
Chapter 9: !Schemes for the One-Dimensional Nonlinear Shallow-Water 
Equations

Copyright 2011, David A. Randall

9.1 ! Properties of the continuous equations

In this chapter, we consider a highly  idealized version of the momentum equation: 
Shallow water, one dimension, no rotation. In a later chapter, we will go to two dimensions with 
rotation, and bring in the effects of vorticity, which are extremely important.

Consider the one-dimensional shallow-water equations, with bottom topography, without 
rotation and with v = 0 . The prognostic variables are the water depth or mass, h , and the speed, 
u . The exact equations are

∂h
∂t

+
∂
∂x

hu( ) = 0 ,

(1)
and

∂u
∂t

+
∂
∂x

Κ + g h + hS( )⎡⎣ ⎤⎦ = 0 .

(2)
Here 

Κ ≡
1
2
u2

(3)
is the kinetic energy per unit mass, g is the acceleration of gravity, and hS  is the height of the 

bottom topography. In Eq. (2), the vorticity has been assumed to vanish, which is reasonable in 
the absence of rotation and in one dimension. The effects of vorticity are of course absolutely 
critical in geophysical fluid dynamics; they will be discussed in a later chapter.

The design of the scheme is determined by a sequence of choices. We should welcome the 
opportunity to make the best possible choices. The first thing that we have to choose is the 
particular form of the continuous equations that the space-differencing scheme is designed to 
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mimic. Eq. (2) is one possible choice for the continuous form of the momentum equation. An 
alternative choice is

∂
∂t

hu( ) + ∂
∂x

huu( ) + gh ∂
∂x

h + hS( ) = 0 ,

(4)
i.e., the flux form of the momentum equation, which can be derived by combining (1) and (2). 

The continuous shallow-water equations have important “integral properties,” which we 
will use as a guide in the design of our space-differencing scheme. For example, if we integrate 
(1) with respect to x , over a closed or periodic domain, we obtain

d
dt

hdx
domain
∫

⎛

⎝
⎜

⎞

⎠
⎟ = 0 ,

(5)
which means that mass is conserved. 

Using

h ∂h
∂x

= ∂
∂x

h2

2
⎛

⎝
⎜

⎞

⎠
⎟ ,

(6)
we can rewrite (4) as

∂
∂t

hu( ) + ∂
∂x

huu + g h
2

2
⎛
⎝⎜

⎞
⎠⎟
= −gh ∂hS

∂x
.

(7)
The momentum per unit area is hu . If we integrate with respect to x , over a periodic domain, 
we obtain

d
dt

hudx
domain
∫

⎛

⎝⎜
⎞

⎠⎟
= − gh ∂hS

∂x
dx

domain
∫ .

(8)

This shows that in the absence of topography, i.e., if 
∂hS
∂x

= 0  everywhere, the domain average of 

hu  is invariant, i.e., momentum is conserved. When hS  is spatially  variable, the atmosphere and 

the “solid earth” can exchange momentum through the pressure field.

The flux form of the kinetic energy equation can be derived by multiplying (1) by  K and 
(2) by hu , and adding the results, to obtain
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∂
∂t

hΚ( ) + ∂
∂x

huΚ( ) + hu ∂
∂x

g h + hS( )⎡⎣ ⎤⎦= 0 .

(9)
The last term of (9) represents conversion between potential and kinetic energy. 

The potential energy equation can be derived by multiplying (1) by g h + hS( )  to obtain

∂
∂t

hg hS +
1
2
h⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
+ g h + hS( ) ∂

∂x
hu( ) = 0 ,

(10)
or

∂
∂t

hg hS +
1
2
h⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
+

∂
∂x

hug h + hS( )⎡⎣ ⎤⎦ − hu
∂
∂x

g h + hS( )⎡⎣ ⎤⎦ = 0 .

(11)
The last term of (11) represents conversion between kinetic and potential energy; compare with 
(9). In deriving (10), we have assumed that hS  is independent of time. This assumption can 

easily be relaxed.

When we add (9) and (10), the energy conversion terms cancel, and we obtain a statement 
of the conservation of total energy, i.e.,

∂
∂t

h Κ + g hS +
1
2
h⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭
+

∂
∂x

hu Κ + g h + hS( )⎡⎣ ⎤⎦{ } = 0 .

