Parallel Algorithms for Four-Dimensional Variational Data Assimilation

Mike Fisher

ECMWF

October 24, 2011

October 24, 2011

- Four-Dimensional Variational Data Assimilation 4D-Var is the method used by most national and international Numerical Weather Forecasting Centres to provide initial conditions for their forecast models.
- 4D-Var combines observations with a prior estimate of the state, provided by an earlier forecast.
- The method is described as Four-Dimensional because it takes into account observations that are distributed in space and over an interval of time (typically 6 or 12 hours), often called the analysis window.
- It does this by using a complex and computationally expensive numerical model to propagate information in time.
- In many applications of 4D-Var, the model is assumed to be perfect.
- In this talk, I will concentrate on so-called weak-constraint 4D-Var, which takes into account imperfections in the model.

PP E 4 E > 4 E > 4 E > 4

2 / 37

 Weak-Constraint 4D-Var represents the data-assimilation problem as a very large least-squares problem.

$$J(x_0, x_1, ..., x_N) = \frac{1}{2} (x_0 - x_b)^{\mathrm{T}} B^{-1} (x_0 - x_b)$$

$$+ \frac{1}{2} \sum_{k=0}^{N} (y_k - \mathcal{H}_k(x_k))^{\mathrm{T}} R_k^{-1} (y_k - \mathcal{H}_k(x_k))$$

$$+ \frac{1}{2} \sum_{k=1}^{N} (q_k - \bar{q})^{\mathrm{T}} Q_k^{-1} (q_k - \bar{q})$$

where $q_k = x_k - \mathcal{M}_k(x_{k-1})$.

• Here, the cost function J is a function of the states x_0, x_1, \ldots, x_N defined at the start of each of a set of sub-windows that span the analysis window.

◆□▶◆圖▶◆圖▶◆圖▶ 圖 例

$$J(x_0, x_1, ..., x_N) = \frac{1}{2} (x_0 - x_b)^{\mathrm{T}} B^{-1} (x_0 - x_b)$$

$$+ \frac{1}{2} \sum_{k=0}^{N} (y_k - \mathcal{H}_k(x_k))^{\mathrm{T}} R_k^{-1} (y_k - \mathcal{H}_k(x_k))$$

$$+ \frac{1}{2} \sum_{k=1}^{N} (q_k - \bar{q})^{\mathrm{T}} Q_k^{-1} (q_k - \bar{q})$$

- Each x_i contains $\approx 10^7$ elements.
- Each y_i contains $\approx 10^5$ elements.
- The operators \mathcal{H}_k and \mathcal{M}_k , and the matrices B, R_k and Q_k are represented by codes that apply them to vectors.
- We do not have access to their elements.

CECMWI

$$J(x_0, x_1, ..., x_N) = \frac{1}{2} (x_0 - x_b)^{\mathrm{T}} B^{-1} (x_0 - x_b)$$

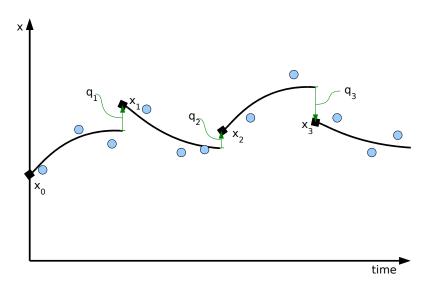
$$+ \frac{1}{2} \sum_{k=0}^{N} (y_k - \mathcal{H}_k(x_k))^{\mathrm{T}} R_k^{-1} (y_k - \mathcal{H}_k(x_k))$$

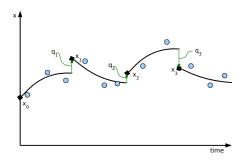
$$+ \frac{1}{2} \sum_{k=1}^{N} (q_k - \bar{q})^{\mathrm{T}} Q_k^{-1} (q_k - \bar{q})$$

- \mathcal{H}_k and \mathcal{M}_k involve integrations of the numerical model, and are computationally expensive.
- The covariance matrices B, R_k and Q_k are less expensive to apply.

CECMWF

5 / 37





The cost function contains 3 terms:

- $\frac{1}{2}(x_0 x_b)^T B^{-1}(x_0 x_b)$ ensures that x_0 stays close to the prior estimate.
- $\frac{1}{2} \sum_{k=0}^{N} (y_k \mathcal{H}_k(x_k))^T R_k^{-1} (y_k \mathcal{H}_k(x_k))$ keeps the estimate close to the observations (blue circles).
- $\frac{1}{2} \sum_{k=1}^{N} (q_k \bar{q})^{\mathrm{T}} Q_k^{-1} (q_k \bar{q})$ keeps the jumps between sub-windows small.

