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11.1 ! Introduction

If the wind field is specified, as for example in the discussion of Chapter 4, then the 
advection of a tracer can be considered as a linear problem; it  is, at least, linear in the tracer. With 
momentum advection, however, the wind field is both the “advector” and the “advectee.” 
Momentum advection is thus unavoidably nonlinear. Up to now, we have mostly avoided the 
subject of momentum advection, except for a brief discussion in Chapter 9, which was limited to 
the one-dimensional case, without rotation. We now consider the advection terms of the 
momentum equation for the multi-dimensional case, in which vorticity plays a key role. The 
important new physical ingredient that must be considered in the two-dimensional system is 
rotation, including both Earth-rotation, f , and the relative vorticity, ζ , associated with the wind 

field.

The shallow-water equations can be written as

∂h
∂t

+∇ ⋅ hV( ) = 0 ,

(1)
and

∂V
∂t

+ ζ + f
h

⎛
⎝
⎜

⎞
⎠
⎟k × hV( ) +∇ Κ + g h + hS( )⎡⎣ ⎤⎦= 0 ,

(2)

where Κ ≡
1
2
V ⋅V  is the kinetic energy per unit mass, 

ζ = k ⋅ ∇ × V( )
(3)

is the relative vorticity, and

f ≡ 2Ω sinϕ
(4)
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is the Coriolis parameter. In (2), we have multiplied and divided the vorticity term by  h , for 
reasons to be explained later. 

The corresponding equations for the zonal and meridional wind components are

∂u
∂t

− ζ + f
h

⎛
⎝
⎜

⎞
⎠
⎟ hv( ) + ∂

∂x
Κ + g h + hS( )⎡⎣ ⎤⎦= 0 ,

(5)
and

∂v
∂t

+ ζ + f
h

⎛
⎝
⎜

⎞
⎠
⎟ hu( ) + ∂

∂y
Κ + g h + hS( )⎡⎣ ⎤⎦= 0 ,

(6)
respectively. Here

V = ui + vj ,
(7)

where i  and j are the unit vectors in the zonal and meridional directions, respectively. 

When we take the dot product of (2) with hV , the vorticity term contributes nothing 
because of the vector identity

hV( ) ⋅ k × hV( )⎡⎣ ⎤⎦ = 0 ,

(8)
and so we obtain very directly the advective form of the kinetic energy equation, i.e.,

h ∂Κ
∂t

+ hV( ) ⋅ ∇ Κ + g h + hS( )⎡⎣ ⎤⎦= 0 .

(9)
By use of the continuity equation (1), we can rewrite (9) in flux form:

∂
∂t

hΚ( ) +∇ ⋅ hVΚ( ) + hV( ) ⋅ ∇ g h + hS( )⎡⎣ ⎤⎦= 0 .

(10)
Similarly, the flux form of the potential energy equation is 

∂
∂t

h ghS +
1
2
h⎛

⎝⎜
⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
+∇ ⋅ hV( )g h + hS( )⎡⎣ ⎤⎦ − hV( ) ⋅∇ g h + hS( )⎡⎣ ⎤⎦ = 0 .

(11)
By adding (10) and (11), we obtain conservation of total energy.

By taking the curl of (2) we can obtain the vorticity equation
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∂ζ
∂t

+ V ⋅∇ ζ + f( ) + ζ + f( )∇ ⋅V = 0 .

(12)
To derive (12), we have used

k ⋅∇ × ∇ Κ + g h + hS( )⎡⎣ ⎤⎦{ } = 0 ,

(13)
which is based on another vector identity, i.e., the curl of any gradient is zero. Eq. (12) can be 
rearranged to

∂ ζ + f( )
∂t

+∇ ⋅ V ζ + f( )⎡⎣ ⎤⎦ = 0 .

(14)

The combination 
ζ + f
h

⎛
⎝⎜

⎞
⎠⎟

 is the potential vorticity  for the shallow-water system. As you know, 

conservation of potential vorticity is a key to the dynamics of balanced flows. The flux form of 
the potential vorticity equation for shallow water can be obtained simply by rewriting (14) as

∂
∂t

h ζ + f
h

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
+∇ ⋅ hV ζ + f

h
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥
= 0 .

