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10.1 ! Introduction

Vertical differencing is a very different problem from horizontal differencing, for three 
reasons. 

• First, gravitational effects strongly control vertical motions, and gravitational potential 
energy is an important source of atmospheric kinetic energy. 

• Second, the Earth’s atmosphere is very shallow compared to its horizontal extent, so that, 
on large horizontal scales, vertical gradients are much stronger than horizontal gradients, 
and horizontal motions are much faster than vertical motions. The strong vertical 
gradients require a high-resolution vertical grid. The high-resolution vertical grid can 
require small time steps to maintain computational stability.

• Third, the atmosphere has a complex lower boundary that can strongly influence the 
circulation through both mechanical blocking and thermal forcing. 

To construct a vertically discrete model, we have to make a lot of choices, including 
these: 

• The governing equations: Quasi-static or not? Shallow atmosphere or not? Anelastic or 
not?

• The vertical coordinate system;

• The vertical staggering of the model’s dependent variables;

• The properties of the exact equations that we want the discrete equations to mimic. 

As usual, these choices will involve trade-offs. Each possible choice will have strengths and 
weaknesses. 

We must also be aware of possible interactions between the vertical differencing and the 
horizontal and temporal differencing. 
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10.2 ! Choice of equation set 

The speed of sound in the Earth’s atmosphere is about 300 ms-1 . If we permit vertically 
propagating sound waves, then, with explicit time differencing, the largest time step that is 
compatible with linear computational stability  can be quite small. For example, if a model has a 
vertical grid spacing on the order of 300 m, the allowed time step will be on the order of one 
second. This may be palatable if the horizontal and vertical grid spacings are comparable. On the 
other hand, with a horizontal grid spacing of 30 km and a vertical grid spacing of 300 m, 
vertically propagating sound waves will limit the time step to about one percent of the value that 
would be compatible with the horizontal grid spacing. That's hard to take. 

There are four possible ways around this problem. One approach is to use a set of 
equations that filters sound waves, i.e., “anelastic” equations. There are several varieties of 
anelastic systems, developed over a period of forty years or so (Ogura and Phillips, 1962;  Lipps 
and Hemler, 1982; Durran, 1989; Bannon, 1996; Arakawa and Konor, 2009). The most recent 
formulations are quite attractive. Anelastic models are very widely  used, especially  for high-
resolution modeling, and anelastic systems can be an excellent choice. 

A second approach is to adopt the quasi-static system of equations, in which the equation 
of vertical motion is replaced by the hydrostatic equation. The quasi-static system filters 
vertically propagating sound waves, while permitting Lamb waves, which are sound waves that 
propagate only in the horizontal. The quasi-static approximation is widely used in global models 
for both weather prediction and climate, but its errors become larger on smaller spatial scales, so 
its use is limited to models with horizontal grid spacings on the order of 10 km or larger, 
depending on the particular application.

The third approach is to use implicit or partially implicit time differencing, which can 
permit a long time step  even when vertically propagating sound waves occur. The main 
disadvantage is complexity.

The fourth approach is to “sub-cycle.” Small time steps can be used to integrate the terms 
of the equations that govern sound waves, while longer time steps are used for the remaining 
terms. 

*** Guest lecture on “sound-proof” systems, by Celal Konor.

10.3 ! General vertical coordinate 

*** Re-do without using the hydrostatic approximation. 

The most obvious choice of vertical coordinate system, and one of the least useful, is 
height. As you probably already know, the equations of motion are frequently expressed using 
vertical coordinates other than height. The most basic requirement for a variable to be used as a 
vertical coordinate is that it vary  monotonically with height. Even this requirement can be 
relaxed; e.g., a vertical coordinate can be independent of height over some layer of the 
atmosphere, provided that the layer is not too deep.
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Factors to be weighed in choosing a vertical coordinate system for a particular 
application include the following:

• the form of the lower boundary condition (simpler is better);

• the form of the continuity equation (simpler is better);

• the form of the horizontal pressure gradient force (simpler is better, and a pure gradient is 
particularly good); 

• the form of the hydrostatic equation (simpler is better);

• the intensity of the “vertical motion” as seen in the coordinate system (weaker vertical 
motion is simpler and better);

• the method used to compute the vertical motion (simpler is better). 

Each of these factors will be discussed below, for specific vertical coordinates. We begin, 
however, by presenting the basic governing equations, for quasi-static motions, using a general 
vertical coordinate. 

Kasahara (1974) published a detailed discussion of general vertical coordinates for quasi-
static models. A more modern discussion of the same subject is given by Konor and Arakawa 
(1997). With a general vertical coordinate, ζ , the hydrostatic equation can be expressed as 

∂φ
∂ζ

= ∂φ
∂p

⎛
⎝⎜

⎞
⎠⎟

∂p
∂ζ

⎛
⎝⎜

⎞
⎠⎟

=αρζ ,
(1)

where φ ≡ gz  is the geopotential, g is the acceleration of gravity, z is height, p is the pressure, α  

is the specific volume, and ρζ  is the “pseudo-density” for ζ . In deriving (1), we have used the 

hydrostatic equation in the form 

∂φ
∂p

= −α ,

(2)

and we define 

ρζ ≡ − ∂p
∂ζ

⎛
⎝⎜

⎞
⎠⎟

(3)
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as the pseudo-density, i.e., the amount of mass (as measured by the pressure difference) between 
two ζ -surfaces. The minus sign in (3) is arbitrary, and can be included or not according to taste, 

perhaps depending on the particular choice of ζ . It is also possible to introduce a factor of g , or 

not, depending on the particular choice of ζ .

The equation expressing conservation of an arbitrary intensive scalar, , can be written as

 

∂
∂t

ρζψ
⎛
⎝⎜

⎞
⎠⎟ζ

+∇ζ ⋅ ρζVψ( ) + ∂
∂ζ

ρζ
ζψ( ) = ρζSψ .

(4)

Here 

 
ζ ≡

Dζ
Dt

(5)

is the rate of change of ζ  following a particle, and Sψ  is the source or sink of ψ , per unit mass. 

Eq. (4) can be derived by adding up the fluxes of ψ  across the boundaries of a control volume.  

It can also be derived by  starting from the corresponding equation in a particular coordinate 
system, such as height, and performing a coordinate transformation. We can obtain the continuity 
equation in ζ -coordinates from (4), by putting ψ ≡ 1  and Sψ ≡ 0 : 

 

∂ρζ

∂t
⎛
⎝⎜

⎞
⎠⎟ζ

+∇ζ ⋅ ρζV( ) + ∂
∂ζ

ρζ
ζ( ) = 0 .

(6)

By combining (4) and (6), we can obtain the advective form of the conservation equation 
for ψ : 

Dψ
Dt

= Sψ ,

(7)

where the Lagrangian or material time derivative is expressed by 

 

D
Dt

( ) = ∂
∂t

⎛
⎝⎜

⎞
⎠⎟ζ

+ V ⋅∇ζ + ζ
∂
∂ζ

.

(8)

For example, the vertical pressure velocity, 
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ω ≡
Dp
Dt

,

(9)

can be expressed, using the ζ -coordinate, as 

 

ω = ∂p
∂t

⎛
⎝⎜

⎞
⎠⎟ζ

+V ⋅∇ζ p + ζ
∂p
∂ζ

= ∂p
∂t

⎛
⎝⎜

⎞
⎠⎟ζ

+V ⋅∇ζ p − ρζ
ζ .

(10)

The lower boundary condition, i.e., that no mass crosses the Earth’s surface, is expressed 
by requiring that a particle that is on the Earth’s surface remain there: 

 

∂ζS
∂t

+ VS ⋅∇ζS − ζS = 0 .

(11)

In the special case in which ζS  is independent of time and the horizontal coordinates, (11) 

reduces to  
ζS = 0 . Eq. (11) can be derived by integration of (6) throughout the entire 

atmospheric column, which gives

 

∂
∂t

ρζ dζζS

ζΤ∫ +∇⋅ ρζVdζζS

ζΤ∫( ) + ρζ( )S
∂ζ S

∂t
+VS ⋅∇ζ S − ζ S

⎛
⎝⎜

⎞
⎠⎟ − ρζ( )Τ

∂ζΤ

∂t
+VΤ ⋅∇ζΤ − ζΤ

⎛
⎝⎜

⎞
⎠⎟ = 0 .

(12)

Here ζΤ  is the value of ζ  at the top of the model atmosphere. We allow the possibility that the 

top of the model is placed at a finite height and non-zero pressure. Even if the top of the model is 
at the “top of the atmosphere,” i.e., at p = 0 , the value of ζΤ  may or may not be finite, depending 

on the definition of ζ . The quantity on the left-hand side of (11) is proportional to the mass flux 

across the Earth’s surface. Similarly, 
 
ρζ( )Τ

∂ζΤ

∂t
+VΤ ⋅∇ζΤ − ζΤ

⎛
⎝⎜

⎞
⎠⎟  represents the mass flux across 

the top of the atmosphere, which we assume to be zero, i.e.,

 

∂ζΤ

∂t
+ VΤ ⋅∇ζΤ − ζΤ = 0 .

(13)

If the top of the model is assumed to be a surface of constant ζ , which is usually the case, then 

(13) reduces to
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ζΤ = 0 .

(14)

Substituting (11) and (13) into (12), we find that 

∂
∂t

ρζ dζζS

ζΤ∫ +∇⋅ ρζVdζζΤ

ζS∫( ) = 0 .

(15)

In view of (3), this is equivalent to 

∂pS
∂t

= ∂pΤ
∂t

−∇⋅ ρζVdζζT

ζS∫( ) ,

(16)

which is the surface pressure tendency equation. Depending on the definitions of ζ  and ζΤ , it 

may  or may  not be appropriate to set 
∂pΤ
∂t

= 0 , as an upper boundary condition. This is discussed 

later. Corresponding to (16), we can show that the pressure tendency on an arbitrary ζ –surface 

satisfies 

 

∂p
∂t

⎛
⎝⎜

⎞
⎠⎟ζ

= ∂pΤ
∂t

−∇⋅ ρζVdζζT

ζ

∫( ) + ρζ
ζ( )

ζ
.

(17)

The thermodynamic equation can be written as 

cp
∂Τ
∂t

⎛
⎝⎜

⎞
⎠⎟ζ

+ V ⋅∇ζΤ +ζ ∂Τ
∂ζ

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
=ωα +Q ,

(18)

where cp  is the specific heat of air at  constant pressure, α  is the specific volume, and Q is the 

heating rate per unit mass. An alternative form of the thermodynamic equation is

 

∂θ
∂t

⎛
⎝⎜

⎞
⎠⎟ζ

+ V ⋅∇ζθ + ζ ∂θ
∂ζ

=
Q
Π

,

(19)

where 

Π ≡ cp
Τ
θ
= cp

p
p0

⎛
⎝⎜

⎞
⎠⎟

Κ

(20)
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is the Exner function. In (20), θ  is the potential temperature; p0  is a positive, constant reference 

pressure, usually taken to be 1000 hPa, and κ ≡
R
cp

, where R is the gas constant. 