Gauss-Newton (Incremental) Algorithm

- It is usual to minimize the cost function using a modified Gauss-Newton algorithm.
- Nearly all the computational cost is in the inner loop, which minimizes the quadratic cost function:

$$\hat{J}(\delta x_0^{(n)}, \dots, \delta x_N^{(n)}) = \frac{1}{2} \left(\delta x_0 - b^{(n)} \right)^{\mathrm{T}} B^{-1} \left(\delta x_0 - b^{(n)} \right)
+ \frac{1}{2} \sum_{k=0}^{N} \left(H_k^{(n)} \delta x_k - d_k^{(n)} \right)^{\mathrm{T}} R_k^{-1} \left(H_k^{(n)} \delta x_k - d_k^{(n)} \right)
+ \frac{1}{2} \sum_{k=1}^{N} \left(\delta q_k - c_k^{(n)} \right)^{\mathrm{T}} Q_k^{-1} \left(\delta q_k - c_k^{(n)} \right)$$

 $\delta q_k = \delta x_k - M_k^{(n)} \delta x_{k-1}$, and where $b^{(n)}$, $c_k^{(n)}$ and $d_k^{(n)}$ come from the outer loop:

$$b^{(n)} = x_b - x_0^{(n)}, \qquad c_k^{(n)} = \bar{q} - q_k^{(n)}, \qquad d_k^{(n)} = y_k - \mathcal{H}_k(x_k^{(n)})$$

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 8 / 37

Gauss-Newton (Incremental) Algorithm

$$\hat{J}(\delta x_0^{(n)}, \dots, \delta x_N^{(n)}) = \frac{1}{2} \left(\delta x_0 - b^{(n)} \right)^{\mathrm{T}} B^{-1} \left(\delta x_0 - b^{(n)} \right)
+ \frac{1}{2} \sum_{k=0}^{N} \left(H_k^{(n)} \delta x_k - d_k^{(n)} \right)^{\mathrm{T}} R_k^{-1} \left(H_k^{(n)} \delta x_k - d_k^{(n)} \right)
+ \frac{1}{2} \sum_{k=1}^{N} \left(\delta q_k - c_k^{(n)} \right)^{\mathrm{T}} Q_k^{-1} \left(\delta q_k - c_k^{(n)} \right)$$

- Note that 4D-Var requires tangent linear versions of \mathcal{M}_k and \mathcal{H}_k :
 - $M_k^{(n)}$ and $H_k^{(n)}$, respectively
- It also requires the transposes (adjoints) of these operators:
 - $(M_k^{(n)})^{\mathrm{T}}$ and $(H_k^{(n)})^{\mathrm{T}}$, respectively

©ECMWF 9 / 37

イロト (部)ト (注)ト (注)ト (注)

- In its usual implementation, 4D-Var is solved by applying a conjugate-gradient solver.
- This is highly sequential:
 - Iterations of CG.
 - Tangent Linear and Adjoint integrations run one after the other.
 - Model timesteps follow each other.

- In its usual implementation, 4D-Var is solved by applying a conjugate-gradient solver.
- This is highly sequential:
 - Iterations of CG.
 - Tangent Linear and Adjoint integrations run one after the other.
 - Model timesteps follow each other.
- Computers are becoming ever more parallel, but processors are not getting faster.
- Unless we do something to make 4D-Var more parallel, we will soon find that 4D-Var becomes un-affordable (even with a 12-hour window).

- In its usual implementation, 4D-Var is solved by applying a conjugate-gradient solver.
- This is highly sequential:
 - Iterations of CG.
 - Tangent Linear and Adjoint integrations run one after the other.
 - Model timesteps follow each other.
- Computers are becoming ever more parallel, but processors are not getting faster.
- Unless we do something to make 4D-Var more parallel, we will soon find that 4D-Var becomes un-affordable (even with a 12-hour window).
- We cannot make the model more parallel.
 - The inner loops of 4D-Var run with a few 10's of grid columns per processor.
 - processor.This is barely enough to mask inter-processor communication costs.

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 10 / 37

- In its usual implementation, 4D-Var is solved by applying a conjugate-gradient solver.
- This is highly sequential:
 - Iterations of CG.
 - Tangent Linear and Adjoint integrations run one after the other.
 - Model timesteps follow each other.
- Computers are becoming ever more parallel, but processors are not getting faster.
- Unless we do something to make 4D-Var more parallel, we will soon find that 4D-Var becomes un-affordable (even with a 12-hour window).
- We cannot make the model more parallel.
 - The inner loops of 4D-Var run with a few 10's of grid columns per processor.
 - This is barely enough to mask inter-processor communication costs.
- We have to use more parallel algorithms.

©ECMWI

Parallelising within an Iteration

- The model is already parallel in both horizontal directions.
- The modellers tell us that it will be hard to parallelise in the vertical (and we already have too little work per processor).
- We are left with parallelising in the time direction.

