var: Inner Loop

—My 1
6p = Léx can be done in parallel: dgx = dx — Midxp_1.
We know all the dxx_1’'s. We can apply all the M,’s simultaneously.

dx = L™16p is sequential: dxx = Midxi_1 + 0qx.
We have to generate each dxx_1 in turn before we can apply the next M.

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 14 / 37

Brief Introduction to 4D-Var

time
ECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 15 / 37

Weak Constraint 4D-Var: Inner Loop

We will also define:

Ro B
R1 1
R = : ’ D= ;
RN QN
Ho b dO
Hq (o] d1
H= b= d=

Hy cN dy

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 16 / 37

Weak Constraint 4D-Var: Inner Loop

With these definitions, we can write the inner-loop cost function either as
a function of dx:

J(0x) = (Lox — b)TD71(Lox — b) + (Héx — d)TR™}(Hox — d)

Or as a function of fp:

J(6p) = (0p — b)'D(6p — b) + (HL16p — d)TRI(HL 16p — d)

CSECMWF

Mike Fisher (ECMWF)

Parallel 4D-Var October 24, 2011 17 / 37

Forcing Formulation

J(6p) = (6p —b)'D*(0p — b) + (HL *5p — d) "R (HL 16p — d)

@ This version of the cost function is sequential.
e It contains L™1,

@ |t closely resembles strong-constraint 4D-Var.
e We can precondition it using D1/2:

J(x) = x"x + (HL"'6p — d) "R} (HL 16p — d)

where dp = DY/2y +b.

e This guarantees that the eigenvalues of J” are bounded away from
zero.

@ We understand how to minimise this. CEMWE

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 18 / 37

4D State Formulation

J(6x) = (Lox — b)TD}(Lox — b) + (Hox — d)TR™I(Héx — d)

@ This version of the cost function is parallel.
e It does not contain L.

e We could precondition it using dx = L~1(D'/2y + b).
@ This would give exactly the same J(x) as before.

@ But, we have introduced a sequential model integration (i.e. L™1)
into the preconditioner.

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 19 / 37

Plan A: State Formulation, Approximate Preconditioner

@ In the forcing (dp) formulation, and in its Lagrangian dual
formulation (4D-PSAS) L1 appears in the cost function.

e These formulations are inherently sequential.
e We cannot modify the cost function without changing the problem.

o In the 4D-state (6x) formulation, L~ appears in the preconditioner.
e We are free to modify the preconditioner as we wish.

@ This suggests we replace L™ by a cheap approximation:
ox = L1(DY2x + b)

o If we do this, we can no longer write the first term as: xTx.

@ We have to calculate dx, and explicity evaluate it as
(Lox — b)TD}(Léx — b)

@ This is where we run into problems: D is very ill-conditioned.
ECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 20 / 37

Plan A: State Formulation, Approximate Preconditioner

@ When we approximate L™ in the preconditioner, the Hessian of the
first term of the cost function (with respect to x) is no longer the
identity matrix, but:

DT/2I:7TLTD71 Li:fl D1/2

@ Because D is ill-conditioned, This is likely to have some very small
(and some very large) eigenvalues, unless L is a very good
approximation for L.

@ So far, | have not found a preconditioner that gives condition
numbers for the minimisation less than O(10°).

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 21 /37

Plan A: State Formulation, Approximate Preconditioner

@ When we approximate L™ in the preconditioner, the Hessian of the
first term of the cost function (with respect to x) is no longer the
identity matrix, but:

DT/2I:7TLTD71 Li:fl D1/2

@ Because D is ill-conditioned, This is likely to have some very small
(and some very large) eigenvalues, unless L is a very good
approximation for L.

@ So far, | have not found a preconditioner that gives condition
numbers for the minimisation less than O(10°).

@ We need a Plan B!

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 21 /37

Plan B: Saddle Point Formulation

J(6x) = (Lox — b)TD1(Lox — b) + (Hox — d)TR™I(Héx — d)

At the minimum:

VJ=L"D7}(Léx — b) + H'R}(Hix —d) =0

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 22 /37

Plan B: Saddle Point Formulation

J(6x) = (Lox — b)TD1(Lox — b) + (Hox — d)TR™I(Héx — d)

At the minimum:
VJ=L"D7}(Léx — b) + H'R}(Hix —d) =0

Define:
A=D7"1b-Léx), p=RId-Hox)

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 22 /37

Plan B: Saddle Point Formulation

J(6x) = (Lox — b)TD1(Lox — b) + (Hox — d)TR™I(Héx — d)

At the minimum:

VJ=L"D7}(Léx — b) + H'R}(Hix —d) =0

Define:
A=D7"1b-Léx), p=RId-Hox)

DA+Léx = b D 0 L A
Ru+Héx = d) = 0 R H ol =
0 0 ox

L™\ +HYy =
October 24, 2011 22 /37

Then:

b
d
0

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var

Saddle Point Formulation

This is called the saddle point formulation of 4D-Var.
The matrix is a saddle point matrix.
The matrix is real, symmetric, indefinite.