(12)
The integral of (10) over a closed or periodic domain gives

d
dt

h Κ + g hS +
1
2
h

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥
dx

domain
∫ = 0 ,

(13)
which shows that the domain-integrated total energy is conserved.

9.2 ! Space differencing

Now consider finite-difference approximations to (1) and (2). We keep the time 
derivatives continuous, and explore the effects of space differencing only. We use a staggered 
grid, with h  defined at integer points (hereafter called mass points) and u  at half-integer points 
(hereafter called wind points). This can be viewed as a one-dimensional version of the C grid. 
The grid spacing, Δx , is assumed to be uniform. .Our selection of this particular grid is a second 
choice made in the design of the space-differencing scheme. 

The finite difference version of the mass conservation equation is
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dhi
dt

+
hu( )i+ 1

2
− hu( )i− 1

2

Δx

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥= 0 .

(14)
It should be understood that

h
i+ 1
2

u
i+ 1
2

≡ hu( )i+ 1
2

.

(15)
The “wind-point” masses, e.g., h

i+ 1
2

, are undefined at this stage. The finite-difference 

approximation used in (14) is consistent with second-order accuracy in space, although we 
cannot really determine the order of accuracy until the finite-difference form of the mass flux has 
been specified. We have already discussed how the “flux form” of (14) makes it possible for the 
model to conserve mass, regardless of how the mass fluxes are defined, i.e.,

d
dt

hi
domain
∑⎛

⎝⎜
⎞
⎠⎟
= 0 .

(16)
This is analogous to (5).

The finite-difference momentum equation that is modeled after (2) is

du
i+ 1
2

dt
+ Κ i+1 −Κ i

Δx
⎛
⎝
⎜

⎞
⎠
⎟+ g

h + hS( )i+1 − h + hS( )i
Δx

⎡

⎣
⎢

⎤

⎦
⎥= 0 .

(17)
The kinetic energy per unit mass, Κ i , is undefined at this stage, but resides at mass points. The 

finite-difference approximations used in (17) are consistent with second-order accuracy in space, 
although we cannot really determine the order of accuracy  until the finite-difference forms of the 
mass flux and kinetic energy are specified. Multiply (17) by h

i+ 1
2

to obtain

h
i+ 1
2

du
i+ 1
2

dt
+ h

i+ 1
2

Κ i+1 −Κ i

Δx
⎛
⎝
⎜

⎞
⎠
⎟+ gh

i+ 1
2

h + hS( )i+1 − h + hS( )i
Δx

⎡

⎣
⎢

⎤

⎦
⎥= 0 .

(18)
In order to mimic the differential relationship (6), we must require that

h
i+ 1
2

hi+1 − hi
Δx

⎛
⎝⎜

⎞
⎠⎟
=

h2i+1 − hi
2

2Δx
⎛
⎝⎜

⎞
⎠⎟

,

(19)
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which leads to

h
i+ 1
2

= hi+1 + hi
2

.

(20)
This choice is required for momentum conservation. In view of (20), we can write

hu( )i+ 1
2
=

hi+1 + hi
2

⎛
⎝⎜

⎞
⎠⎟
u
i+ 1
2

.

(21)
Combining (20) with the continuity equation (14), we see that we can write a continuity 

equation for the wind points, as follows:

dh
i+ 1
2

dt
+
1
2Δx

hu( )i+ 3
2
− hu( )i− 1

2

⎡
⎣⎢

⎤
⎦⎥
= 0 .

(22)
It should be clear from the form of (22) that the “wind-point mass” is actually conserved by the 
model. Of course, we do not actually use (22) when we integrate the model; instead we use (14). 
Nevertheless, (22) will be satisfied, because it  can be derived from (14) and (20). An alternative 
form of (22) is

dh
i+ 1
2

dt
+
1
Δx

hu( )i+1 − hu( )i⎡⎣ ⎤⎦ = 0 ,

(23)
where

hu( )i+1 ≡
1
2

hu( )i+ 3
2
+ hu( )i+ 1

2

⎡
⎣⎢

⎤
⎦⎥

 and hu( )i ≡
1
2

hu( )i+ 1
2
+ hu( )i− 1

2

⎡
⎣⎢

⎤
⎦⎥

.