Dropping the outer loop index (n), the inner loop of weak-constraints 4D-Var minimises:

$$\hat{J}(\delta x_0, \dots, \delta x_N) = \frac{1}{2} (\delta x_0 - b)^{\mathrm{T}} B^{-1} (\delta x_0 - b)
+ \frac{1}{2} \sum_{k=0}^{N} (H_k \delta x_k - d_k)^{\mathrm{T}} R_k^{-1} (H_k \delta x_k - d_k)
+ \frac{1}{2} \sum_{k=1}^{N} (\delta q_k - c_k)^{\mathrm{T}} Q_k^{-1} (\delta q_k - c_k)$$

where $\delta q_k = \delta x_k - M_k \delta x_{k-1}$, and where b, c_k and d_k come from the outer loop:

$$b = x_b - x_0$$

$$c_k = \bar{q} - q_k$$

$$d_k = y_k - \mathcal{H}_k(x_k)$$

October 24, 2011 1

We can simplify this further by defining some 4D vectors and matrices:

$$\delta \mathbf{x} = \begin{pmatrix} \delta x_0 \\ \delta x_1 \\ \vdots \\ \delta x_N \end{pmatrix} \qquad \delta \mathbf{p} = \begin{pmatrix} \delta x_0 \\ \delta q_1 \\ \vdots \\ \delta q_N \end{pmatrix}$$

These vectors are related through $\delta q_k = \delta x_k - M_k \delta x_{k-1}$. We can write this relationship in matrix form as:

$$\delta \mathbf{p} = \mathbf{L} \delta \mathbf{x}$$

where:

$$\mathbf{L} = \begin{pmatrix} I & & & & & \\ -M_1 & I & & & & \\ & -M_2 & I & & & \\ & & \ddots & \ddots & \\ & & & -M_N & I \end{pmatrix}$$

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 13 / 37

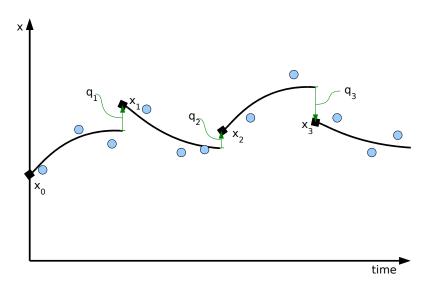
$$\mathbf{L} = \begin{pmatrix} I & & & & & \\ -M_1 & I & & & & \\ & -M_2 & I & & & \\ & & \ddots & \ddots & & \\ & & & -M_N & I \end{pmatrix}$$

 $\delta \mathbf{p} = \mathbf{L} \delta \mathbf{x}$ can be done in parallel: $\delta q_k = \delta x_k - M_k \delta x_{k-1}$. We know all the $\delta x_{k-1}'s$. We can apply all the $M_k's$ simultaneously.

 $\delta \mathbf{x} = \mathbf{L}^{-1} \delta \mathbf{p}$ is sequential: $\delta x_k = M_k \delta x_{k-1} + \delta q_k$.

We have to generate each δx_{k-1} in turn before we can apply the next M_k .

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 14 / 37



We will also define:

$$\mathbf{R} = \begin{pmatrix} R_0 & & & \\ & R_1 & & \\ & & \ddots & \\ & & & R_N \end{pmatrix}, \qquad \mathbf{D} = \begin{pmatrix} B & & & \\ & Q_1 & & \\ & & \ddots & \\ & & & Q_N \end{pmatrix},$$

$$\mathbf{H} = \left(\begin{array}{ccc} H_0 & & & \\ & H_1 & & \\ & & \ddots & \\ & & & H_N \end{array} \right), \qquad \mathbf{b} = \left(\begin{array}{c} b \\ c_1 \\ \vdots \\ c_N \end{array} \right) \qquad \mathbf{d} = \left(\begin{array}{c} d_0 \\ d_1 \\ \vdots \\ d_N \end{array} \right).$$

October 24, 2011

With these definitions, we can write the inner-loop cost function either as a function of δx :

$$\boxed{J(\delta \mathbf{x}) = (\mathbf{L}\delta \mathbf{x} - \mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1} (\mathbf{L}\delta \mathbf{x} - \mathbf{b}) + (\mathbf{H}\delta \mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H}\delta \mathbf{x} - \mathbf{d})}$$

Or as a function of $\delta \mathbf{p}$:

$$J(\delta \mathbf{p}) = (\delta \mathbf{p} - \mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1} (\delta \mathbf{p} - \mathbf{b}) + (\mathbf{H} \mathbf{L}^{-1} \delta \mathbf{p} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \mathbf{L}^{-1} \delta \mathbf{p} - \mathbf{d})$$

EECMWF

17 / 37

イロト (個) (を見) (差) (差)