Note that the matrix contains no inverse matrices.

We can apply the matrix without requiring a sequential model
integration (i.e. we can parallelise over sub-windows).

@ We can hope that the problem is well conditioned (since we don't
multiply by D71).

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 23 /37

Saddle Point Formulation
Alternative derivation:

min J(9p,0w) = (dp — b)"D1(6p — b) + (ow — d)TR™I (6w — d)
p,ow

subject to dp = Léx and dw = Héx.

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 24 / 37

Saddle Point Formulation
Alternative derivation:

min J(9p,0w) = (dp — b)"D1(6p — b) + (ow — d)TR™I (6w — d)
p,ow

subject to dp = Léx and dw = Héx.

L(6x,0p, 0w, A\, 1) = (6p—b)TD71(6p —b) + (6w — d)'R7I (6w — d)
+AT(6p — Lox) + T (6w — Héx)

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 24 / 37

Saddle Point Formulation
Alternative derivation:

min J(9p,0w) = (dp — b)"D1(6p — b) + (ow — d)TR™I (6w — d)
p,ow
subject to dp = Léx and dw = Héx.

L(6x,0p,ow, \,) = (6p—b)'D*(6p —b) + (6w — d)"R™} (6w — d)
+AT(6p — Lox) + pT(dw — Héx)

o % =0= op = Léx

0%20: ow = Hdx

°o fr=0= D 1(6p—b)+A=0

o £ —0= R (w—d)+u=0

° %:0:> LTA+HT, =0 CECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 24 / 37

Saddle Point Formulation

Lagrangian: L(dx,dp, ow, A, i)

@ 4D-Var solves the primal problem: minimise along AXB.

@ 4D-PSAS solves the Lagrangian dual problem: maximise along CXD.

@ The saddle point formulation finds the saddle point of L.

@ The saddle point formulation is neither 4D-Var nor 4D-PSAS. <EcMwF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 25 /37

Saddle Point Formulation

@ To solve the saddle point system, we have to precondition it.

@ Preconditioning saddle point systems is the subject of much current
research. It is something of a dark art!

o See e.g. Benzi and Wathen (2008), Benzi, Golub and Liesen (2005).

@ Most preconditioners in the literature assume that D and R are
expensive, and L and H are cheap.

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 26 / 37

Saddle Point Formulation

@ To solve the saddle point system, we have to precondition it.

@ Preconditioning saddle point systems is the subject of much current
research. It is something of a dark art!

o See e.g. Benzi and Wathen (2008), Benzi, Golub and Liesen (2005).

@ Most preconditioners in the literature assume that D and R are
expensive, and L and H are cheap.

@ The opposite is true in 4D-Var!

Example: Diagonal Preconditioner:

D o o
Po=| 0 R 0
0 0 -S

where S ~ —LTD1L — HTR1H

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 26 / 37

Saddle Point Formulation

@ One possibility is an approximate constraint preconditioner
(Bergamaschi, et al., 2007 & 2011):

0 0 LT
=P 1= 0 R 0
L o0 -L!pLT

@ Note that P! does not contain D1
ZCECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 27 / 37

Saddle Point Formulation

@ With this preconditioner, we can prove some nice results for the case

L=L:
0 0 LT D 0 L A A
0 R! 0 0 R H wo =1 p
L 0 -—-L!pL T LT HT o dx dx
0 L-THT 0 A A
=1+10 0 R!H p =1 u
0 —L DL THT 0 dx dx

= HL'DLTH Ty + (7 - 1)’Ru =0

= (7 — 1) is imaginary (or zero) since HL"!DL~TH" is positive
semi-definite and R is positive definite.
CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 28 / 37

Saddle Point Formulation

o The eigenvalues 7 of P~1A lie on the line R(7) = 1 in the complex
plane.

@ Their distance above/below the real axis is:

L pFHL-IDL-THT
HiTRMi
where u; is the u component of the ith eigenvector.