10.3.1 ! The equation of motion and the horizontal pressure-gradient force

The horizontal momentum equation can be written as 

 

∂V
∂t

⎛
⎝⎜

⎞
⎠⎟ζ

+ f + k ⋅ ∇ς ×V( )⎡⎣ ⎤⎦k ×V +∇ςΚ + ζ ∂V
∂ζ

= −∇ pφ +F .

(21)

Here −∇ pφ  is the horizontal pressure-gradient force (hereafter abbreviated as HPGF), which is 

expressed as minus the gradient  of the geopotential along an isobaric surface, and F is the 
friction vector. Also, k is a unit  vector pointing upward, and it is important to remember that  the 
meaning of k is not affected by the choice of vertical coordinate system. Similarly, V is the 
horizontal component of the velocity, and the meaning of V is not affected by the choice of the 
vertical coordinate system. Using the relation 

∇ p = ∇ζ −∇ζ p
∂
∂p

= ∇ζ +
∇ζ p
ρζ

∂
∂ζ
,

(22)

we can rewrite the HPGF as 

−∇ pφ = −∇ζφ −
1
ρζ

∂φ
∂ζ

∇ζ p .

(23)

In view of (1), this can be expressed as 

−∇ pφ = −∇ζφ −α∇ζ p .

(24)

Eq. (24) is a nice result. For ζ ≡ z  it reduces to −∇ pφ = −α∇z p , and for ζ = p  it becomes 

−∇ pφ = −∇ pφ . These are both very familiar special cases. 

Another useful form of the HPGF is expressed in terms of the Montgomery potential, 
which is defined by 
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M ≡ cpΤ + φ .

(25)

For the special case in which ζ ≡ θ , which will be discussed in detail later, the hydrostatic 

equation (1) can be written as 

∂M
∂θ

= Π .

(26)

With the use of (25) and (26), Eq. (24) can be expressed as 

−∇ pφ = −∇ζM +Π∇ζθ .

(27)

This form of the HPGF will be discussed later. 

Let qζ ≡ k ⋅∇ζ × V( ) + f  be the vertical component of the absolute vorticity. Note that 

the meaning of qζ  depends on the choice of ζ , because the curl of the velocity  is taken along a 

ζ -surface. Starting from the momentum equation, we can derive the vorticity equation in the 

form

 

∂qζ
∂t

⎛

⎝
⎜

⎞

⎠
⎟
ζ

+ V ⋅ ∇ζ( )qζ + ζ
∂qζ
∂ζ

= −qζ ∇ζ ⋅V( ) + ∂V
∂ζ

× ∇ζ
ζ( ) − k ⋅ ∇ζ × ∇ pφ( )⎡⎣ ⎤⎦+ k ⋅ ∇ζ ×F( ) .

(28)

The first term on the right-hand side of (28) represents the effects of stretching, and the second 
represents the effects of twisting. When the HPGF can be written as a gradient, it  has no effect in 
the vorticity equation, because the curl of a gradient  is always zero, provided that the curl and 
gradient are taken along the same isosurfaces. It is apparent from (24) and (27), however, that in 
general the HPGF is not simply  a gradient along a ζ -surface. When the HPGF is not a gradient 

on a ζ -surface, it can spin up or spin down a circulation on a ζ -surface. From (24) we see that 

the HPGF is a pure gradient for ζ ≡ p , and from (27) we see that the HPGF is a pure gradient for 

ζ ≡ θ . This is an advantage shared by the pressure and theta coordinates. 

The vertically integrated HPGF has a very important property  that can be used in the 
design of vertical differencing schemes. With the use of (1) and (3), we can rewrite (23) as 
follows:
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−ρζHPGF = −ρζ∇ζφ −
∂φ
∂ζ

∇ζ p

= −∇ζ ρζφ( ) +φ∇ζ ρζ −
∂φ
∂ζ

∇ζ p

= −∇ζ ρζφ( )−φ∇ζ
∂p
∂ζ

⎛
⎝⎜

⎞
⎠⎟
− ∂φ
∂ζ

∇ζ p

= −∇ζ ρζφ( )−φ ∂
∂ζ

∇ζ p( )− ∂φ
∂ζ

∇ζ p

= −∇ζ ρζφ( )− ∂
∂ζ

φ∇ζ p( ) .
(29)

Vertically integrating with respect to mass, we find that 

− ρζHPGFdζζΤ

ζS∫ = −∇ ρζφ dζζΤ

ζS∫( ) + ρζφ( )S∇ζ S − ρζφ( )T ∇ζT −φS ∇ς p( )S +φΤ ∇ς p( )Τ .

(30)

Here we have included the ρζφ( )S∇ζ S and − ρζφ( )T ∇ζT  terms to allow for the possibility that 

ςΤ  and ς S  are spatially variable. Consider a line integral of the vertically integrated HPGF, i.e., 

ρζ∇ pφ dζζΤ

ζS∫ , along a closed path. Because the term ∇ζ ρζφ dζζΤ

ζS∫  is a gradient, its line integral 

must vanish. The line integral of φS∇pS  will vanish if either φS  or pS  is constant along the path 

of integration, which is not likely with realistic geography. On the other hand, if either φΤ  or pΤ
is constant along the path of integration, then the line integral of φΤ∇pΤ  will vanish, and this can 

easily be arranged. We are thus motivated to choose either φΤ = constant or pΤ = constant. In 

addition, it is almost always possible (and advisable) to choose ςΤ = constant.

To see how (30) plays out, let’s consider two examples. For the case of pressure 
coordinates, with mp = −1  and pΤ = constant, the last two terms of (30) vanish, because they are 

proportional to the gradient of pressure on pressure surfaces. We get

− HPGF dp
pΤ

pS∫ = −∇ φ dp
pΤ

pS∫( ) +φS∇pS
Note that ∇pS  is not the same as ∇ p p( )S  (which is equal to zero). 

For the case of height coordinates, with ρζ = ρg  and zΤ = constant, we get
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− ρgHPGF dz
zT

zS∫ = −∇ ρgφ dz
zT

zS∫⎡⎣⎢
⎤
⎦⎥
+ ρgφ( )S∇zS −φS ∇z p( )S +φΤ ∇z p( )Τ .

Swapping the limits of integration, and flipping signs to compensate, we get 

− ρgHPGF dz
zS

zT∫ = −∇ ρgφ dz
zS

zT∫( )− ρgφ( )S∇zS +φS ∇z p( )S −φΤ ∇z p( )Τ
= −∇ ρgφ dz +φΤ pTzS

zT∫( ) +φS − ρg( )S∇zS + ∇z p( )S⎡⎣ ⎤⎦

= −∇ ρgφ dz −φΤ pTzS

zT∫( ) +φS ∂p
∂z

⎛
⎝⎜

⎞
⎠⎟ S

∇zS + ∇z p( )S
⎡

⎣
⎢

⎤

⎦
⎥

= −∇ ρgφ dz −φΤ pTzS

zT∫( ) +φS∇pS .
In the final line above, we have used a coordinate transformation.

We conclude that, in the absence of topography along the path of integration, and with 
either either φΤ = constant or pΤ = constant there cannot be any net spin-up or spin-down of a 

circulation in the region bounded by a closed path. This conclusion is independent of the choice 
of vertical coordinate system. Later we will show how this important constraint can be mimicked 
in a vertically discrete model.

10.3.2 !Vertical mass flux for a family of vertical coordinates

Konor and Arakawa (1997) derived a diagnostic equation that can be used to compute the 
vertical velocity,  ζ , for a large family of vertical coordinates that  can be expressed as functions 
of the potential temperature, the pressure, and the surface pressure, i.e., 

ζ ≡ F θ,  p,  pS( ) .
(31)

While not completely  general, Eq. (31) does include a variety of interesting cases, which will be 
discussed below, namely: 

• Pressure coordinates

• Sigma coordinates

• The hybrid sigma-pressure coordinate of Simmons and Burridge (1981)

• Theta coordinates

• The hybrid sigma-theta coordinate of Konor and Arakawa (1997).

By differentiating (31) with respect to time on a constant ζ surface, we find that 
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0 =
∂
∂t
F θ,  p,  pS( )⎡

⎣⎢
⎤
⎦⎥ζ

.

(32)

The chain rule tells us that this is equivalent to 

∂F
∂θ

∂θ
∂t

⎛
⎝
⎜

⎞
⎠
⎟
ζ

+ ∂F
∂p

∂p
∂t

⎛
⎝
⎜

⎞
⎠
⎟
ζ

+ ∂F
∂pS

∂pS
∂t

⎛
⎝
⎜

⎞
⎠
⎟ = 0 .

(33)

Substituting from (19), (17), and (16), we obtain 

 

∂F
∂θ

− V ⋅∇ζθ + ζ ∂θ
∂ζ

⎛
⎝⎜

⎞
⎠⎟
+ Q
Π

⎡

⎣
⎢

⎤

⎦
⎥

+ ∂F
∂p

∂pΤ
∂t

−∇⋅ ρζVdζζT

ζ

∫( ) + ρζ
ζ( )

ζ

⎡
⎣⎢

⎤
⎦⎥

+ ∂F
∂pS

∂pΤ
∂t

−∇⋅ ρζVdζζT

ζS∫( )⎡
⎣⎢

⎤
⎦⎥
= 0 .

.

(34)

This can be solved for the vertical velocity,  ζ : 

 

ζ =

∂F
∂θ

−V ⋅∇ζθ + Q
Π

⎛
⎝⎜

⎞
⎠⎟ +

∂F
∂p

∂pΤ
∂t

−∇⋅ ρζVdζζΤ

ζ

∫( )⎡
⎣⎢

⎤
⎦⎥
+ ∂F
∂pS

∂pT
∂t

−∇⋅ ρζVdpζΤ

ζS∫( )⎡
⎣⎢

⎤
⎦⎥

∂θ
∂ζ

∂F
∂θ

− ρζ
∂F
∂p

⎧
⎨
⎩

⎫
⎬
⎭

.

(35)

Here we have ignored the possibility that the heating rate, Q , is formulated as an explicit 

function of  ζ . In a numerical model, Q  may be computed before determining the vertical 

velocity.

As a check, consider the special case F ≡ p , so that  mζ = −1 , and assume that 
∂pΤ
∂t

= 0 , 

as would be natural for the case of pressure coordinates. Then (35) reduces to 

 
p ≡ω( ) = −∇⋅ Vdp

pΤ

p

∫( ) .

(36)

As a second special case, suppose that F ≡ θ . Then (35) becomes 
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θ =

Q
Π

.