Forcing Formulation

$$J(\delta \mathbf{p}) = (\delta \mathbf{p} - \mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1} (\delta \mathbf{p} - \mathbf{b}) + (\mathbf{H} \mathbf{L}^{-1} \delta \mathbf{p} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \mathbf{L}^{-1} \delta \mathbf{p} - \mathbf{d})$$

- This version of the cost function is sequential.
 - It contains L⁻¹.
- It closely resembles strong-constraint 4D-Var.
- We can precondition it using $\mathbf{D}^{1/2}$:

$$J(\chi) = \chi^{\mathrm{T}} \chi + (\mathbf{H} \mathbf{L}^{-1} \delta \mathbf{p} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \mathbf{L}^{-1} \delta \mathbf{p} - \mathbf{d})$$

where $\delta \mathbf{p} = \mathbf{D}^{1/2} \chi + \mathbf{b}$.

- This guarantees that the eigenvalues of J'' are bounded away from zero.
- We understand how to minimise this.

CECMWI

4D State Formulation

$$J(\delta \mathbf{x}) = (\mathbf{L}\delta \mathbf{x} - \mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1} (\mathbf{L}\delta \mathbf{x} - \mathbf{b}) + (\mathbf{H}\delta \mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H}\delta \mathbf{x} - \mathbf{d})$$

- This version of the cost function is parallel.
 - It does not contain L⁻¹.
- We could precondition it using $\delta \mathbf{x} = \mathbf{L}^{-1}(\mathbf{D}^{1/2}\chi + \mathbf{b})$.
- This would give exactly the same $J(\chi)$ as before.
- But, we have introduced a sequential model integration (i.e. L^{-1}) into the preconditioner.

Plan A: State Formulation, Approximate Preconditioner

- In the forcing $(\delta \mathbf{p})$ formulation, and in its Lagrangian dual formulation (4D-PSAS) \mathbf{L}^{-1} appears in the cost function.
 - These formulations are inherently sequential.
 - We cannot modify the cost function without changing the problem.
- In the 4D-state $(\delta \mathbf{x})$ formulation, \mathbf{L}^{-1} appears in the preconditioner.
 - We are free to modify the preconditioner as we wish.
- ullet This suggests we replace ${f L}^{-1}$ by a cheap approximation:

$$\delta \mathbf{x} = \tilde{\mathbf{L}}^{-1}(\mathbf{D}^{1/2}\chi + \mathbf{b})$$

- If we do this, we can no longer write the first term as: $\chi^T \chi$.
- We have to calculate $\delta \mathbf{x}$, and explicity evaluate it as

$$(\mathbf{L}\delta\mathbf{x} - \mathbf{b})^{\mathrm{T}}\mathbf{D}^{-1}(\mathbf{L}\delta\mathbf{x} - \mathbf{b})$$

• This is where we run into problems: **D** is very ill-conditioned.

CECMWF

Plan A: State Formulation, Approximate Preconditioner

• When we approximate \mathbf{L}^{-1} in the preconditioner, the Hessian of the first term of the cost function (with respect to χ) is no longer the identity matrix, but:

$$\boldsymbol{\mathsf{D}}^{\mathrm{T}/2}\boldsymbol{\tilde{\mathsf{L}}}^{-\mathrm{T}}\boldsymbol{\mathsf{L}}^{\mathrm{T}}\boldsymbol{\mathsf{D}}^{-1}\boldsymbol{\mathsf{L}}\boldsymbol{\tilde{\mathsf{L}}}^{-1}\boldsymbol{\mathsf{D}}^{1/2}$$

- Because D is ill-conditioned, This is likely to have some very small (and some very large) eigenvalues, unless \tilde{L} is a very good approximation for L.
- So far, I have not found a preconditioner that gives condition numbers for the minimisation less than $O(10^9)$.

Plan A: State Formulation, Approximate Preconditioner

• When we approximate \mathbf{L}^{-1} in the preconditioner, the Hessian of the first term of the cost function (with respect to χ) is no longer the identity matrix, but:

$$\boldsymbol{\mathsf{D}}^{\mathrm{T}/2}\boldsymbol{\tilde{\mathsf{L}}}^{-\mathrm{T}}\boldsymbol{\mathsf{L}}^{\mathrm{T}}\boldsymbol{\mathsf{D}}^{-1}\boldsymbol{\mathsf{L}}\boldsymbol{\tilde{\mathsf{L}}}^{-1}\boldsymbol{\mathsf{D}}^{1/2}$$

- Because **D** is ill-conditioned, This is likely to have some very small (and some very large) eigenvalues, unless $\tilde{\mathbf{L}}$ is a very good approximation for **L**.
- So far, I have not found a preconditioner that gives condition numbers for the minimisation less than $O(10^9)$.
- We need a Plan B!