(24)
Now add (18) and u

i+ 1
2

 times (23), and use (19), to obtain what “should be” the flux form 

of the momentum equation, analogous to (4):

d
dt

h
i+ 1
2

u
i+ 1
2

⎛

⎝
⎜

⎞

⎠
⎟+ h

i+ 1
2

Κ i+1 −Κ i

Δx
⎛
⎝
⎜

⎞
⎠
⎟+

u
i+ 1
2

hu( )i+1 − hu( )i⎡⎣ ⎤⎦

Δx
+ g h2i+1 − h

2
i

2Δx
⎛

⎝
⎜

⎞

⎠
⎟ = −gh

i+ 1
2

hS( )i+1 − hS( )i
Δx

⎡

⎣
⎢

⎤

⎦
⎥ .

(25)
Suppose that the kinetic energy is defined by
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Κ i ≡
1
2
u
i+ 1
2

u
i− 1
2

.

(26)
Other possible definitions of Κ i  will be discussed later. Using (26) and (24), we can write

h
i+ 1
2

Κ i+1 −Κ i

Δx
⎛
⎝
⎜

⎞
⎠
⎟+ u

i+ 1
2

1
Δx

hu( )i+1 − hu( )i⎡⎣ ⎤⎦

= 1
2Δx

h
i+ 1
2

u
i+ 3
2

u
i+ 1
2

− u
i+ 1
2

u
i− 1
2

⎛

⎝
⎜

⎞

⎠
⎟+ u

i+ 1
2

hu( )i+ 3
2
− hu( )i− 1

2

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

= 1
Δx

h
i+ 1
2

+ h
i+ 3
2

2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
u
i+ 3
2

u
i+ 1
2

−
h
i+ 1
2

+ h
i− 1
2

2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
u
i− 1
2

u
i+ 1
2

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
.

(27)

This is a flux form. The momentum flux at the point i is 
h
i+ 1
2

+ h
i− 1
2

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
u
i− 1
2

u
i+ 1
2

, and the 

momentum flux at the point i +1  is 
h
i+ 1
2

+ h
i+ 3
2

2

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟
u
i+ 3
2

u
i+ 1
2

. Because (27) is a flux form, 

momentum will be conserved by the scheme if we define the kinetic energy by (26). 

Note, however, that there are two problems with (26) when when u  is dominated by the 
2Δx -mode. For starters, (26) will give a negative value of Κ i , which is unphysical. As a result, 

the momentum flux will be negative for the 2Δx -mode, i.e., momentum will be transferred in the 
−x direction, assuming that the interpolated masses that appear in the momentum fluxes are 
positive. 

Next, we derive the kinetic energy equation. Recall that the kinetic energy is defined at 
mass points. To begin the derivation, multiply (17) by hu( )i+ 1

2
 to obtain

hu( )i+ 1
2

du
i+ 1
2

dt
+ hu( )i+ 1

2

Κ i+1 −Κ i

Δx
⎛
⎝
⎜

⎞
⎠
⎟+ g hu( )i+ 1

2

h + hS( )i+1 − h + hS( )i
Δx

⎡

⎣
⎢

⎤

⎦
⎥= 0 .

(28)
Here we have returned to a general form of Κ i ; Eq. (26) is not being used. Rewrite (28) for grid 

point i − 1
2

, simply by subtracting one from each subscript:
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hu( )i− 1
2

du
i− 1
2

dt
+ hu( )i− 1

2

Κ i+1 −Κ i

Δx
⎛
⎝
⎜

⎞
⎠
⎟+ g hu( )i− 1

2

h + hS( )i − h + hS( )i−1
Δx

⎡

⎣
⎢

⎤

⎦
⎥= 0 .

(29)

Now add (28) and (29), and multiply the result by 
1
2

:

1
2

hu( )i+ 1
2

du
i+ 1
2

dt
+ hu( )i− 1

2

du
i− 1
2

dt

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+ 1
2

hu( )i+ 1
2

Κ i+1 −Κ i

Δx
⎛
⎝
⎜

⎞
⎠
⎟+ hu( )i− 1

2

Κ i −Κ i−1

Δx
⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

+ g
2

hu( )i+ 1
2

h + hS( )i+1 − h + hS( )i
Δx

⎡

⎣
⎢

⎤

⎦
⎥+ hu( )i− 1

2

h + hS( )i − h + hS( )i−1
Δx

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0 .