(37)

Both of these are the expected results. 

We assume that the model top is a surface of constant  ζ , i.e., ζΤ = constant. Because (31) 

must apply at the model top, we can write 

∂F
∂θ
⎛
⎝
⎜

⎞
⎠
⎟
θΤ , pΤ

∂θΤ

∂t
+ ∂F

∂p
⎛

⎝
⎜

⎞

⎠
⎟
θΤ , pΤ

∂pΤ
∂t

+ ∂F
∂pS

⎛

⎝
⎜

⎞

⎠
⎟
θΤ , pΤ

∂pS
∂t

= 0 .

(38)

Suppose that F θ, p, pS( )  is chosen in such a way that 
∂F
∂pS

⎛
⎝⎜

⎞
⎠⎟θΤ , pΤ

= 0 . This is a natural thing to 

do. Then Eq. (37) simplifies to

∂F
∂θ
⎛
⎝
⎜

⎞
⎠
⎟
θΤ , pΤ

∂θΤ

∂t
+ ∂F

∂p
⎛

⎝
⎜

⎞

⎠
⎟
θΤ , pΤ

∂pΤ
∂t

= 0 .

(39)

Consider two possibilities. If we make the top  of the model an isobaric surface, so that 
∂pΤ
∂t

= 0 ,  then the last term of (39) goes away, and we have the following situation: By 

assumption,  F θ, p, pS( )⎡⎣ ⎤⎦T  is a constant (because the top of the model is a surface of constant 

ζ ). Also by assumption, F θ, p, pS( )⎡⎣ ⎤⎦T does not depend on pS . Finally we have assumed that the 

top of the model is an isobaric surface. It follows that the form of F θ, p, pS( )  must be chosen so  

that ∂F
∂θ
⎛
⎝
⎜

⎞
⎠
⎟
θΤ , pΤ

= 0 . 

As a second possibility, if we make the top  of the model an isentropic surface, then 
∂θΤ

∂t
= 0 , and the form of F θ, p, pS( )  must be chosen so that ∂F

∂p
⎛

⎝
⎜

⎞

⎠
⎟
θΤ , pΤ

= 0 . 

Further discussion is given later. 

10.4 ! Particular vertical coordinate systems

We now discuss the following nine particular choices of vertical coordinate:

• height, z
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• pressure, p

• log-pressure, z* , which is used in many theoretical studies 

• σ , defined by 

σ =
p − pΤ
pS − pΤ

, 

which is designed to simplify the lower boundary condition 

• a “hybrid,” or “mix,” of σ  and p  coordinates, used in numerous general circulation 

models, including the forecast model of the European Centre for Medium Range Weather 
Forecasts

• η , which is a modified σ  coordinate, defined by 

η ≡
p − pΤ
pS − pΤ

⎛
⎝⎜

⎞
⎠⎟
ηS , 

where ηS  is a time-independent function of the horizontal coordinates 

• potential temperature, θ , which has many attractive properties

• entropy, s = cp lnθ

• a hybrid sigma-theta coordinate, which behaves like σ  near the Earth’s surface, and like 
θ  away from the Earth’s surface. 

Of these nine possibilities, all except the height coordinate and the η  coordinate are members of 

the family of coordinates given by (31). 

10.4.1 ! Height

In height coordinates, the hydrostatic equation is

∂p
∂z

= −ρg ,

(40)

where ρ ≡1 /α  is the density. We can obtain (40) simply by flipping (2) over. For the case of the 

height coordinate, the pseudodensity  reduces to ρg , which is proportional to the ordinary or 

“true” density. 

The continuity equation in height coordinates is 
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∂ρ
∂t

⎛
⎝
⎜

⎞
⎠
⎟
z

+∇z ⋅ ρV( ) + ∂
∂z

ρw( ) = 0 .

(41)

This equation is easy to interpret, but it is mathematically  complicated, in that it is nonlinear and 
involves the time derivative of a quantity that varies with height, namely the density.

The lower boundary condition in height coordinates is

∂zS
∂t

+ VS ⋅∇zS − wS = 0 .

(42)

Normally we can assume that zS  is independent of time, but (42) can accommodate the effects of 

a specified time-dependent value of zS  (e.g., to represent the effects of an earthquake, or a wave 

on the sea surface). Because height surfaces intersect the Earth’s surface, height-coordinates are 
relatively difficult to implement in numerical models. This complexity is mitigated somewhat by 
the fact that the horizontal spatial coordinates where the height surfaces meet the Earth’s surface 
are normally independent of time. 

Note that (41) and (42) are direct  transcriptions of (6) and (11), respectively, with the 
appropriate changes in notation.

The thermodynamic energy equation is

cpρ
∂Τ
∂t

⎛
⎝⎜

⎞
⎠⎟ z

= −cpρ V ⋅∇zΤ + w ∂Τ
∂z

⎛
⎝⎜

⎞
⎠⎟
+ω + ρQ .

(43)

Here

ω = ∂p
∂t

⎛
⎝
⎜

⎞
⎠
⎟
z

+V ⋅ ∇z p +w
∂p
∂z

= ∂p
∂t

⎛
⎝
⎜

⎞
⎠
⎟
z

+V ⋅ ∇z p − ρgw .

(44)

By using (44) in (43), we find that

cpρ
∂Τ
∂t

⎛
⎝⎜

⎞
⎠⎟ z

= −cpρV ⋅∇zΤ − ρwcp Γ d − Γ( ) + ∂p
∂t

⎛
⎝⎜

⎞
⎠⎟ z

+ V ⋅∇z p
⎡

⎣
⎢

⎤

⎦
⎥ + ρQ ,

(45)

where the actual lapse rate and the dry-adiabatic lapse rate are given by
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Γ ≡ −
∂Τ
∂z

,

(46)

and

Γ d ≡ −
g
cp

.

(47)

respectively. Eq. (45) is awkward because it involves the time derivatives of both T and p. The 
time derivative of the pressure can be eliminated by using the height-coordinate version of (17), 
which is

∂p
∂t

⎛
⎝
⎜

⎞
⎠
⎟
z

= −g∇z ⋅ ρV( )dz
z

∞∫ + gρ z( )w z( ) + ∂pΤ
∂t

(48)

Substitution into (45) gives

cpρ
∂Τ
∂t

⎛
⎝
⎜

⎞
⎠
⎟
z

= −cpρV ⋅ ∇zΤ − ρwcp Γ d −Γ( )

+ −g∇z ⋅ ρV( )dz
z

∞∫ + gρ z( )w z( ) + ∂pΤ
∂t

⎡
⎣⎢

⎤
⎦⎥
+V ⋅ ∇z p + ρQ .

(49)

According to (49), the time rate of change of the temperature at  a given height is influenced by 
the motion field through a deep  layer. An alternative, considerably simpler form of the 
thermodynamic energy equation in height coordinates is

∂θ
∂t

⎛
⎝⎜

⎞
⎠⎟ z

= − V ⋅∇zθ + w ∂θ
∂z

⎛
⎝⎜

⎞
⎠⎟
+
Q
Π

.

(50)

In quasi-static models based on height coordinates, the equation of vertical motion is 
replaced by the hydrostatic equation, in which w does not even appear. How then can we 
compute w? The height coordinate is not a member of the family of schemes defined by  (31), and 
so (35), the formula for the vertical mass flux derived from (31), does not apply. Instead, w is 
computed using “Richardson’s equation,” which is an expression of the physical fact that 
hydrostatic balance applies not just at a particular instant, but continuously through time. 
Richardson’s equation is actually closely analogous to (35), but somewhat more complicated. 
The derivation of Richardson’s equation is also more complicated than the derivation of (35). 
Here it comes:
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The equation of state is

p = ρRΤ .
(51)

Logarithmic differentiation of (51) with respect to time gives

1
p

∂p
∂t

⎛
⎝⎜

⎞
⎠⎟ z

=
1
ρ

∂ρ
∂t

⎛
⎝⎜

⎞
⎠⎟ z

+
1
Τ

∂Τ
∂t

⎛
⎝⎜

⎞
⎠⎟ z

.

(52)

The time derivatives can be eliminated by using (41), (45) and (48). After some manipulation, we 
find that

cpΤ
∂
∂z

ρw( ) + ρw g cv
R
+ cp Γ d −Γ( )⎡

⎣⎢
⎤
⎦⎥
= −cpρV ⋅ ∇zΤ +V ⋅ ∇z p( ) −

cpΤ ∇z ⋅ ρV( ) + g cv
R
∇z ⋅ ρV( )dz

z

∞∫ + ρQ ,

(53)

where

cv ≡ cp − R
(54)

is the specific heat of air at constant volume. 

Eq. (53) can be simplified considerably  as follows. Expand the vertical derivative term 
using the product rule:

cpΤ
∂ ρw( )
∂z

= ρcpΤ
∂w
∂z

+wcpΤ
∂ρ
∂z

,

(55)

Logarithmic differentiation of (51) with respect to height gives

1
p
∂p
∂z

=
1
ρ
∂ρ
∂z

+
1
Τ

∂Τ
∂z

,

(56)

which is equivalent to
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1
ρ
∂ρ
∂z

= − ρg
p
+ Γ
Τ

= 1
Τ

− g
R
+Γ

⎛
⎝
⎜

⎞
⎠
⎟ .

(57)

Substitute (57) into (55) to obtain

cpΤ
∂ ρw( )
∂z

= ρcpΤ
∂w
∂z

+ ρwcp − g
R
+Γ

⎛
⎝
⎜

⎞
⎠
⎟ .

(58)

Finally, substitute (58) into (53), and combine terms, to obtain

ρcpΤ
∂w
∂z

= −cpρV ⋅∇zΤ +V ⋅∇z p( )− cpΤ ∇z ⋅ ρV( ) + g cv
R
∇z ⋅ ρV( )dz

z

∞

∫ + ρQ .

(59)

This beast is Richardson’s equation. It can be solved as a linear first-order ordinary differential 
equation for w(z), given a lower boundary  condition and the information needed to compute the 
various terms on the right-hand side, which involve both the mean horizontal motion and the 
heating rate, as well as various horizontal derivatives. A physical interpretation of (59) is that the 
vertical motion is whatever it takes to maintain hydrostatic balance through time despite the fact 
that the various processes represented on the right-hand side of (59) may tend to upset that 
balance. 

As a very simple illustration of the use of (59), suppose that we have horizontally 
uniform heating but no horizontal motion. Then (59) drastically simplifies to

cpΤ
∂w
∂z

= Q .

(60)

If the lower boundary is flat, so that

w = 0  at z = 0 ,
(61)

we obtain

w z( ) = Q
cpΤ

dz
0

z

∫ ,

(62)

! Revised November 29, 2011 1:34 PM! 17

An Introduction to Numerical Modeling of the Atmosphere



i.e., heating (cooling) below a given level induces rising (sinking) motion at that level. The rising 
motion induced by heating below a given level can be interpreted as a manifestation of the 
upward movement of air particles as the air expands above the rigid lower boundary.