Plan B: Saddle Point Formulation

$$J(\delta \mathbf{x}) = (\mathbf{L}\delta \mathbf{x} - \mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1} (\mathbf{L}\delta \mathbf{x} - \mathbf{b}) + (\mathbf{H}\delta \mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H}\delta \mathbf{x} - \mathbf{d})$$

At the minimum:

$$abla J = \mathbf{L}^{\mathrm{T}} \mathbf{D}^{-1} (\mathbf{L} \delta \mathbf{x} - \mathbf{b}) + \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{d}) = \mathbf{0}$$

October 24, 2011

Plan B: Saddle Point Formulation

$$J(\delta \mathbf{x}) = (\mathbf{L}\delta \mathbf{x} - \mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1} (\mathbf{L}\delta \mathbf{x} - \mathbf{b}) + (\mathbf{H}\delta \mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H}\delta \mathbf{x} - \mathbf{d})$$

At the minimum:

$$\nabla \textbf{\textit{J}} = \textbf{\textit{L}}^{\mathrm{T}}\textbf{\textit{D}}^{-1}(\textbf{\textit{L}}\delta\textbf{\textit{x}} - \textbf{\textit{b}}) + \textbf{\textit{H}}^{\mathrm{T}}\textbf{\textit{R}}^{-1}(\textbf{\textit{H}}\delta\textbf{\textit{x}} - \textbf{\textit{d}}) = \textbf{\textit{0}}$$

Define:

$$\lambda = \mathbf{D}^{-1}(\mathbf{b} - \mathbf{L}\delta\mathbf{x}), \qquad \mu = \mathbf{R}^{-1}(\mathbf{d} - \mathbf{H}\delta\mathbf{x})$$

Plan B: Saddle Point Formulation

$$J(\delta \mathbf{x}) = (\mathbf{L}\delta \mathbf{x} - \mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1} (\mathbf{L}\delta \mathbf{x} - \mathbf{b}) + (\mathbf{H}\delta \mathbf{x} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H}\delta \mathbf{x} - \mathbf{d})$$

At the minimum:

$$\nabla J = \mathbf{L}^{\mathrm{T}} \mathbf{D}^{-1} (\mathbf{L} \delta \mathbf{x} - \mathbf{b}) + \mathbf{H}^{\mathrm{T}} \mathbf{R}^{-1} (\mathbf{H} \delta \mathbf{x} - \mathbf{d}) = \mathbf{0}$$

Define:

$$\lambda = \mathbf{D}^{-1}(\mathbf{b} - \mathbf{L}\delta\mathbf{x}), \qquad \mu = \mathbf{R}^{-1}(\mathbf{d} - \mathbf{H}\delta\mathbf{x})$$

Then:

$$\left. \begin{array}{lll} \mathbf{D} \boldsymbol{\lambda} + \mathbf{L} \boldsymbol{\delta} \mathbf{x} & = & \mathbf{b} \\ \mathbf{R} \boldsymbol{\mu} + \mathbf{H} \boldsymbol{\delta} \mathbf{x} & = & \mathbf{d} \\ \mathbf{L}^{\mathrm{T}} \boldsymbol{\lambda} + \mathbf{H}^{\mathrm{T}} \boldsymbol{\mu} & = & \mathbf{0} \end{array} \right\} \Longrightarrow \left(\begin{array}{lll} \mathbf{D} & \mathbf{0} & \mathbf{L} \\ \mathbf{0} & \mathbf{R} & \mathbf{H} \\ \mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0} \end{array} \right) \left(\begin{array}{l} \boldsymbol{\lambda} \\ \boldsymbol{\mu} \\ \boldsymbol{\delta} \mathbf{x} \end{array} \right) = \left(\begin{array}{l} \mathbf{b} \\ \mathbf{d} \\ \mathbf{0} \end{array} \right)$$

22 / 37

$$\begin{array}{|c|c|c|}\hline \left(\begin{array}{ccc} \mathbf{D} & \mathbf{0} & \mathbf{L} \\ \mathbf{0} & \mathbf{R} & \mathbf{H} \\ \mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0} \end{array} \right) \left(\begin{array}{c} \lambda \\ \mu \\ \delta \mathbf{x} \end{array} \right) = \left(\begin{array}{c} \mathbf{b} \\ \mathbf{d} \\ \mathbf{0} \end{array} \right) \end{array}$$

- This is called the saddle point formulation of 4D-Var.
- The matrix is a saddle point matrix.
- The matrix is real, symmetric, indefinite.
- Note that the matrix contains no inverse matrices.
- We can apply the matrix without requiring a sequential model integration (i.e. we can parallelise over sub-windows).
- We can hope that the problem is well conditioned (since we don't multiply by \mathbf{D}^{-1}).