@ The fraction under the square root is, roughly speaking, the ratio of
background+model error variance to observation error variance
associated with the pattern p;.

@ In the usual implementation of 4D-Var, the condition number is given
by the ratio of these variances, not the square-root.
ECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 29 / 37

Saddle Point Formulation

For the preconditioner, we need an approximate inverse of L.

One approach is to use the following identity (exercise for the reader!):

L' =14+(0-L)+(0-LP>+...+(0-)"*

@ Since this is a power series expansion, it suggests truncating the series
at some order < N — 1.

(A very few iterations of a Krylov solver may be a better idea. I've
not tried this yet.)

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 30/ 37

Results

@ The practical reaults shown in the next few slides are for a simplified
(toy) analogue of a real system.

@ The model is a two-level quasi-geostrophic channel model with 1600
gridpoints.
@ The model has realistic error-growth and time-to-nonlinearity

@ There are 100 observations of streamfunction every 3 hours, and 100
wind observations every 6 hours.

@ The error covariances are assumed to be horizontally isotropic and
homogeneous, with a Gaussian spatial structure.

CSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 31 /37

Saddle Point Formulation
OOPS QG model. 24-hour window with 8 sub-windows.

1.0

0.8

0.6+

0.4

0.2+

0.0 -+

-0.29

-0.49

-0.61

-0.84

1.0 T T T T 1 T 1
-80 -60 -40 -20 0 20 40 60 80

Ritz Values of A.
ECMWF
Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.
Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 32 /37

Saddle Point Formulation

OOPS QG model. 24-hour

window with 8 sub-windows.

40
I
30+
+
20—
4 +
104
0 + +
104
1 +
-20-
l +
30+
+
-40 T T T T T T T
-0.2 0.0 0.2 0.4 0.6 0.8 1.0

Ritz Values of P~1A for L = L.

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.

Mike Fisher (ECMWF)

Parallel 4D-Var

12

CSECMWF

October 24, 2011 33 /37

Saddle Point Formulation

e It is much harder to prove results for the case L # L.

@ Experimentally, it seems that many eigenvalues continue to lie on
R(7) = 1, with the remainder forming a cloud around 7 = 1.

+ +
b + 4 +
i L w%& +t ++£§p+ I
] + ERE * e +
17 . +i :;thw 4 P s 5‘1 St .
+. E% + +
+hy
] T o o +H¢§»§*
g g:;‘***++ T T
A p IR,

|
I SR, R

|
=

Ritz Values of P~1A for L = I.

CSECMWF

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red.

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 34 /37

Saddle Point Formulation
OOPS, QG model, 24-hour window with 8 sub-windows.

102

103

104

10

106

Reduction in residual norm

107

108

F
109 | | | | | | | | |

0 10 20 30 40 50 60 70 80 90 100
Iteration

Convergence as a function of iteration for different truncations of the

series expansion for L. (“F" = Forcing formulation.) CECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 35 /37

Saddle Point Formulation
OOPS, QG model, 24-hour window with 8 sub-windows.

10°

Reduction in residual norm

109 | | | | | | |

I I o [1] 2l 3]
0 100 200 300 400 500 600 700 800
Sequential Cost (TL+AD Sub-window Integrations)

Convergence as a function of sequential sub-window integrations for

different truncations of the series expansion for L. SSECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 36 / 37

Conclusions

@ 4D-Var was analysed from the point of view of parallelization.

@ 4D-PSAS and the forcing formulation are inherently sequential.

@ The 4D-state problem is parallel, but ill-conditioning of D makes it
difficult to precondition.

@ The saddle point formulation is parallel, and seems easier to
precondition.

e A saddle point method for strong-constraint 4D-Var was proposed by
Thierry Lagarde in his PhD thesis (2000: Univ Paul Sabatier,
Toulouse). It didn't catch on:

e Parallelization was not so important 10 year ago.

e In strong constraint 4D-Var, we only get a factor-of-two speed-up. This
is not enough to overcome the slower convergence due to the fact that
the system is indefinite.

@ The ability to also parallelize over sub-windows allows a much bigger
speed-up in weak-constraint 4D-Var.

@ The saddle point formulation is already fast enough to be useful.
o Better solvers and preconditioners can only make faster. SECMWF

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 37 /37

	Brief Introduction to 4D-Var
	Brief Introduction to 4D-Var
	Why do we need more parallel algorithms?
	Plan A: State Formulation, Approximate Preconditioner
	Plan B: Saddle Point Formulation
	Preconditioning the Saddle Point Formulation
	It Works!
	Conclusions