The complexity  of Richardson’s equation has discouraged the use of height coordinates in 
quasi-static models; one of the very few exceptions was the early  NCAR GCM (Kasahara and 
Washington, 1967). We are now entering an era of non-hydrostatic global models, in which use 
of the height coordinate may become more common.

10.4.2 !Pressure

The hydrostatic equation in pressure coordinates has already been stated; it  is (2). The 
pseudo-density is simply unity, since (3) reduces to

ρp = 1 .

(63)

Here we drop the minus sign that was used in (3). The continuity equation in pressure 
coordinates is relatively  simple; it  is linear and does not involve a time derivative. Eq. (6) 
reduces to

∇ p ⋅V +
∂ω
∂p

= 0 .

(64)

On the other hand, the lower boundary condition is complicated in pressure coordinates:

∂pS
∂t

+ VS ⋅∇pS −ωS = 0 .

(65)

Recall that pS  can be predicted using the surface pressure-tendency equation, (16). Substitution 

from (16) into (65) gives

ωS =
∂pΤ
∂t

− ∇ ⋅ Vdp
pΤ

pS∫( ) + VS ⋅∇pS ,

(66)

which can be used to diagnose ωS . The fact that pressure surfaces intersect the ground at 

locations that change with time (unlike height surfaces), means that models that use pressure 
coordinates are complicated. Largely for this reason, pressure coordinates are hardly  ever used in 
numerical models. One of the few exceptions is the early and short-lived general circulation 
model developed by Leith at the Lawrence National Laboratory (now the Lawrence Livermore 
National Laboratory). 
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With the pressure coordinate, we can write

∂
∂t

∂φ
∂p

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥
p

= −
R
p

∂Τ
∂t

⎛
⎝⎜

⎞
⎠⎟ p

.

(67)

This allows us to eliminate the temperature in favor of the geopotential, which is often done in 
theoretical studies.

10.4.3 ! Log-pressure

Obviously a surface of constant p is also a surface of constant ln p . Nevertheless, the 

equations take different forms in the p and ln p coordinate systems.

Let Τ 0  be a constant reference temperature, and H ≡ RΤ 0

g
 the corresponding scale 

height. Define the “log-pressure coordinate” z*  by the differential relationship

dz* = −Hd ln p( ) = −H dp
p

.

(68)

Note that z*  has the units of length (i.e., height), and that 

dz* = dz  when Τ p( ) =Τ 0 . 
(69)

Although generally z ≠ z* , we can force z p = pS( ) = z* p = pS( ) . From (68), we see that

∂φ*

∂p
= −

RΤ 0

p
,

(70)

where

φ* ≡ gz* .
(71)

We also have the hydrostatic equation in the form

∂φ
∂p

= −
RΤ
p

.

(72)
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Subtracting (70) from (72), we obtain a useful form of the hydrostatic equation:

∂ φ −φ*( )
∂p

= −
R Τ −Τ 0( )

p
.

(73)

Since φ*  and Τ 0  are independent of time, we see that

∂
∂t

∂φ
∂p

⎛
⎝⎜

⎞
⎠⎟ z*

= −
R
p

∂Τ
∂t

⎛
⎝⎜

⎞
⎠⎟ z*

.

(74)

10.4.4 ! The σ –coordinate 

The σ -coordinate of Phillips (1957) is defined by

σ ≡
p − pΤ
π

,

(75)

where

π ≡ pS − pΤ ,
(76)

which is independent of height. Obviously, 

σ S = 1 and σΤ = 0 .
(77)

Notice that  the top of the model is an isobaric surface, assuming that pΤ = constant. Phillips 

(1957) took pΤ = 0 .

Inverting (75), we can write 

p = pT +σπ .

For a fixed value of σ ,

dp = σdπ ,
(78)

where the differential can represent a fluctuation in either time the horizontal space, with a fixed 
value of σ . Also, 
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∂
∂p

( ) = 1
π

∂
∂σ

( ) .

(79)

Here the differentials are evaluated at fixed horizontal position and time. 

The pseudodensity in σ -coordinates is

ρσ = π ,
(80)

which is independent of height. Here we choose not to use the minus sign in (3). The continuity 
equation in σ -coordinates can therefore be written as

 

∂π
∂t

+∇σ ⋅ πV( ) + ∂ π σ( )
∂σ

= 0 .

(81)

Although this equation does contain a time derivative, the differentiated quantity, π , is 
independent of height, which makes (81) considerably simpler than (6) or (41).

The lower boundary condition in σ -coordinates is very simple:

 σ = 0  at σ =1 .
(82)

This simplicity  was in fact Phillips’ motivation for the invention of σ -coordinates. The upper 
boundary condition is similar:

 σ = 0  at σ = 0 .
(83)

The continuity  equation in σ -coordinates plays a dual role. First, it is used to predict π . 
This is done by  integrating (81) through the depth of the vertical column and using the boundary 
conditions (82) and (83), to obtain the surface pressure-tendency equation in the form

∂π
∂t

= −∇ ⋅ πVdσ
0

1

∫( ) .

(84)

The continuity equation is also used to determine  π σ . Once 
∂π
∂t

 has been evaluated using (84), 

which does not involve  π σ , we can substitute back into (81) to obtain
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∂
∂σ

π σ( ) = ∇ ⋅ πVdσ
0

1

∫( ) − ∇σ ⋅ πV( ) .

(85)

This can be integrated vertically to obtain  π σ  as a function of σ , starting from either the Earth’s 
surface or the top  of the atmosphere, and using the appropriate boundary condition at the top or 
bottom. The same result is obtained regardless of the direction of integration. This method gives 
a result that is consistent with Eq. (35).

The hydrostatic equation in -coordinates is simply

1
π
∂φ
∂σ

= −α ,

(86)

which is closely  related to (2). Finally, the horizontal pressure-gradient force takes a relatively 
complicated form:

HPGF = −σα∇π −∇σφ ,
(87)

which can easily  be obtained from (24). Using the hydrostatic equation, (86), we can rewrite this 
as

HPGF =σ 1
π
∂φ
∂σ

⎛
⎝
⎜

⎞
⎠
⎟∇π −∇σφ .

(88)

Rearranging, we find that

π HPGF( ) =σ ∂φ
∂σ

∇π − π∇σφ

=
∂ σφ( )
∂σ

−φ
⎡

⎣
⎢

⎤

⎦
⎥∇π − π∇σφ

=
∂ σφ( )
∂σ

∇π −∇σ πφ( ) .
(89)

This is a special case of (29).
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Consider the two contributions to the HPGF when evaluated near a mountain, as 

illustrated in Fig. 10.1. Near steep topography, the spatial variations of pS  and the near-surface 

value of φ  along a σ -surface are strong and of opposite sign. For example, moving uphill pS  

decreases while φS  increases. As a result, the two terms on the right-hand side of (86) are 

individually large and opposing, and the HPGF is the relatively  small difference between them- a 
dangerous situation. In numerical models based on the σ -coordinate, near steep mountains the 
relatively small discretization errors in the individual terms of the right-hand side of (86) can be 
as large as the HPGF.

This may appear to be an issue mainly with horizontal differencing, because the HPGF 
involves horizontal derivatives, but vertical differencing also comes in. To see how, consider Fig. 
10.2. At the point O, the σ =σ *  and p = p *  surfaces intersect. As we move away from point O, 

the two surfaces separate. By a coordinate transformation, we can write

HPGF = −∇ pφ

= −∇σφ +
∂φ
∂p

∇σ p .

(90)

This second line of (90) expresses the HPGF  in terms of both the horizontal change in φ along a 

σ -surface, say between two neighboring horizontal grid points (mass points), and the vertical 
change in φ between neighboring model layers. The latter depends, hydrostatically, on the 

temperature. Using hydrostatics, the ideal gas law, and the definition of σ , we can rewrite (90) 
as

Fig. 10.1: Sketch illustrating the opposing terms of the horizontal pressure gradient force as 
measured in σ -coordinates. 
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HPGF = −∇σφ −
RT
p

⎛

⎝
⎜

⎞

⎠
⎟σ∇π .

(91)

Compare with (87).

If the σ -surfaces are very steeply  tilted relative to constant height surfaces, which can 
happen especially near steep  mountains, the temperature needed on the right-hand side of (90) 
will be representative of two or more σ -layers, rather than a single layer. If the temperature is 
changing rapidly with height, this can lead to large errors. It can be shown that the problem is 
minimized if the model has sufficiently  high horizontal resolution relative to its vertical 
resolution (Janjic, 1977; Mesinger, 1982; Mellor et al., 1994), i.e.,

δσ
δx

≥

δφ
δx
⎛
⎝
⎜

⎞
⎠
⎟
σ

δφ
δσ
⎛
⎝
⎜

⎞
⎠
⎟
x

.

(92)

The numerator of the right-hand side of (92) increases when the terrain is steep. The denominator 
increases when T is warm, i.e., near the surface. The inequality (92) means that δσ  must be 
coarse enough for a given δx . Increasing the vertical resolution without a corresponding 
increase in the horizontal resolution can cause problems. 

The Lagrangian time derivative of pressure can be expressed in σ -coordinates as

Fig. 10.2: Sketch illustrating the pressure-gradient force as seen in σ -coordinates and pressure 
coordinates. 
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ω ≡ Dp
Dt

= ∂p
∂t

⎛
⎝
⎜

⎞
⎠
⎟
σ

+V ⋅ ∇σ p + σ
∂p
∂σ

=σ ∂π
∂t

+V ⋅ ∇π
⎛
⎝
⎜

⎞
⎠
⎟+ π σ .

10.4.5 ! Hybrid sigma-pressure coordinates

The advantage of the sigma coordinate is realized in the lower boundary condition. The 
disadvantage, in terms of the complicated and poorly behaved pressure-gradient force, is realized 
at all levels. This has motivated the use of hybrid coordinates that reduce to sigma at the lower 
boundary, and become pure pressure-coordinates at higher levels. In principle there are many 
ways of doing this. The most widely  cited reference on this topic is the paper of Simmons and 
Burridge (1981). They recommended the coordinate

ξ p, pS( ) = p
p0
1− p

pS

⎛

⎝
⎜

⎞

⎠
⎟+

p
pS

⎛

⎝
⎜

⎞

⎠
⎟
2

,

(93)

where p0  is a positive constant. It can be demonstrated that ξ  is monotonic with pressure, 

provided that p0 > pS / 2 . Inspection of (93) shows that 

ξ = 0  for p = 0 , and ξ = 1  for p = pS . 
(94)

It can be shown that ξ –surfaces are nearly parallel to isobaric surfaces in the upper troposphere 

and stratosphere, despite possible variations of the surface pressure in the range ~1000 mb to 
~500 mb. When we evaluate the HPGF with the ξ -coordinate, there are still two terms, as with 

the σ -coordinate, but above the lower troposphere one of the terms is strongly dominant. 