(15)
11.2 ! Aliasing error

We now move to what may appear to be a completely different subject.

Suppose that  we have a wave given by the continuous solid line in Fig. 11.1 There are 
discrete, evenly spaced grid points along the x-axis, as shown by the black dots in the figure. The 

wave has been drawn with a wave length of 4 / 3( )Δx , corresponding to a wave number of 3π
2Δx

. 

Because 4 / 3( )Δx < 2Δx , the wave is too short to be represented on the grid. What the grid 

points “see” instead is not the wave represented by the solid line, but rather the wave of 
wavelength 4Δx , as indicated by the dashed line (again drawn as a continuous function of x). At 
the grid points, the wave of length 4Δx  takes exactly the values that  the wave of 4 / 3( )Δx  

would take at those same grid points, if it  could be represented on the grid at all. This 
misrepresentation of a wavelength too short to be represented on the grid is called “aliasing 
error.” Aliasing is a high wave number (or frequency) masquerading as a low wave number (or 
frequency). In the example of Fig. 11.1, aliasing occurs because the grid is too coarse to resolve 
the wave of length 4 / 3( )Δx . Another way  of saying this is that the wave is not adequately 

“sampled” by the grid. Aliasing error is always due to inadequate sampling.

! Revised Sunday, November 27, 2011! 3

An Introduction to Numerical Modeling of the Atmosphere



Aliasing error can be important in observational studies, because observations taken “too 
far apart” in space (or time) can make a short wave (or high frequency) appear to be a longer 
wave (or lower frequency). Fig. 11.2 is an example, from real life. The blue curve in the figure 
makes it appear that the precipitation rate averaged over the global tropics fluctuates with a 
period of 23 days and an amplitude approaching 1mm day−1 . If this tropical precipitation 

oscillation (TPO) were real, it would be one of the most amazing phenomena in atmospheric 
science, and its discoverer would be on the cover of Rolling Stone. But alas, the TPO is bogus, 
even though you can see it with your own eyes in Fig. 11.2, and even though the figure is based 
on real data. The satellite from which the data was collected has an orbit  that takes it over the 
same point on Earth at the same time of day once every 23 days. Large regions of the global 
tropics have a strong diurnal (i.e., day-night) oscillation of the precipitation rate. This high-
frequency diurnal signal is aliased onto a much lower frequency, i.e., 23 days, because the 
sampling by the satellite is inadequate to resolve the diurnal cycle. 

Aliasing error is also important in modeling, when we try  to solve either non-linear 
equations or linear equations with variable coefficients. The reason is that the product terms (or 
other nonlinear terms) in such equations can produce, or “try  to produce,” waves shorter than the 
grid can represent. For example, suppose that we have two modes on a one-dimensional grid, 
given by

A xj( ) = ÂeikjΔx  and B xj( ) = B̂eiljΔx ,

(16)
respectively. Here the wave numbers of A and B are denoted by k and l, respectively. We assume 
that k and l both “fit” on the grid in question. If we combine A and B linearly, e.g., form

Figure 11.1: An example of aliasing error. Distance along the horizontal axis is measured in units 
of ∆x . The wave given by  the solid line has a wave length of 4 / 3( )Δx  . This is shorter than 

2Δx  , and so the wave cannot be represented on the grid. Instead, the grid “sees” a wave of 
wavelength 4Δx  , as indicated by the dashed line. Note that the 4Δx  -wave is “upside-down.”

! Revised Sunday, November 27, 2011! 4

An Introduction to Numerical Modeling of the Atmosphere



αA + βB ,
(17)

where α  and β  are spatially constant coefficients, then no “new” waves are generated; k and l 

continue to be the only  wave numbers present. In contrast, if we multiply  A and B together, then 
we generate the new wave number, k + l:

AB = ÂB̂ei k+ l( ) jΔx ,
(18)

Other nonlinear operations such as division, exponentiation, etc., will also generate new wave 
numbers. It can easily  happen that k + l( )Δx > π , in which case the new mode created by 

multiplying A and B together does not  fit on the grid. What actually happens in such a case is 
that the new mode is aliased onto a mode that does fit on the grid.