Alternative derivation:

$$\min_{\delta \mathbf{p}, \delta \mathbf{w}} J(\delta \mathbf{p}, \delta \mathbf{w}) = (\delta \mathbf{p} - \mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1} (\delta \mathbf{p} - \mathbf{b}) + (\delta \mathbf{w} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\delta \mathbf{w} - \mathbf{d})$$
 subject to $\delta \mathbf{p} = \mathbf{L} \delta \mathbf{x}$ and $\delta \mathbf{w} = \mathbf{H} \delta \mathbf{x}$.

October 24, 2011

Alternative derivation:

$$\min_{\delta \mathbf{p}, \delta \mathbf{w}} J(\delta \mathbf{p}, \delta \mathbf{w}) = (\delta \mathbf{p} - \mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1} (\delta \mathbf{p} - \mathbf{b}) + (\delta \mathbf{w} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\delta \mathbf{w} - \mathbf{d})$$
 subject to $\delta \mathbf{p} = \mathbf{L} \delta \mathbf{x}$ and $\delta \mathbf{w} = \mathbf{H} \delta \mathbf{x}$.

$$\mathcal{L}(\delta \mathbf{x}, \delta \mathbf{p}, \delta \mathbf{w}, \lambda, \mu) = (\delta \mathbf{p} - \mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1} (\delta \mathbf{p} - \mathbf{b}) + (\delta \mathbf{w} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\delta \mathbf{w} - \mathbf{d}) + \lambda^{\mathrm{T}} (\delta \mathbf{p} - \mathbf{L} \delta \mathbf{x}) + \mu^{\mathrm{T}} (\delta \mathbf{w} - \mathbf{H} \delta \mathbf{x})$$

Alternative derivation:

$$\min_{\delta \mathbf{p}, \delta \mathbf{w}} J(\delta \mathbf{p}, \delta \mathbf{w}) = (\delta \mathbf{p} - \mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1} (\delta \mathbf{p} - \mathbf{b}) + (\delta \mathbf{w} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\delta \mathbf{w} - \mathbf{d})$$
 subject to $\delta \mathbf{p} = \mathbf{L} \delta \mathbf{x}$ and $\delta \mathbf{w} = \mathbf{H} \delta \mathbf{x}$.

$$\mathcal{L}(\delta \mathbf{x}, \delta \mathbf{p}, \delta \mathbf{w}, \lambda, \mu) = (\delta \mathbf{p} - \mathbf{b})^{\mathrm{T}} \mathbf{D}^{-1} (\delta \mathbf{p} - \mathbf{b}) + (\delta \mathbf{w} - \mathbf{d})^{\mathrm{T}} \mathbf{R}^{-1} (\delta \mathbf{w} - \mathbf{d}) + \lambda^{\mathrm{T}} (\delta \mathbf{p} - \mathbf{L} \delta \mathbf{x}) + \mu^{\mathrm{T}} (\delta \mathbf{w} - \mathbf{H} \delta \mathbf{x})$$

•
$$\frac{\partial \mathcal{L}}{\partial \lambda} = \mathbf{0} \Rightarrow \delta \mathbf{p} = \mathbf{L} \delta \mathbf{x}$$

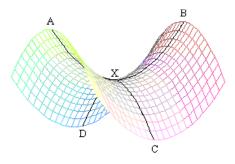
•
$$\frac{\partial \mathcal{L}}{\partial \mu} = \mathbf{0} \Rightarrow \delta \mathbf{w} = \mathbf{H} \delta \mathbf{x}$$

•
$$\frac{\partial \mathcal{L}}{\partial \delta \mathbf{p}} = \mathbf{0} \Rightarrow \qquad \mathbf{D}^{-1}(\delta \mathbf{p} - \mathbf{b}) + \lambda = \mathbf{0}$$

•
$$\frac{\partial \mathcal{L}}{\partial \delta \mathbf{w}} = \mathbf{0} \Rightarrow \qquad \mathbf{R}^{-1}(\delta \mathbf{w} - \mathbf{d}) + \mu = \mathbf{0}$$

•
$$\frac{\partial \mathcal{L}}{\partial \delta \mathbf{x}} = \mathbf{0} \Rightarrow \mathbf{L}^{\mathrm{T}} \lambda + \mathbf{H}^{\mathrm{T}} \mu = \mathbf{0}$$

CECMWF



Lagrangian: $\mathcal{L}(\delta \mathbf{x}, \delta \mathbf{p}, \delta \mathbf{w}, \lambda, \mu)$

- 4D-Var solves the primal problem: minimise along AXB.
- 4D-PSAS solves the Lagrangian dual problem: maximise along CXD.
- ullet The saddle point formulation finds the saddle point of ${\cal L}.$
- The saddle point formulation is neither 4D-Var nor 4D-PSAS.

- To solve the saddle point system, we have to precondition it.
- Preconditioning saddle point systems is the subject of much current research. It is something of a dark art!
 - See e.g. Benzi and Wathen (2008), Benzi, Golub and Liesen (2005).
- Most preconditioners in the literature assume that D and R are expensive, and L and H are cheap.