(30)
This is an advective form of the kinetic energy equation.

Now we try to derive, from (30) and (14), a flux form of the kinetic energy equation. 
Begin by multiplying (14) by Κ i : 

Κ i
dhi
dt

+
hu( )i+ 1

2
− hu( )i− 1

2

Δx

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0 .

(31)
Keep in mind that we still do not know what Κ i  is; we have just multiplied the continuity 

equation by a mystery variable. Add (31) and (30) to obtain

Κ i
dhi
dt

+ 1
2

hu( )i+ 1
2

du
i+ 1
2

dt
+ hu( )i− 1

2

du
i− 1
2

dt

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

+
hu( )i+ 1

2

Δx
Κ i +

1
2

Κ i+1 −Κ i( )⎡
⎣⎢

⎤
⎦⎥
−
hu( )i− 1

2

Δx
Κ i −

1
2

Κ i −Κ i−1( )⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪

+g hu( )i+ 1
2

h + hS( )i+1 − h + hS( )i⎡⎣ ⎤⎦
2Δx

+ hu( )i− 1
2

h + hS( )i − h + hS( )i−1⎡⎣ ⎤⎦
2Δx

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0 .

(32)
Eq. (32) “should” be a flux form of the kinetic energy equation. 

! Revised October 28, 2011 11:28 AM! 7

An Introduction to Numerical Modeling of the Atmosphere



The advection terms on the second line of (32) are very easy  to deal with. They can be 
rearranged to

1
Δx

hu( )i+ 1
2

1
2

Κ i+1 +Κ i( ) − hu( )i− 1
2

1
2

Κ i +Κ i−1( )⎡
⎣⎢

⎤
⎦⎥

.

(33)
This has the form of a “finite-difference flux divergence.” The conclusion is that these terms are 
consistent with kinetic energy conservation under advection, simply by virtue of their form, 
regardless of the method chosen to determine Κ i .

Next, consider the energy conversion terms on the third line of (32), i.e.,

g hu( )i+ 1
2

h + hS( )i+1 − h + hS( )i
2Δx

⎡

⎣
⎢

⎤

⎦
⎥ + hu( )i− 1

2

h + hS( )i − h + hS( )i−1
2Δx

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
.

(34)
We want to compare these terms with the corresponding terms of the finite-difference form of the 
potential energy equation, which can be derived by multiplying (14) by g h + hS( )i :

d
dt

hig hS +
1
2
h⎛

⎝⎜
⎞
⎠⎟ i

⎡

⎣
⎢

⎤

⎦
⎥ + g h + hS( )i

hu( )i+1
2
− hu( )i−1

2

Δx

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
= 0 .

(35)
Eq. (35) is analogous to (10). We want to recast (35) so that we see advection of potential energy, 
as well as the energy conversion term corresponding to (34); compare with (11). We write

d
dt

hig hS +
1
2
h

⎛
⎝
⎜

⎞
⎠
⎟
i

⎡

⎣
⎢

⎤

⎦
⎥+ ADVi

− g
2

hu( )i+ 1
2

h + hS( )i+1 − h + hS( )i
Δx

⎡

⎣
⎢

⎤

⎦
⎥+ hu( )i− 1

2

h + hS( )i − h + hS( )i−1
Δx

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0 .

(36)
where “ ADVi ” represents the advection of potential energy, in flux form. The second line of (36) 

is a copy of the energy conversion terms of (32), but with the sign reversed. We require that (36) 
be equivalent to (35), and ask what form of ADVi  is implied by this requirement. The answer is:

ADVi =
1
Δx

hu( )i+1
2

g
2

h + hS( )i+1 + h + hS( )i⎡⎣ ⎤⎦ − hu( )i−1
2

g
2

h + hS( )i + h + hS( )i−1⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭

.

(37)
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This has the form of a finite-difference flux divergence, as desired. In summary, conservation of 
potential energy and the cancellation of the energy conversion terms have both turned out to be 
pretty easy.