Because the shortest  wavelength that the grid can represent is L = 2Δx , the maximum 
representable wave number is kmax ≡ π / Δx . What happens when a wave with k > kmax  is 

produced, e.g., through nonlinear interactions? Since 2kmaxΔx = 2π , we can assume that 

Figure 11.2: An example of aliasing in the analysis of observations. The blue curve shows the 
precipitation rate, averaged over the global tropics (20° S to 20° N), and the red curve shows a the 
thermal radiation in the 11.8 μm band, averaged over the same region. The horizontal axis is time, 
and the period covered is slightly  more than two years. The data were obtained from the TRMM 
(Tropical Rain Mapping Mission) satellite. The obvious oscillation in both curves, with a period 
close to 23 days, is an artifact due to aliasing. See the text for further explanation.
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2kmax > k > kmax . (A wave with k > 2kmax = 2π  “folds back.”) We can write the expression 

sin kjΔx( )  as

sin k jΔx( )⎡⎣ ⎤⎦ = sin 2kmax − 2kmax + k( ) jΔx⎡⎣ ⎤⎦
= sin 2π j − 2kmax − k( ) jΔx⎡⎣ ⎤⎦
= sin − 2kmax − k( ) jΔx⎡⎣ ⎤⎦
= sin k* jΔx( )⎡⎣ ⎤⎦ ,

(19)
where k* ≡ − 2kmax − k( ) . Note that 0 < k* < kmax  because, by  assumption, 2kmax > k > kmax .  

Similarly,

cos k jΔx( )⎡⎣ ⎤⎦ = cos k* jΔx( )⎡⎣ ⎤⎦ .

(20)
Eqs. (18) - (19) show that the wave of wave number k > kmax  is interpreted (or misinterpreted) by 

the grid as a wave of wave number k* . The minus sign means that the phase change per Δx  is 

reversed, or “backwards.” Fig. 11.3  illustrates how k*  varies with k . For −kmax ≤ k ≤ kmax , we 

Figure 11.3: The red line is a plot of k*  on the vertical axis, versus k  on the horizontal axis. The 

dashed black line connects k = 3π
2Δx

 with k* = π
2Δx

, corresponding to the example of Fig. 11.1.

! Revised Sunday, November 27, 2011! 6

An Introduction to Numerical Modeling of the Atmosphere



simply have k* = k . For k > kmax , we get 0 > k* > −kmax , and so on.

In t he example o f F ig . 11 .1 , L = 4 / 3( )Δx  s o k = 2π / L . The re fo re

k* ≡ − 2kmax − k( ) = 2π
Δx

−
3π
2Δx

=
π
2Δx

, which means that  L* = 4Δx , as we have already surmised 

by inspection of Fig. 11.1.

For k < kmax , the phase change, as j increases by one, is less than π . This is shown in Fig.  

11.4 a. For k > kmax , the phase change as j increases by one is greater than π . This is shown in 

Fig. 11.4 b. For k > kmax , the dot in the figure appears to move clockwise, i.e., “backwards.” This 

is a manifestation of aliasing that is familiar from the movies. It  also explains why the minus sign 
appears in Eq. (19).

Aliasing error is important in part  because it is the root cause of what is often called 
“nonlinear computational instability.” This instability  occurs with nonlinear equations, but as 
explained below it can also occur with linear equations that have spatially variable coefficients. 
A better name for the instability would be “aliasing instability.” An example is presented in the 

next section.

11.3 ! Advection by a variable, non-divergent current

What does aliasing have to do with vorticity and kinetic energy? The connections will be 
made in this and the following sections.

Figure 11.4: The phase change per grid point for: a) kΔx < π , and b) kΔx > π .
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Suppose that an arbitrary variable q  is advected in two dimensions on a plane, so that

∂q
∂t

+V ⋅ ∇q = 0 ,

(21)
where the flow is assumed to be non-divergent, i.e.,

∇ ⋅V = 0 .
(22)

Two-dimensional non-divergent flow is a not-too-drastic idealization of the large-scale 
circulation of the atmosphere. In view of (22), we can describe V in terms of a stream function 
ψ , such that

V = k ×∇ψ
(23)

Substituting (23) into (21), we get

∂q
∂t

+ k × ∇ψ( ) ⋅∇q = 0 .