10.5 ! The η -coordinate

As a solution to the problem with the HPGF in σ -coordinates, Mesinger and Janjic 
(1985) proposed the η -coordinate, which has been used operationally at NCEP (the National 

Centers for Environmental Prediction):

η ≡ σηS ,
(95)

where

! Revised November 29, 2011 1:34 PM! 25

An Introduction to Numerical Modeling of the Atmosphere



ηS =
prf zS( ) − pΤ
prf 0( ) − pΤ

.

(96)

Whereas σ = 1  at  the Earth’s surface, Eq. (95) shows that η = ηS  at  the Earth’s surface. 

According to (96), ηS = 1  (just as σ = 1 ) if zS = 0 . Here zS = 0  is chosen to be at or near “sea 

level.” The function prf zS( )  is pre-specified as a typical surface pressure for z = zS . Because zS  

depends on the horizontal coordinates, prf zS( )  does too, and so, therefore, does ηS . In fact, after 

choosing prf zS( )  and zS x, y( ) , one can make a map of ηS x, y( ) , and of course this map is 

independent of time. 

When we build a σ -coordinate model, we must specify (i.e., choose) values of σ  to 
serve as layer-edges and/or layer centers. These values are constant in the horizontal and time. 
Similarly, when we build an η -coordinate model, we must specify fixed values of η  to serve as 

layer edges and/or layer centers. The values of η  to be chosen include the possible values of ηS . 

This means that only a finite number of discrete (and constant) values of ηS  are permitted; the 

number increases as the vertical resolution of the model increases. Mountains must come in a 
few discrete sizes, like off-the-rack clothing! This is sometimes called the “step-mountain” 

approach. Fig. 10.3 shows how the η -coordinate works near mountains. Note that, unlike σ -

surfaces, η -surfaces are nearly flat, in the sense that they  are close to being isobaric surfaces. 

The circled u-points have u = 0 , as a boundary condition on the sides of the mountains. 

In -coordinates, the HPGF still consists of two terms:

Fig. 10.3: Sketch illustrating the η -coordinate. 

! Revised November 29, 2011 1:34 PM! 26

An Introduction to Numerical Modeling of the Atmosphere



−∇ pφ = −∇ηφ −α∇η p .

(97)

Because the η -surfaces are nearly flat, however, these two terms are each comparable in 

magnitude to the HPGF itself, even near mountains, so the problem of near-cancellation does not 
occur.

10.5.1 ! Potential temperature

The potential temperature is defined by

θ ≡Τ p0
p

⎛
⎝⎜

⎞
⎠⎟

κ

.

(98)

The potential temperature increases upwards in a statically stable atmosphere, so that  there is a 
monotonic relationship between θ  and z. Note, however, that  potential temperature cannot be 
used as a vertical coordinate when static instability  occurs, and that  the vertical resolution of a θ
-coordinate model becomes very poor when the atmosphere is close to neutrally stable. 

Potential temperature coordinates have highly  useful properties that have been recognized 
for many  years, and have become more widely appreciated during the past decade or so. In the 
absence of heating, potential temperature is conserved following a particle. This means that the 
vertical motion in θ -coordinates is proportional to the heating rate:

 

θ =
θ
cpΤ

Q ;

(99)

in the absence of heating, there is “no vertical motion,” from the point of view of θ -coordinates; 
we can also say  that, in the absence of heating, a particle that is on a given θ -surface remains on 
that surface. Eq. (99) is an expression of the thermodynamic energy equation in θ -coordinates. 
In fact, θ -coordinates provide an especially simple pathway for the derivation of many 
important results, including the conservation equation for the Ertel potential vorticity. In 
addition, θ -coordinates prove to have some important advantages for the design of numerical 
models (e.g., Eliassen and Raustein, 1968; Bleck, 1973; Johnson and Uccellini, 1983; Hoskins et 
al. 1985; Hsu and Arakawa, 1990). 

The continuity equation in θ -coordinates is given by

 

∂ρθ

∂t
⎛
⎝⎜

⎞
⎠⎟θ

+∇θ ⋅ ρθV( ) + ∂
∂θ

ρθ
θ( ) = 0 ,

(100)
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which is a direct transcription of (6). Note, however, that   θ = 0  in the absence of heating; in such 
case, (100) reduces to 

∂ρθ

∂t
⎛
⎝⎜

⎞
⎠⎟θ

+∇θ ⋅ ρθV( ) = 0 ,

(101)

which is closely analogous to the continuity equation of a shallow-water model.

The lower boundary condition in θ -coordinates is 

 

∂θS

∂t
+ V ⋅∇θS − θS = 0 .

(102)

This equation can be used to predict θS . The complexity of the lower boundary  condition in θ -

coordinates is one of its chief drawbacks. This will be discussed further below.

For the case of θ -coordinates, the hydrostatic equation, (1), reduces to

∂φ
∂θ

= α ∂p
∂θ

.

(103)

“Logarithmic differentiation” of (97) gives

dθ
θ

=
dΤ
Τ

−κ dp
p

.

(104)

It follows that

α ∂p
∂θ

= cp
∂Τ
∂θ

− cp
Τ
θ

.

(105)

Substitution of (105) into (103) gives

∂M
∂θ

= Π ,

(106)

where M  was defined in (25).

The HPGF in θ -coordinates is
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HPGF = −α∇θ p −∇θφ .
(107)

From (104) it follows that

∇θ p = cp
p
RΤ

⎛
⎝⎜

⎞
⎠⎟
∇θΤ .

(108)

Substitution of (107) into (106) gives

HGPF = −∇θM .
(109)

Of course, θ -surfaces can intersect the lower boundary, but we can consider these to 

follow the boundary, by defining imaginary  “massless layers,” as shown in Fig. 10.4. Since no 
mass resides between the θ -surfaces in the portion of the domain where they “touch the Earth’s 
surface,” no harm is done by this fantasy. 

Obviously, a model that follows the massless-layer approach has to be able to deal with 
avoid producing negative mass, e.g., through the use of flux-corrected transport. This practical 
difficulty has led most modelers to avoid θ -coordinates up to this time.

The massless layer approach leads us to use values of θ  that are colder than any actually 
present in an atmospheric column, particularly in the tropics of a global model. The coldest 
possible value of θ  is zero Kelvin. Consider the lower boundary condition on the hydrostatic 
equation, (106). We can write

Fig. 10.4: Coordinate surfaces with topography: Left, the σ -coordinate. Center, the θ -
coordinate. Right, a hybrid σ -θ  coordinate.
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M θ( ) −M 0( ) = Π ′θ( )
0

θ

∫ d ′θ ,

where ′θ  is a dummy variable of integration. From the definition of M , we have M 0( ) = φS . 

For “massless” portion of the integral, the integrand, Π ′θ( ) , is just a constant, namely Π S , i.e., 

the surface value of Π . We can therefore write

M θ( ) −φS = Π ′θ( )
0

θS

∫ d ′θ + Π ′θ( )
θS

θ

∫ d ′θ

=Π SθS + Π ′θ( )
θS

θ

∫ d ′θ

= cpTS + Π ′θ( )
θS

θ

∫ d ′θ .

 

It follows that 

M θ( ) = cpT +φS + Π ′θ( )
θS

θ

∫ d ′θ ,

as expected.

The dynamically  important isentropic potential vorticity, q, is easily constructed in θ -
coordinates, since it involves the curl of V on a θ -surface:

q ≡ k ⋅∇θ × V + f( ) ∂θ
∂p

.

(110)

The available potential energy is also easily  obtained, since it involves the distribution of 
pressure on θ -surfaces.

10.5.2 ! Entropy

The entropy coordinate is very similar to the θ -coordinate. We define the entropy by

s = cp lnθ ,

(111)

so that

ds = cp
dθ
θ

.

(112)
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The hydrostatic equation can then be written as

∂M
∂s

=Τ .

(113)

This is a particularly attractive form because the “thickness” is simply given by the temperature. 

10.5.3 ! Hybrid σ −θ  coordinates

Konor and Arakawa (1997) discuss a hybrid vertical coordinate,ζ , that reduces to θ  

away from the surface, and to σ  near the surface. This hybrid coordinate is a member of the 
family of schemes given by  (31). It  is designed to combine the strengths of θ  and σ  
coordinates, while avoiding their weaknesses. Hybrid coordinates have also been considered by 
other authors, e.g., Johnson and Uccellini (1983) and Zhu et al. (1992). 

To specify the scheme, we must choose the function F θ, p, pS( )  that appears in (31). 

Following Konor and Arakawa (1997), define

ζ = F θ, p, pS( ) ≡ f σ( ) + g σ( )θ ,
(114)

where σ ≡ σ p, pS( )  is a modified sigma coordinate, defined so that it is (as usual) a constant at 

the Earth’s surface, and (not as usual) increases upwards, e.g.,

σ ≡
pS − p
pS

.

(115)

If we specify f σ( )  and g σ( ) , then the hybrid coordinate is fully determined. 

We require, of course, that ζ  itself increases upwards, so that

∂ζ
∂σ

> 0 .

(116)

We also require that

ζ = constant for σ = σ S ,
(117)

which means that ζ  is σ -like at the Earth’s surface, and that
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ζ = θ  for σ = σΤ ,
(118)

which means that ζ  becomes θ  at the model top (or lower). These conditions imply, from (114), 

that

g σ( )→ 0 as σ →σ S ,
(119)

f σ( )→ 0 and g σ( )→ 1 as σ →σΤ .
(120)

Now substitute (114) into (116), to obtain

df
dσ

+θ dg
dσ

+ g ∂θ
∂σ

> 0 .

(121)

This is the requirement that ζ  increases monotonically upward. Any choices for f and g that 

satisfy (119) - (121) can be used to define the hybrid coordinate. 

Here is a way to do that: First, choose g σ( )  so that it is a monotonically increasing 

function of height, i.e.,

dg
dσ

> 0 for all σ .

(122)

We also choose g σ( )  so that the conditions (119) - (120) are satisfied. Obviously there are many 

possible choices for g σ( )  that will meet these requirements. 

Next, define θmin  and 
∂θ
∂σ

⎛
⎝⎜

⎞
⎠⎟ min

 as lower bounds on θ  and 
∂θ
∂σ

, respectively, i.e., 

θ > θmin  and ∂θ
∂σ

>
∂θ
∂σ

⎛
⎝⎜

⎞
⎠⎟ min

.

(123)

When we choose θmin  the value of, we are saying that we have no interest in simulating 

situations in which θ  is actually colder than θmin . For example, we could choose θmin =10K. 