- To solve the saddle point system, we have to precondition it.
- Preconditioning saddle point systems is the subject of much current research. It is something of a dark art!
 - See e.g. Benzi and Wathen (2008), Benzi, Golub and Liesen (2005).
- Most preconditioners in the literature assume that D and R are expensive, and L and H are cheap.
- The opposite is true in 4D-Var!

Example: Diagonal Preconditioner:

$$\mathcal{P}_D = \left(egin{array}{ccc} \hat{\textbf{D}} & \textbf{0} & \textbf{0} \\ \textbf{0} & \hat{\textbf{R}} & \textbf{0} \\ \textbf{0} & \textbf{0} & -\textbf{S} \end{array}
ight)$$

where $\mathbf{S} pprox - \mathbf{L}^{\mathrm{T}}\mathbf{D}^{-1}\mathbf{L} - \mathbf{H}^{\mathrm{T}}\mathbf{R}^{-1}\mathbf{H}$

 One possibility is an approximate constraint preconditioner (Bergamaschi, et al., 2007 & 2011):

$$ilde{\mathcal{P}} = \left(egin{array}{ccc} \mathbf{D} & \mathbf{0} & \mathbf{ ilde{L}} \\ \mathbf{0} & \mathbf{R} & \mathbf{0} \\ \mathbf{ ilde{L}}^{\mathrm{T}} & \mathbf{0} & \mathbf{0} \end{array}
ight)$$

$$\Rightarrow ilde{\mathcal{P}}^{-1} = \left(egin{array}{ccc} \mathbf{0} & \mathbf{0} & \mathbf{ ilde{L}}^{-\mathrm{T}} \ \mathbf{0} & \mathbf{R}^{-1} & \mathbf{0} \ \mathbf{ ilde{L}}^{-1} & \mathbf{0} & -\mathbf{ ilde{L}}^{-1}\mathbf{D}\mathbf{ ilde{L}}^{-\mathrm{T}} \end{array}
ight)$$

• Note that $\tilde{\mathcal{P}}^{-1}$ does not contain \mathbf{D}^{-1} .

• With this preconditioner, we can prove some nice results for the case $\tilde{\Gamma} \equiv \Gamma$

$$\left(\begin{array}{ccc} \mathbf{0} & \mathbf{0} & \mathbf{L}^{-\mathrm{T}} \\ \mathbf{0} & \mathbf{R}^{-1} & \mathbf{0} \\ \mathbf{L}^{-1} & \mathbf{0} & -\mathbf{L}^{-1}\mathbf{D}\mathbf{L}^{-\mathrm{T}} \end{array} \right) \left(\begin{array}{ccc} \mathbf{D} & \mathbf{0} & \mathbf{L} \\ \mathbf{0} & \mathbf{R} & \mathbf{H} \\ \mathbf{L}^{\mathrm{T}} & \mathbf{H}^{\mathrm{T}} & \mathbf{0} \end{array} \right) \left(\begin{array}{c} \lambda \\ \mu \\ \delta \mathbf{x} \end{array} \right) = \tau \left(\begin{array}{c} \lambda \\ \mu \\ \delta \mathbf{x} \end{array} \right)$$

$$\Rightarrow \mathbf{I} + \begin{pmatrix} \mathbf{0} & \mathbf{L}^{-\mathrm{T}} \mathbf{H}^{\mathrm{T}} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{R}^{-1} \mathbf{H} \\ \mathbf{0} & -\mathbf{L}^{-1} \mathbf{D} \mathbf{L}^{-\mathrm{T}} \mathbf{H}^{\mathrm{T}} & \mathbf{0} \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \\ \delta \mathbf{x} \end{pmatrix} = \tau \begin{pmatrix} \lambda \\ \mu \\ \delta \mathbf{x} \end{pmatrix}$$

$$\Rightarrow \mathsf{HL}^{-1}\mathsf{DL}^{-\mathrm{T}}\mathsf{H}^{\mathrm{T}}\mu + (\tau - 1)^{2}\mathsf{R}\mu = \mathbf{0}$$

 \Rightarrow $(\tau - 1)$ is imaginary (or zero) since $HL^{-1}DL^{-T}H^{T}$ is positive semi-definite and **R** is positive definite.

- The eigenvalues τ of $\tilde{\mathcal{P}}^{-1}\mathcal{A}$ lie on the line $\Re(\tau)=1$ in the complex plane.
- Their distance above/below the real axis is:

$$\pm \sqrt{\frac{\mu_i^{\mathrm{T}} \mathbf{H} \mathbf{L}^{-1} \mathbf{D} \mathbf{L}^{-\mathrm{T}} \mathbf{H}^{\mathrm{T}} \mu_i}{\mu_i^{\mathrm{T}} \mathbf{R} \mu_i}}$$

where μ_i is the μ component of the *i*th eigenvector.