(24)
Using the vector identity

V1 × V2( ) ⋅V3 = V2 ⋅ V3 × V1( ) ,
(25)

which holds for any three vectors, we set V1 ≡ k , V2 ≡ ∇ψ , and V3 ≡ ∇q , to obtain

k × ∇ψ( ) ⋅∇q = k ⋅ ∇ψ × ∇q( ) .
(26)

With the use of (26), we can re-write (21) as

∂q
∂t

+ J ψ ,q( ) = 0 ,

(27)
or alternatively as

∂q
∂t

= J q,ψ( ) .

(28)
Here J is the Jacobian operator, which is defined by
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J A,B( ) ≡ k ⋅ ∇A×∇B( )
(29)

= −k ⋅ ∇ × A∇B( )
(30)

= k ⋅∇ × B∇A( ) ,
(31)

for arbitrary A  and B . Note that 

J A,B( ) = −J B,A( ) ,

(32)
which can be deduced from (31), and this has been used to go from (27) to (28). From the 
definition of the Jacobian, it follows that J p,q( ) = 0 if either A  or B  is constant. 

In Cartesian coordinates, we can write J A,B( ) , in the following three alternative forms, 

which are suggested by the forms of (31):

J A,B( ) = ∂A
∂x

∂B
∂y

− ∂A
∂y

∂B
∂x

(33)

 = ∂
∂y

B ∂A
∂x

⎛
⎝
⎜

⎞
⎠
⎟−

∂
∂x

B ∂A
∂y

⎛

⎝
⎜

⎞

⎠
⎟

(34)

 = ∂
∂x

A ∂B
∂y

⎛

⎝
⎜

⎞

⎠
⎟−

∂
∂y

A ∂B
∂x

⎛
⎝
⎜

⎞
⎠
⎟ .

(35)
These will be used later.

Let an overbar denote an average over a two-dimensional domain that  has no boundaries 
(e.g., a sphere or a torus), or on the boundary of which either A  or B  is constant. You should be 
able to prove the following:

J A,B( ) = 0 ,

(36)

AJ A,B( ) = 0 ,

(37)

BJ A,B( ) = 0 .

(38)
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Multiplying both sides of the advection equation (28) by q , we obtain

1
2
∂q2

∂t
= qJ q,ψ( ) = J 1

2
q2 ,ψ

⎛
⎝
⎜

⎞
⎠
⎟ .

(39)
Integrating over the entire area, we see that

J 1
2
q2 ,ψ

⎛
⎝
⎜

⎞
⎠
⎟ds∫ = − V ⋅ ∇ 1

2
q2 ds∫ = − ∇ ⋅ V 1

2
q2

⎛
⎝
⎜

⎞
⎠
⎟ds∫ = 0 ,

(40)
if the domain is surrounded by a rigid boundary  where the normal component of V  is zero, or if 
the domain is periodic.

When ψ  is a prescribed spatially varying function, (28) is linear, although with variable 

coefficients. As already mentioned, what is often called “non-linear” instability  is actually a type 
of instability  that can occur in the numerical integration of a linear equation with variable 
coefficients, as well as in the numerical integration of nonlinear equations. What this instability 
really amounts to is a spurious growth of waves due in part to the aliasing error arising from the 
multiplication of the finite difference analogs of any two spatially varying quantities.

To illustrate the problem, we begin by  writing down a differential-difference version of 
(28), on a plane, using a simple finite-difference approximation for the Jacobian. For simplicity, 
we take Δx = Δy = d . We investigate the particular choice

dqi, j
dt

= J1 q,ψ( )⎡⎣ ⎤⎦i, j
(41)

where

J1 q,ψ( )⎡⎣ ⎤⎦i⋅ j ≡
1
4d 2

qi+1, j − qi−1, j( ) ψ i, j+1 −ψ i, j−1( )− qi, j+1 − qi, j−1( ) ψ i+1, j −ψ i−1, j( )⎡⎣ ⎤⎦ .

(42)
You should confirm for yourself that (42) is a finite-difference approximation to (28). Later we 
are going to discuss several other finite-difference approximations for the Jacobian. The 
particular finite-difference Jacobian given in (42) is based on (33), and is called J1 . It will come 

up again in the later discussion.