This is not necessarily  an ideal choice, for reasons to be discussed below, but we can be sure that 
in our simulations will exceed 10 K everywhere at all times, unless the model is in the final 
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throes of blowing up. Similarly, when we choose the value of ∂θ
∂σ

⎛
⎝⎜

⎞
⎠⎟ min

, we are saying that we 

have no interest in simulating situations in which ∂θ
∂σ

 is actually less stable (or more unstable) 

than ∂θ
∂σ

⎛
⎝⎜

⎞
⎠⎟ min

. We can choose 
∂θ
∂σ

⎛
⎝⎜

⎞
⎠⎟ min

< 0 , i.e., a value of 
∂θ
∂σ

⎛
⎝⎜

⎞
⎠⎟ min

 that corresponds to a 

statically unstable sounding. Further discussion is given below.

Now, with reference to the inequality (121), we write the following equation:

df
dσ

+
dg
dσ

θmin + g
∂θ
∂σ

⎛
⎝⎜

⎞
⎠⎟ min

= 0 .

(124)

Recall that g σ( )  will be specified in such a way that (122) is satisfied. You should be able to see 

that if the equality (123) is satisfied, then the inequality (120) will also be satisfied, i.e. ζ , will 

increase monotonically upward. This will be true even if the sounding is statically unstable in 
some regions, provided that (123) is satisfied.

Eq. (124) is a first-order ordinary  differential equation for f σ( ) , which must be solved 

subject to the boundary condition (120). 

That’s all there is to it. Amazingly, the scheme does not involve any “if-tests.” It  is simple 
and fairly flexible. 

The vertical velocity is obtained using (35).

10.5.4 ! Summary of vertical coordinate systems

Table 10.1 summarizes key properties of some important vertical coordinate systems. All 
of the systems discussed here (with the exception of the entropy coordinate) have been used in 
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many theoretical and numerical studies. Each system has its advantages and disadvantages, 
which must be weighed with a particular application in mind. At present, there seems to be a 
movement away from σ  or hybrid σ − p  coordinates and toward θ  or hybrid σ −θ  

coordinates. 

10.6 ! Vertical staggering

After the choice of vertical coordinate system, the next issue is the choice of vertical 
staggering. Two possibilities are discussed here, and are illustrated in Fig. 10.5. These are the 
“Lorenz” or “L” staggering, and the “Charney-Phillips” or “CP” staggering. Suppose that both 

Coordinate Hydrostatics HPGF Vertical 
velocity Continuity LBC

z ∂p
∂z

= −ρg −α∇z p w ≡ Dz
Dt

∂ρ
∂t

+∇z ⋅ ρV( )

+
∂ ρw( )
∂z

= 0
VS ⋅ ∇zS −wS = 0

p
∂φ
∂p

= −α −∇ pφ ω ≡ Dp
Dt

∇ p ⋅ V( ) + ∂ω
∂p

= 0
∂pS
∂t

+VS ⋅ ∇pS

−ωS = 0

z* ≡ −H ln p
p0

⎛

⎝
⎜

⎞

⎠
⎟

∂z
∂z*

= − T
T0

−∇
z*
φ

w ≡ Dz*

Dt

= − Hω
p

∇
z*
⋅V + ∂w*

∂z*

− w
*

H
= 0

∂zS
*

∂t
+VS ⋅ ∇zS

*

−wS
* = 0

σ ≡ p − pT
π

1
π
∂φ
∂σ

= −α
−∇σφ
−σαπ  

σ ≡ Dσ
Dt

 

∂π
∂t

+∇σ ⋅ πV( )

+
∂ π σ( )
∂z

= 0
 − σ S = 0

θ
∂M
∂θ

= π −∇θM
 
θ ≡ Dθ

Dt

 

∂m
∂t

+∇θ ⋅ mV( )

+
∂ m θ( )
∂θ

= 0  

∂θS

∂t
+VS ⋅ ∇θS

− θS = 0

s ∂ψ
∂s

= T −∇sM
 
s ≡ Ds

Dt
 

∂µ
∂t

+∇s ⋅ µV( )

+
∂ µ s( )
∂s

= 0  

∂sS
∂t

+VS ⋅ ∇sS

− sS = 0

Table 10.1. Summary of properties of some vertical coordinate systems.
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grids have N wind-levels. The L-grid also has N  θ -levels, while the CP grid has N +1  θ -levels. 
On both grids, φ  is hydrostatically determined on the wind-levels, and 

φl −φl+1 ~ θl+ 1
2

.

(125)

On the CP grid, θ  is located between φ -levels, so (125) is convenient. With the L-grid, θ  must 

be interpolated. For example, we might choose

φl −φl+1 ~
1
2
θl +θl+1( ) .

(126)

Because (126) involves averaging, an oscillation in θ  is not “felt” by  φ , and so has no effect on 

the winds. This allows the possibility  of a computational mode in the vertical. No such problem 
occurs with the CP grid.

There is a second, less obvious problem with the L grid. The vertically  discrete potential 
vorticity corresponding to (109) is

Fig. 10.5: A comparison of the Lorenz and Charney-Phillips staggering methods. 
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ql ≡ k ⋅∇ × Vl + f( ) ∂θ
∂p

⎛
⎝⎜

⎞
⎠⎟ l

.

(127)

It is obvious that (127) “wants” the potential temperature to be defined at  levels “in between” the 
wind levels, as they are on the CP grid. Suppose that we have N  wind levels. Then with the CP 
grid we will have N +1  potential temperature levels and N  potential vorticities. This is nice. 
With the L grid, on the other hand, it  can be shown that we effectively have N +1  potential 
vorticities. The “extra” degree of freedom in the potential vorticity  is spurious, and allows a kind 
of computational baroclinic instability (Arakawa and Moorthi, 1988). This is a drawback of the 
L grid.

As Lorenz (1960) pointed out, however, the L-grid is convenient for maintaining total 
energy conservation, because the kinetic and thermodynamic energies are defined at the same 
levels. Today, almost all models use the L-grid. This may change.

10.7 ! Conservation properties of vertically discrete models using σ -coordinates

We now investigate conservation properties of the vertically  discretized equations, using 
σ -coordinates, and using the L-grid. The discussion follows Arakawa and Lamb (1977), 
although some of the ideas originated with Lorenz (1960). For simplicity, we consider only 
vertical discretization, and keep both the temporal and horizontal derivatives in continuous form.

The following discussion is a bit complicated, so we begin by working out conservation 
of energy with the continuous equations, first using pressure coordinates, and then using sigma 
coordinates. 

In pressure coordinates, the relevant equations are:

∇⋅V + ∂ω
∂p

= 0

We begin by writing down the prognostic equations of the model. Conservation of mass 
is expressed, in the vertically discrete system, by

 

∂π
∂t

+∇σ ⋅ πVl( ) + δ π σ( )
δσ

⎡
⎣⎢

⎤
⎦⎥l
= 0 ,

(128)

where

δ ( )⎡⎣ ⎤⎦l ≡ ( )l+ 1
2
− ( )l− 1

2
.

(129)

Similarly, conservation of potential temperature is expressed, in flux form, by
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∂ πθl( )
∂t

+∇σ ⋅ πVlθl( ) + δ π σθ( )
δσ

⎡

⎣
⎢

⎤

⎦
⎥
l

= 0 .

(130)

Here we omit the heating term, for simplicity. Finally, the momentum equation is

 

∂Vl

∂t
+ f + k ⋅ ∇σ × Vl( )⎡⎣ ⎤⎦k × Vl + σ ∂V

∂σ
⎛
⎝⎜

⎞
⎠⎟ l
+∇Κ l = −∇φl − σα( )l ∇π .

(131)

Here Κ ≡
1
2
V ⋅V  is the kinetic energy  per unit mass, and we omit the friction term, for 

simplicity. Eqs. (128), (130), and (131) contain various symbols that have not yet  been defined. 
For example, in (131), we have to invent a method to compute the horizontal pressure-gradient 
force. This and related issues will be discussed below. 

To complete the system, we need the upper and lower boundary conditions

 
σ 1
2

= σ
L+ 1
2

= 0 .

(132)

We define the vertical coordinate, σ , at layer edges, which are denoted by half-integer 
subscripts. The change in across a layer is written as δσ l . Note that

δσ l
l=1

L

∑ = 1 ,

(133)

p
l+ 1
2

= πσ
l+ 1
2

+ pΤ ,

(134)

where pΤ  is a constant, and the constant values of σ
1+ 1
2

 are assumed to be prescribed for each 

layer edge. Eq. (134) tells how to compute layer-edge pressures. The method to determine layer-
center pressures will be discussed later.

By combining (133) with (128), we obtain

∂π
∂t

+∇ ⋅ πVl( ) δσ l( )⎡⎣ ⎤⎦
l=1

L

∑
⎧
⎨
⎩

⎫
⎬
⎭
= 0 ,

(135)
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which is the vertically discrete form of the surface pressure tendency equation. From (135), we 
see that mass is, in fact, conserved, i.e., the vertical mass fluxes do not produce any  net source or 
sink of mass.

In order to use (130) it is necessary to define values of θ  at the layer edges, via an 
interpolation. In Chapter 4 we discussed the interpolation issue in the context of horizontal 
advection, and that discussion applies to vertical advection as well. As one possibility, the 
interpolation methods that allow conservation of an arbitrary function of the advected quantity 
can be used for vertical advection.

Consider the horizontal pressure-gradient force, in connection with (87) and (88). A 
finite-difference analog of (88) is

π HPGF( )l =
δ σφ( )
δσ

⎡
⎣⎢

⎤
⎦⎥l
∇π −∇ πφl( ) .

(136)

Multiplying (136) by δσ l , and summing over all layers, we obtain

π HPGF( )l δσ( )l
l=1

L

∑ = δ σφ( )⎡⎣ ⎤⎦l ∇π
l=1

L

∑ − ∇ πφl( ) δσ( )l⎡⎣ ⎤⎦
l=1

L

∑

= φS∇π −∇ πφl( ) δσ( )l⎡⎣ ⎤⎦
l=1

L

∑
⎧
⎨
⎩

⎫
⎬
⎭
.

(137)

This is analogous to Eq. (30), which applies in the continuous system. Inspection of (137) shows 
that, if we use the form of the HPGF given by (136), the vertically summed HPGF cannot spin 
up or spin down a circulation inside a closed path, in the absence of topography (Arakawa and 
Lamb, 1977). A vertical differencing scheme of this type is often said to be “angular-momentum 
conserving” (e.g., Simmons and Burridge, 1981). 

The idea outlined above provides a rational way to choose which of the many possible 
forms of the HPGF should be used in the model. At this point, of course, the form is not fully 
determined, because we do not yet have a method to compute either φl  or the layer-edge values 

of φ  that appear in (135). 