- The fraction under the square root is, roughly speaking, the ratio of background+model error variance to observation error variance associated with the pattern μ_i .
- In the usual implementation of 4D-Var, the condition number is given by the ratio of these variances, not the square-root.

- For the preconditioner, we need an approximate inverse of L.
- One approach is to use the following identity (exercise for the reader!):

$$L^{-1} = I + (I - L) + (I - L)^2 + ... + (I - L)^{N-1}$$

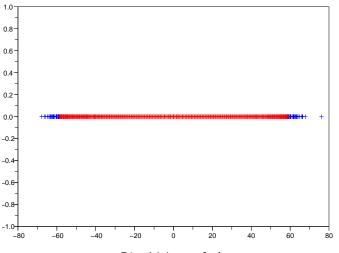
- Since this is a power series expansion, it suggests truncating the series at some order < N-1.
- (A very few iterations of a Krylov solver may be a better idea. I've not tried this yet.)

30 / 37

Results

- The practical reaults shown in the next few slides are for a simplified (toy) analogue of a real system.
- The model is a two-level quasi-geostrophic channel model with 1600 gridpoints.
- The model has realistic error-growth and time-to-nonlinearity
- There are 100 observations of streamfunction every 3 hours, and 100 wind observations every 6 hours.
- The error covariances are assumed to be horizontally isotropic and homogeneous, with a Gaussian spatial structure.

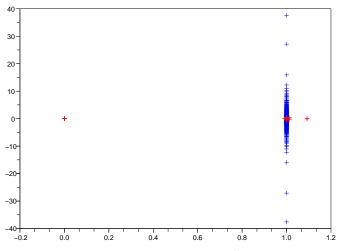
OOPS QG model. 24-hour window with 8 sub-windows.



Ritz Values of A.

Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 32 / 37

OOPS QG model. 24-hour window with 8 sub-windows.



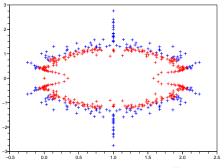
Ritz Values of $\tilde{\mathcal{P}}^{-1}\mathcal{A}$ for $\tilde{\mathbf{L}}=\mathbf{L}$.

CECMWF

Converged Ritz values after 500 Arnoldi iterations are shown in blue. Unconverged values in red. * 4 = * 4 = * 2 * 9 0 0

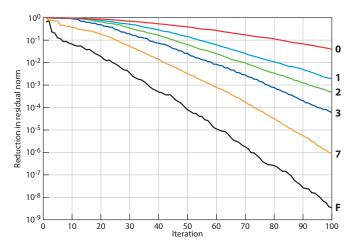
Mike Fisher (ECMWF) Parallel 4D-Var October 24, 2011 33 / 37

- ullet It is much harder to prove results for the case ${ ilde{f L}}
 eq {f L}$.
- Experimentally, it seems that many eigenvalues continue to lie on $\Re(\tau)=1$, with the remainder forming a cloud around $\tau=1$.



Ritz Values of $\tilde{\mathcal{P}}^{-1}\mathcal{A}$ for $\tilde{\mathbf{L}}=\mathbf{I}$.

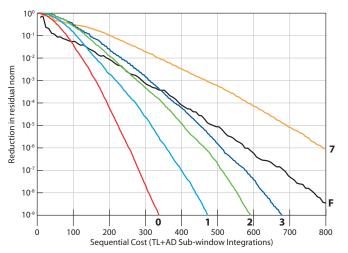
OOPS, QG model, 24-hour window with 8 sub-windows.



Convergence as a function of iteration for different truncations of the series expansion for L. ("F" = Forcing formulation.)

35 / 37

OOPS, QG model, 24-hour window with 8 sub-windows.



Convergence as a function of sequential sub-window integrations for different truncations of the series expansion for \mathbf{L} .

Conclusions

- 4D-Var was analysed from the point of view of parallelization.
- 4D-PSAS and the forcing formulation are inherently sequential.
- The 4D-state problem is parallel, but ill-conditioning of D makes it difficult to precondition.
- The saddle point formulation is parallel, and seems easier to precondition.
 - A saddle point method for strong-constraint 4D-Var was proposed by Thierry Lagarde in his PhD thesis (2000: Univ Paul Sabatier, Toulouse). It didn't catch on:
 - Parallelization was not so important 10 year ago.
 - In strong constraint 4D-Var, we only get a factor-of-two speed-up. This
 is not enough to overcome the slower convergence due to the fact that
 the system is indefinite.
- The ability to also parallelize over sub-windows allows a much bigger speed-up in weak-constraint 4D-Var.
- The saddle point formulation is already fast enough to be useful.
- Better solvers and preconditioners can only make faster.

■ •990