Now we work through a simple example of aliasing instability, which was invented by 
Phillips (1959; also see Lilly, 1965). We combine (41) and (42) to obtain
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dqi, j
dt

≡ 1
4d 2

qi+1, j − qi−1, j( ) ψi, j+1 −ψi, j−1( ) − qi, j+1 − qi, j−1( ) ψi+1, j −ψi−1, j( )⎡⎣ ⎤⎦

(43)
Assume that the solution, qi, j t( ) , is of the form

qi, j t( ) = C t( )cosπi
2
+ S t( )sinπi

2
⎡
⎣⎢

⎤
⎦⎥
sin 2π j

3
.

(44)
The use of such assumption may appear strange; it will be justified later. For all t , let ψ i, j  be 

prescribed as 

ψ i, j =U cos πi( )sin 2π j
3

⎛
⎝⎜

⎞
⎠⎟

.

(45)
In (45), we are prescribing a time-independent but spatially variable advecting current. We have  
often prescribed the advecting current in earlier chapters, but until now it has always been 
spatially  uniform. Because ψ i, j  is prescribed, the model that we are considering here is linear, 

but it  has spatially variable coefficients. The forms of qi, j  and ψ i, j  given by (44) and (45) are 

plotted in Fig. 11.5. They are nasty functions.

Figure 11.5: Plots of the functions qi, j (t = 0)  and ψ i, j  given by (11.43) and (11.44), respectively. 

For plotting purposes, we have used C = S =U =1 . The functions have been evaluated only for 
integer values of i  and j , which gives them a jagged appearance. Nevertheless it is fair to say 

that they  are rather ugly. This is the sort of thing that can appear in your simulations as a result of 
aliasing instability.
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Because (45) specifies ψ i, j  to have a wavelength of 2d in the x-direction, we can 

simplify (43) to

∂qi, j
∂t

=
1
4d 2

qi+1, j − qi−1, j( ) ψ i, j+1 −ψ i, j−1( ) .

(46)
From (44), we see that

qi+1, j − qi−1, j = C cos
π i +1( )
2

− cos
π i −1( )
2

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎪

⎩⎪
+S sin

π i +1( )
2

− sin
π i −1( )
2

⎡

⎣
⎢

⎤

⎦
⎥
⎫
⎬
⎪

⎭⎪
sin 2π j

3

= 2 −C sin πi
2
+ S cos πi

2
⎛
⎝
⎜

⎞
⎠
⎟sin

2π j
3
.

(47)
Here we have used some trigonometric identities. Similarly, we can show that 

ψi, j+1 −ψi, j−1 =U cos πi( )2cos 2π j
3

⎛
⎝
⎜

⎞
⎠
⎟sin

2π
3

⎛
⎝
⎜

⎞
⎠
⎟

= 3U cos πi( )cos 2π j
3

⎛
⎝
⎜

⎞
⎠
⎟ .

.

(48)
As already mentioned, (48) holds for all t. 

The product of (47) and (48) gives the right-hand side of (46), which can be written, 
using trigonometric identities, as

dqi, j
dt

= 3
4d 2

U −C sin 3πi
2

⎛
⎝
⎜

⎞
⎠
⎟− sin

πi
2

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥
+ S cos 3πi

2
⎛
⎝
⎜

⎞
⎠
⎟+ cos

πi
2

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭
sin 4π j

3
⎛
⎝
⎜

⎞
⎠
⎟

= 3
4d 2

U C sin πi
2

⎛
⎝
⎜

⎞
⎠
⎟+ S cos

πi
2

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥
sin 4π j

3
⎛
⎝
⎜

⎞
⎠
⎟ .

(49)
Now we make the important observation that the wave number in the y-direction, denoted by l, 
satisfies

4π j
3

= ly = l jd( ) .

(50)
Therefore,
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ld =
4π
3

> π .

(51)
This shows that the product on the right-hand side of (46) has produced a wave number in the y-
direction that is too short to be represented on the grid. In other words, aliasing occurs. 
According to our earlier analysis, this wave will be interpreted by the grid as having wave 
number − 2lmax − l( ) = − 2π / 3d( ) . Therefore (49) can be re-written as

dqi, j
dt

= −
3U
4d 2

C sinπi
2
+ S cosπi

2
⎛
⎝⎜

⎞
⎠⎟
sin 2π j

3
.