Eq. (136) is equivalent to

π HPGF( )l =
δ σφ( )
δσ

⎡

⎣
⎢

⎤

⎦
⎥
l

−φl
⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
∇π − π∇φl .

(138)

By comparison with (87), we identify
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π σα( )l = φl −
δ σφ( )
δσ

⎡
⎣⎢

⎤
⎦⎥l

.

(139)

The corresponding equation is true in the continuous case. Eq. (139) will be used later.

Next consider total energy conservation. We begin by reviewing the continuous case. 
Potential temperature conservation is expressed by

 

∂ πθ( )
∂t

+∇ ⋅ πVθ( ) + ∂
∂σ

π σθ( ) = 0 .

(140)

We have assumed no heating for simplicity. Using continuity, this can be expressed in advective 
form:

 

∂θ
∂t

+ V ⋅∇θ + σ ∂θ
∂σ

= 0 .

(141)

With the use of the definition of θ , i.e.,

θ =Τ p0
p

⎛
⎝⎜

⎞
⎠⎟

κ

,

(142)

and the equation of state, (141) can be used to obtain the thermodynamic energy equation in the 
form

 
cp

∂Τ
∂t

+ V ⋅∇Τ + σ ∂Τ
∂σ

⎛
⎝⎜

⎞
⎠⎟
=ωα .

(143)

Here

 

ω = ∂p
∂t

⎛
⎝
⎜

⎞
⎠
⎟
σ

+V ⋅ ∇σ p + σ
∂p
∂σ

=σ ∂π
∂t

+V ⋅ ∇π
⎛
⎝
⎜

⎞
⎠
⎟+ π σ .

(144)

Continuity then allows us to transform (142) to the flux form:
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∂
∂t

πcpΤ( ) +∇ ⋅ πVcpΤ( ) + ∂
∂σ

π σcpΤ( ) = πωα .

(145)

We will now derive a finite-difference analog of (145), by  starting from the vertically 
discretized flux form of the potential temperature equation, which is (130). For concreteness, 
suppose that the model explicitly predicts θl  by using (130). We adopt the definition

θl =
Τ l

Π l

,

(146)

where for convenience we define

Π l ≡
pl
p0

⎛

⎝
⎜

⎞

⎠
⎟
κ

.

(147)

Phillips (1974) suggested

Π l =
1

1+κ
⎛
⎝
⎜

⎞
⎠
⎟
δ Π p( )
δp

⎡

⎣
⎢

⎤

⎦
⎥
l

,

(148)

on the grounds that this form leads to a good simulation of vertical wave propagation. Tokioka 
(1978) showed that with (148), the finite-difference hydrostatic equation (discussed later) is 
exact for isentropic atmospheres, i.e., for those in which the potential temperature is uniform 
with height.

The advective form corresponding to (130) is

 

π ∂θl
∂t

+Vl ⋅ ∇θl
⎛
⎝
⎜

⎞
⎠
⎟+

π σ( )l+ 1
2
θ
l+ 1
2

−θl
⎛

⎝
⎜

⎞

⎠
⎟+ π σ( )l− 1

2
θl −θl− 1

2

⎛

⎝
⎜

⎞

⎠
⎟

δσ( )l

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= 0 .

(149)

Substitute (146) into (149), to obtain the corresponding prediction equation for Τ l :
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π ∂Τ l

∂t
+Vl ⋅ ∇Τ l

⎛
⎝
⎜

⎞
⎠
⎟− πθl

∂Π l

∂π
∂π
∂t

+Vl ⋅ ∇π
⎛
⎝
⎜

⎞
⎠
⎟+

π σ( )l+ 1
2
Π lθl+ 1

2

−Τ l

⎛

⎝
⎜

⎞

⎠
⎟+ π σ( )l− 1

2
Τ l −Π lθl− 1

2

⎛

⎝
⎜

⎞

⎠
⎟

δσ( )l

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= 0 .

(150)

The derivative ∂Π l

∂π
 can be evaluated once we have specified the form of Π l , e.g., from (148). 

We now introduce the layer-edge temperatures, i.e., Τ
l+ 1
2

 and Τ
l− 1
2

 (although a method to 

determine them has not yet been specified), and rewrite (150) as

 

π ∂Τ l

∂t
+Vl ⋅ ∇Τ l

⎛
⎝
⎜

⎞
⎠
⎟+

π σ( )l+ 1
2
Τ

l+ 1
2

−Τ l

⎛

⎝
⎜

⎞

⎠
⎟+ π σ( )l− 1

2
Τ l −Τ l− 1

2

⎛

⎝
⎜

⎞

⎠
⎟

δσ( )l

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

= πθl
∂Π l

∂π
∂π
∂t

+Vl ⋅ ∇π
⎛
⎝
⎜

⎞
⎠
⎟+

π σ( )l+ 1
2
Τ

l+ 1
2

−Π lθl+ 1
2

⎛

⎝
⎜

⎞

⎠
⎟+ π σ( )l− 1

2
Π lθl− 1

2

−Τ
l− 1
2

⎛

⎝
⎜

⎞

⎠
⎟

δσ( )l

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

(151)

The layer-edge temperatures can simply be cancelled out in (151) to recover (150). Obviously, 
the left-hand side of (151) can be rewritten in flux form through the use of the vertically discrete 
continuity equation:

 

∂
∂t

πΤ l( ) +∇⋅ πVlΤ l( ) + δ πσΤ( )
δσ

⎡
⎣⎢

⎤
⎦⎥l
=

πθl
∂Π l

∂π
∂π
∂t

+Vl ⋅∇π
⎛
⎝⎜

⎞
⎠⎟ +

π σ( )l+1
2
Τ

l+1
2

−Π lθl+1
2

⎛
⎝⎜

⎞
⎠⎟
+ π σ( )l−1

2
Π lθl−1

2

−Τ
l−1
2

⎛
⎝⎜

⎞
⎠⎟

δσ( )l

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

(152)

By comparison of (145) with (152), we identify
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π ωα( )l
cp

= πθl
∂Π l

∂π
∂π
∂t

+Vl ⋅ ∇π
⎛
⎝
⎜

⎞
⎠
⎟+

π σ( )l+ 1
2
Τ

l+ 1
2

−Π lθl+ 1
2

⎛

⎝
⎜

⎞

⎠
⎟+ π σ( )l− 1

2
Π lθl− 1

2

−Τ
l− 1
2

⎛

⎝
⎜

⎞

⎠
⎟

δσ( )l

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

(153)

This is a finite-difference analog of the not-so-obvious continuous equation

 

πωα
cp

= πθ ∂Π
∂π

∂π
∂t

+V ⋅ ∇π
⎛
⎝
⎜

⎞
⎠
⎟+

∂ π σT( )
∂σ

−Π
∂ π σθ( )
∂σ

.

Returning to the continuous case, we now derive the continuous mechanical energy 
equation, starting from the continuous momentum equation in the form (131). Dotting (131) with 
V gives the mechanical energy equation in the form

 

∂Κ
∂t

⎛
⎝⎜

⎞
⎠⎟ σ

+ V ⋅∇σΚ + σ ∂Κ
∂σ

= −V ⋅ ∇σφ +σα∇π( ) .

(154)

The corresponding flux form is

 

∂ πΚ( )
∂t

⎡

⎣
⎢

⎤

⎦
⎥
σ

+∇σ ⋅ πVΚ( ) + ∂ π σΚ( )
∂σ

= −πV ⋅ ∇σφ +σα∇π( ) .

(155)

The pressure-work term on the right-hand side of (155) has to be manipulated to facilitate 
comparison with (145). Begin as follows:

 

−πV ⋅ ∇σφ +σα∇π( ) = −∇σ ⋅ πVφ( ) +φ∇σ ⋅ πV( ) − πσαV ⋅ ∇π

= −∇σ ⋅ πVφ( ) −φ ∂π
∂t

+
∂ π σ( )
∂σ

⎡

⎣
⎢

⎤

⎦
⎥− πσαV ⋅ ∇π

= −∇σ ⋅ πVφ( ) − ∂ π σφ( )
∂σ

+ π σ ∂φ
∂σ

−φ ∂π
∂t

− πσαV ⋅ ∇π

= −∇σ ⋅ πVφ( ) − ∂ π σø( )
∂σ

− π σαπ −φ ∂π
∂t

− πσαV ⋅ ∇π .

(156)

In the final line of (156) we have used hydrostatics. Referring back to (144), we can write

 
π σαπ + φ ∂π

∂t
+ πσαV ⋅∇π = πωα +

∂
∂σ

φσ ∂π
∂t

⎛
⎝⎜

⎞
⎠⎟

.

(157)
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Substitution of (157) into (156) gives

 
−πV ⋅ ∇σφ +σα∇π( ) = −∇σ ⋅ πVφ( ) − ∂

∂σ
π σφ + φσ ∂π

∂t
⎛
⎝⎜

⎞
⎠⎟
− πωα .

(158)

Finally, plugging (157) back into (154), and collecting terms, we obtain the mechanical energy 
equation in the form

 

∂
∂t

πΚ( )⎡
⎣⎢

⎤
⎦⎥σ

+∇σ ⋅ πV Κ + φ( )⎡⎣ ⎤⎦ +
∂
∂σ

π σ Κ + φ( ) + φσ ∂π
∂t

⎡
⎣⎢

⎤
⎦⎥
= −πωα .

(159)

Adding (145) and (159) gives a statement of the conservation of total energy:

 

∂
∂t

π Κ + cpΤ( )⎡⎣ ⎤⎦
⎧
⎨
⎩

⎫
⎬
⎭σ

+∇σ ⋅ Vπ Κ +φ + cpΤ( )⎡⎣ ⎤⎦+
∂
∂σ

π σ Κ +φ + cpΤ( ) +φσ ∂π
∂t

⎡
⎣⎢

⎤
⎦⎥
= 0 .

(160)

Integrating this through the depth of an atmospheric column, we find that

∂
∂t

π Κ + cpΤ( )dσ
0

1

∫⎡⎣⎢
⎤
⎦⎥
+∇ ⋅ Vπ Κ + φ + cpΤ( )dσ

0

1

∫⎡⎣⎢
⎤
⎦⎥
+ φS

∂π
∂t

= 0 ,

(161)

which can also be written as

∂
∂t

π Κ + cpΤ + φS( )dσ
0

1

∫⎡⎣⎢
⎤
⎦⎥
+∇ ⋅ Vπ Κ + φ + cpΤ( )dσ

0

1

∫⎡⎣⎢
⎤
⎦⎥
= π ∂φS

∂t
.

(162)

The right-hand side of (162) represents the work done on the atmosphere if the lower boundary is 
moving with time, as in an earthquake.