We are not quite finished, however, because we have not yet examined the time-rate-of-

change terms of (32). Obviously, the first line of (32) must be analogous to 
∂
∂t

hΚ( ) . For 

convenience, we define

ΚE  tendency( )i ≡ Κ i
dhi
dt

+
1
2

hu( )i+ 1
2

d
dt
u
i+ 1

2

+ hu( )i− 1
2

d
dt
u
i− 1

2

⎡

⎣
⎢

⎤

⎦
⎥ .

(38)
Substituting for the mass fluxes from (21), we can write (38) as

ΚE  tendency( )i ≡ Κ i
dhi
dt

+
1
8

hi+1 + hi( ) d
dt

u2

i+ 1
2

⎛

⎝⎜
⎞

⎠⎟
+ hi + hi−1( ) d

dt
u2

i− 1
2

⎛

⎝⎜
⎞

⎠⎟
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

.

(39)
The requirement for kinetic energy conservation is

ΚE  tendency( )i
domain
∑ =

d
dt

hiΚ i( )
domain
∑ .

(40)
Note that only the sums over i must agree; it is not necessary that 

Κ i
dhi
dt

+ 1
8

hi+1 + hi( ) d
dt

u2
i+ 1
2

⎛

⎝
⎜

⎞

⎠
⎟+ hi + hi−1( ) d

dt
u2
i− 1
2

⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢

⎤

⎦
⎥  be equal to d

dt
hiΚ i( )  for each i. 

To complete our check of kinetic energy  conservation, we substitute for Κ i  on the right-hand 

side of (40), and check to see whether the resulting equation is actually satisfied.

The bad news is that, if we use (26), Eq. (40) is not satisfied. This means that we cannot 
have both momentum conservation under advection and kinetic energy conservation, when we 
start from the continuous form of (2). On the other hand, we did not like (26) anyway.

The good news is that there are ways to satisfy  (40). Two alternative definitions of the 
kinetic energy are

Κ i ≡
1
4
u2
i+ 1
2

+ u2
1− 1
2

⎛

⎝⎜
⎞

⎠⎟
,

(41)
and
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hiΚ i ≡
1
4
h
i+ 1
2

u2
i+ 1
2

+ h
i− 1
2

u2
i− 1
2

⎛

⎝
⎜

⎞

⎠
⎟ .

(42)
With either of these definitions, Κ i  cannot be negative. We can show that  the sum over the 

domain of hiΚ i  given by (41) is equal to the sum over the domain of hiΚ i  given by (42). Either 

choice allows (40) to be satisfied, so both are consistent with kinetic energy conservation under 
advection, but neither is consistent with momentum conservation under advection.

In summary, when we start from the continuous form of (2), we can have either 
momentum conservation under advection or kinetic energy  conservation under advection, but not 
both. Which is better depends on the application.

An alternative approach is to start from a finite-difference form of the momentum 
equation that  mimics (4). In that case, we can conserve both momentum under advection and 
kinetic energy under advection. You are asked to demonstrate this in Problem 2, below.

When we generalize to the two-dimensional shallow-water equations with rotation, there 
are very important additional considerations having to do with vorticity, and the issues discussed 
here have to be revisited. This is discussed in Chapter 11.

9.3 ! Summary

We have explored the conservation properties of spatial finite-difference approximations 
of the momentum and continuity equations for one-dimensional non-rotating flow, using a 
staggered grid. We were able to find a scheme that guarantees conservation of mass, conservation 
of momentum in the absence of bottom topography, conservation of kinetic energy under 
advection, conservation of potential energy under advection, and conservation of total energy in 
the presence of energy conversion terms. 

This chapter has introduced several new things. This is the first time that we have 
considered the momentum equation. This is the first time that we have discussed energy 
conversions and total energy conservation. And the chapter illustrates a way of thinking about the 
trade-offs that must be weighed in the design of a scheme, as various alternative choices each 
have advantages and disadvantages.

Problems

1.  Show that if we use (26) it is not possible to conserve kinetic energy under advection.

2. Starting from a finite-difference form that mimics (4), show that it  is possible to conserve 
both momentum and total energy. Use the C grid, and keep the time derivatives 
continuous.
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