(52)
Rewriting (49) as (52) is a key  step in our analysis, because this is where aliasing enters. In doing 
the problem algebraically, we have to put in the aliasing “by hand.”

According to (52) the spatial form of 
dqi, j
dt

 agrees with the assumed form of qi, j , given 

by (44). This means that the spatial shape of qi, j  does not  change with time, thus justifying our 

assumption (44). In order to recognize that the spatial shape of qi, j  does not change with time, 

we had to take into account that aliasing occurs. 

If we now simply  differentiate (44) with respect to time, and substitute the result into the 
left-hand side of (52), we get 

dC
dt
cos πi

2
sin 2π j

3
+ dS
dt
sin πi

2
sin 2π j

3
= − 3

4d 2
U C sin πi

2
+ S cosπ i

2
⎛
⎝
⎜

⎞
⎠
⎟sin

2π j
3

.

(53)
Note that time derivatives of C and S appear on the left-hand side of (53). Using the linear 
independence of the sine and cosine functions, we see from (53) that

dC
dt

= −
3

4d 2 US,  and dS
dt

= −
3

4d 2 UC .

(54)
From (54), it follows that

d 2C
dt 2

=σ 2C  and d
2S
dt 2

=σ 2S ,

(55)
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where σ ≡
3U
4d 2

. According to (55), C and S will grow exponentially. This demonstrates that the 

finite-difference scheme is unstable. The unstable modes will have the form given by (44) and 
plotted in Fig. 11.5.

Fig. 11.6 summarizes the mechanism of this aliasing instability. Nonlinear interactions 
feed energy into waves that cannot be represented on the grid. Aliasing causes this energy to 
“fold back” onto scales that do fit on the grid, but typically  these are rather small scales that are 
not well resolved and suffer from large truncation errors. In the example given, the truncation 
errors lead to further production of energy on scales too small to be represented, etc. 

Note, however, that if the numerical scheme conserved energy, the total amount of energy 
could not increase, and the instability would be prevented, even though aliasing would still 
occur, and even though the truncation errors for the smallest scales would still be large. In the 
example discussed above, we used J1 . Later we demonstrate that J1  does not conserve energy. 

As we will discuss, some other finite-difference Jacobians do conserve energy. Instability would 
not occur with those Jacobians.

Further general insight into this type of instability can be obtained by investigating the 
truncation error of the expression on the right side of (42). This can be expressed as

dq
dt

⎛
⎝
⎜

⎞
⎠
⎟
i, j

= J1 q,ψ( )⎡⎣ ⎤⎦i, j

= J q,ψ( )⎡⎣ ⎤⎦i, j +
d 2

6
∂q
∂x

∂3ψ
∂y3

− ∂q
∂y

∂3ψ
∂x3

+ ∂3q
∂x3

∂ψ
∂y

− ∂3q
∂y3

∂ψ
∂x

⎡

⎣
⎢

⎤

⎦
⎥
i, j

+O d 4( ) .
(56)

The second line is obtained by Taylor series expansion. Note the second-order accuracy. 
Multiplying (56) by  q , integrating over the whole domain, and making use of (39), (40) and 

Figure 11.6: Sketch illustrating the mechanism of aliasing instability.
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(50), we find, after repeated integration by parts and a page or so of algebra, that when we use 
J1 , the second-order part of the truncation error causes the square of q  to increase at the rate

1
2
d
dt

q2ds∫ =
d 2

4
∂2ψ
∂x∂y

∂q
∂x

⎛
⎝⎜

⎞
⎠⎟
2

−
∂q
∂y

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ds∫ + O d 4( )ds∫ .

(57)

This means that, for 
∂2ψ
∂x∂y

> 0 , q2  will falsely grow with time if 
∂q
∂x

⎛
⎝⎜

⎞
⎠⎟
2

 is bigger than 
∂q
∂y

⎛
⎝⎜

⎞
⎠⎟

2

, in 

an overall sense. In such a situation, instability will occur. The scheme will blow up locally, in 

the particular portions of the domain where 
∂2ψ
∂x∂y

> 0 .