We now carry  out essentially the same derivation using the vertically  discrete system. 
Taking the dot product of πVl  with the HPGF for layer l , we write, closely following (156) - 

(157),
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−πVl ⋅ ∇φl + σα( )l ∇π⎡⎣ ⎤⎦= −∇ ⋅ πVlφl( ) +φl∇ ⋅ πVl( ) − π σα( )l Vl ⋅ ∇π

= −∇ ⋅ πVlφl( ) −φl
∂π
∂t

+
δ π σφ( )
δσ

⎡

⎣
⎢

⎤

⎦
⎥
l

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
− π σα( )l Vl ⋅ ∇π

= −∇ ⋅ πVlφl( ) − δ π σφ( )
δσ

⎡

⎣
⎢

⎤

⎦
⎥
l

+
πσ( )l+ 1

2
φ
l+ 1
2

−φl
⎛

⎝
⎜

⎞

⎠
⎟+ π σ( )l− 1

2
φl −φl− 1

2

⎛

⎝
⎜

⎞

⎠
⎟

δσ( )l

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

−φl
∂π
∂t

− π σα( )l Vl ⋅ ∇π .

(163)

Continuing down this path, we construct the terms that we need by adding and subtracting

 

−πVl ∇φl + σα( )l ∇π⎡⎣ ⎤⎦= −∇ ⋅ πVlφl( ) − δ π σφ( )
δσ

⎡

⎣
⎢

⎤

⎦
⎥
l

+ π σα( )l −φl⎡⎣ ⎤⎦
∂π
∂t

−π σα( )l
∂π
∂t

+Vl ⋅ ∇π
⎛
⎝
⎜

⎞
⎠
⎟−

π σ( )l+ 1
2
φ
l+ 1
2

−φl
⎛

⎝
⎜

⎞

⎠
⎟+ π σ( )l− 1

2
φl −φl− 1

2

⎛

⎝
⎜

⎞

⎠
⎟

π δσ( )l

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

.

(164)

Using (139) in the form

π σα( )l −φl = −
δ σφ( )
δσ

⎡
⎣⎢

⎤
⎦⎥l

,

(165)

we can rewrite (164) as

 

−πVl ⋅ ∇φl + σα( )l ∇π⎡⎣ ⎤⎦= −∇ ⋅ πVlφl( ) −
δ π σ +σ ∂π

∂t
⎛
⎝
⎜

⎞
⎠
⎟φ

⎡
⎣⎢

⎤
⎦⎥

δσ

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪
l

−π σα( )l
∂π
∂t

+Vl ⋅ ∇π
⎛
⎝
⎜

⎞
⎠
⎟−

π σ( )l+ 1
2
φ
l+ 1
2

−φl
⎛

⎝
⎜

⎞

⎠
⎟+ π σ( )l− 1

2
φl −φl− 1

2

⎛

⎝
⎜

⎞

⎠
⎟

π δσ( )l

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

.

(166)
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By comparing with (158), we infer that

 

π ωα( )l = π σα( )l
∂π
∂t

+Vl ⋅ ∇π
⎛
⎝
⎜

⎞
⎠
⎟−

π σ( )l+ 1
2
φ
l+ 1
2

−φl
⎛

⎝
⎜

⎞

⎠
⎟+ π σ( )l− 1

2
φl −φl− 1

2

⎛

⎝
⎜

⎞

⎠
⎟

δσ( )l

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

.

(167)

We have now reached the crux of the problem. To ensure total energy conservation, the 
form of π ωα( )l  given by (167) must match that given by (153). This can be accomplished by 

setting:

σα( )l = cpθl
∂Π l

∂π
,

(168)

φl −φl+ 1
2

= cp Τ
l+ 1
2

−Π lθl+ 1
2

⎛

⎝
⎜

⎞

⎠
⎟ ,

(169)

φ
l− 1
2

−φl = cp Π lθl− 1
2

−Τ
l− 1
2

⎛

⎝
⎜

⎞

⎠
⎟ .

(170)

Eq. (168) gives an expression for σα( )l . We already had one, though, in Eq. (139). Requiring 

that these two formulae agree, we obtain

φl −
δ σφ( )
δσ

⎡

⎣
⎢

⎤

⎦
⎥
l

= cpπθl
∂Π l

∂π
.

(171)

This is a finite-difference form of the hydrostatic equation.

By adding θl  to both sides, and using Eq. (146), Eqs. (169) - (170) can be rewritten as

cpΤ l+ 1
2

+φ
l+ 1
2

⎛

⎝
⎜

⎞

⎠
⎟− cpΤ l +φl( ) =Π lcp θ

l+ 1
2

−θl
⎛

⎝
⎜

⎞

⎠
⎟ ,

(172)

and

! Revised November 29, 2011 1:34 PM! 45

An Introduction to Numerical Modeling of the Atmosphere



cpΤ l +φl( ) − cpΤ l− 1
2

+φ
l− 1
2

⎛

⎝
⎜

⎞

⎠
⎟ =Π lcp θl −θl− 1

2

⎛

⎝
⎜

⎞

⎠
⎟ ,

(173)

respectively. These are also finite-difference analogs of the hydrostatic equation, in the form 
∂M
∂θ

= cpΠ . Add one to each subscript in (173), and add the result to (172). This yields

φl −φl+1 = cp Π l+1 −Π l( )θ
l+ 1
2

.

(174)

If the forms of Π l  and θ
l+ 1
2

 are specified, we can use (174) to integrate the hydrostatic equation 

upward from level l +1to level l. 

In (174), the problem with the L grid becomes apparent. We must determine θ
l+ 1
2

 by 

some form of interpolation, e.g., the arithmetic mean of the neighboring layer-center values of θ . 
The interpolation will “hide” a vertical zig-zag in θ , if one is present in the solution. A hidden 
zig-zag cannot influence the pressure-gradient force, so it  cannot participate in the model’s 
dynamics. Therefore it cannot propagate, as a physical solution would. It can become a 
permanent, unwanted feature of the simulated sounding.

The problem is actually worse than it may appear at this point. Although we can use 
(174) to integrate the hydrostatic equation upward, it is still necessary to determine the starting 
value, φL , i.e., the layer-center geopotential for the lowest layer. This can be done by first 

summing δσ( )l  times (171) over all layers:

φl δσ( )l −φS
l=1

L

∑ = πcpθl
∂Π l

∂π
δσ( )l

l=1

L

∑ .

(175)

Now we use the mathematical identity

φl δσ( )l
l=1

L

∑ = φl σ
l+ 1
2

−σ
l− 1
2

⎛

⎝
⎜

⎞

⎠
⎟

l=1

L

∑

= φL + σ
l+ 1
2

φl −φl+1( )
l=1

L−1

∑ .

(176)

Substitution into (175), and use of (174), gives
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φL = φS + πcpθl
l=1

L

∑ ∂Π l

∂π
δσ( )l − σ

l+ 1
2

cp Π l+1 −Π l( )θ
l+ 1
2l=1

L−1

∑ .

(177)

Eq. (177) is a bit odd, because it  says that the thickness between the Earth’s surface and 
the middle of the lowest model layer depends on all of the values of θ  throughout the entire 
column. An interpretation is that  all values of θ  are being used to estimate the effective value of 
θ  between the surface and level L. Since we start from φL  to determine φl  for l < L , all values 

of θ  are being used to determine each value of φl  throughout the entire column. This means that 

the hydrostatic equation is very non-local, i.e., the thickness between each pair of layers is 
determined through an elaborate interpolation that involves the potential temperature at  all model 
levels. Computational modes can run amok.

To avoid this problem, Arakawa and Suarez (1983) proposed an interpolation for θ
l+ 1
2

 in 

which only θL  influences the thickness between the surface and the middle of the bottom layer. 

The starting point is to write local hydrostatic equation in the form

φl −φl+1 = cp A
l+ 1
2

θl + Bl+ 1
2

θl+1
⎛

⎝⎜
⎞

⎠⎟
,

(178)

where A
l+ 1
2

 and B
l+ 1
2

 are non-dimensional parameters to be determined. Comparing with (174), 

we see that

Π l+1 −Π l( )θ
l+ 1
2

= A
l+ 1
2

θl + Bl+ 1
2

θl+1 .

(179)

Eq. (179) essentially determines the form of θ
l+ 1
2

. In order that it have the form of an 

interpolation, we must choose A
l+ 1
2

 and B
l+ 1
2

 so that 
A
l+ 1
2

+ B
l+ 1
2

Π l+1 −Π l( )
=1 .

After substitution from (179), Eq. (177) becomes

φL −φS = cpπθl
l=1

L

∑ ∂Π l

∂π
δσ( )l − σ

l+ 1
2

cp A
l+ 1
2

θl + Bl+ 1
2

θl+1
⎛

⎝
⎜

⎞

⎠
⎟

l=1

L−1

∑ .

(180)
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Every  term on the right-hand-side of (180) involves a layer-center value of θ . To eliminate any 
dependence of φL  on the values of θ  above the lowest layer, we “collect terms” around 

individual values of θl , and force the coefficients to vanish for l < L . This gives

π ∂Π l

∂π
δσ( )l =σ l+ 1

2

A
l+ 1
2

+σ
l− 1
2

B
l− 1
2

 for l < L .

(181)

With the use of (181), (177) reduces to

φL −φS = π ∂Π l

∂π
δσ( )L −σ L− 1

2

B
L− 1
2

⎡

⎣
⎢

⎤

⎦
⎥cpθL ,

(182)

because the coefficient of each θl  has been forced to vanish for all l < L ; only the coefficient of 

φL  is non-zero. 

Particular choices for A
l+ 1
2

 and B
l+ 1
2

 are discussed by Arakawa and Suarez (1983). The 

details are omitted here.

10.8 ! Summary and conclusions

The problem of representing the vertical structure of the atmosphere in numerical models 
is receiving a lot of attention at present. Among the most promising of the current approaches are 
those based on isentropic or quasi-isentropic coordinate systems. Similar methods are being used 
in ocean models.

At the same time, models are more commonly being extended through the stratosphere 
and beyond, while vertical resolutions are increasing; the era of hundred-layer models appears to 
be upon us.
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Problems

1. Show that 
∂φ
∂Π

= −θ .

2. Prove that (85) is consistent with (35).

3. For the hybrid sigma-pressure coordinate of Simmons and Burridge (1981), work out:

a) The form of the pseudo-density, expressed as a function of the vertical coordinate.

b) A method to determine the vertical velocity, modeled after the method used with σ -
coordinates, as explained in connection with Eq. (85). Write down a “recipe” explaining 
how you would program the calculation of the vertical velocity.

4. Starting from the continuity  equation in height coordinates, Eq. (41), derive the 
continuity  equation in the general ζ -coordinate, Eq. (6). Do not use the hydrostatic 
equation until the very last step of your derivation.

5. Verify that (139) and (153) are correct in the continuous limit.
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