Now look at Fig. 11.7. In the figure, the streamlines are given such that ψ 1 <ψ 2 <ψ 3 , so 

that ∂ψ / ∂y( ) < 0 , and. This resembles the “exit” region of the jet stream. [Note: The stream 

function sketched in Fig. 11.7 does not correspond to (45).] In fact, the solution of the 

Figure 11.7: Schematic illustration of the mechanism of aliasing instability. Nonlinear interactions 
feed energy  into scales too small to be represented on the grid, and this energy  folds back 
through aliasing into scales that can be represented. The process feeds on itself. This can cause 
the total amount of energy to increase, unless the scheme is energy conserving.
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differential-difference equation tends to prefer a positive value of the integrand of the right-hand 

side of (57), as illustrated schematically  in Fig. 11.7. Notice that at t2 , 
∂q
∂x

 becomes greater than 

it was at t1 , and the reverse is true for 
∂q
∂y

. Therefore, although at t1  the expression 

∂2ψ
∂x∂y

∂q
∂x

⎛
⎝⎜

⎞
⎠⎟
2

−
∂q
∂y

⎛
⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
ds∫  vanishes, at t2  it has become positive. From (58), it can be seen that 

the area-integrated q2  tends to increase with time, whereas it is invariant in the differential case.

In contrast to the linear computational instabilities discussed earlier in this course, 
aliasing instability has nothing to do with time truncation error. Making the time step shorter 
cannot prevent the instability, which can occur, in fact, even in the time-continuous case. The 
example we have just considered illustrates this fact, because we have left the time derivatives in 
continuous form. 

A number of methods have been proposed to prevent or control aliasing instability. One 
approach is to prevent aliasing. As will be discussed in Chapter 13, aliasing error can actually be 
eliminated in a spectral model, at least for terms that involve only “quadratic” aliasing, i.e., 
aliasing that arises from the multiplication of two spatially varying fields; this will be discussed 
later. Aliasing instability can also be prevented without eliminating aliasing, however.

Phillips (1959) suggested that aliasing instability can be prevented if a Fourier analysis of 
the predicted fields is made after each time step, and all waves of wave number k > kmax / 2  are 

simply  discarded. With this “filtering” method, Phillips could guarantee absolutely no aliasing 
error due to quadratic nonlinearities, because the shortest possible wave would have wave 
number kmax / 2  (his maximum wave number) and thus any wave generated by quadratic 

nonlinearities would have a wave number of at most kmax . This method is strongly  dissipative, 

however, because the filter removes variance.

Others have suggested that  use of a dissipative scheme, such as the Lax-Wendroff 
scheme, can overcome aliasing instability. Experience shows that  this is not true. The damping of 

a dissipative scheme depends on the value of 
cΔt
Δx

, but aliasing instability can occur even for 

cΔt
Δx

→ 0 .

A third approach is to use a sign-preserving advection scheme, as discussed in Chapter 4, 
and advocated by Smolarkeiwicz (1991). 

A fourth approach is to use space-differencing schemes for the advection terms that are 
designed to conserve the square of the advected quantity. The “energy approach” to checking 
stability, discussed in Chapter 2, ensures that  such schemes are computationally stable. This 
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approach has the advantage that stability  is ensured simply  by mimicking a property of the exact 
equations.

To prevent aliasing instability with the momentum equations, we can use finite-difference 
schemes that conserve either kinetic energy, or enstrophy (squared vorticity), or both. This 
approach was developed by Arakawa (1966). It will be explained below, after a digression in 
which we discuss the nature of two-dimensional nondivergent flows.

11.4 ! Fjortoft’s Theorem

When the flow is nondivergent, so that (22) is satisfied, the vorticity equation, (23), 
reduces to

∂
∂t

ζ + f( ) = −V ⋅ ∇ ζ + f( ) .

(58)
This says that the absolute vorticity is simply advected by the mean flow. We also see that only 
the sum ζ + f( )  matters for the vorticity equation; henceforth we just replace ζ + f( )  by ζ , for 

simplicity. Using Eq. (23), we can show that the vorticity and the stream function are related by

ζ ≡ k ⋅ ∇ ×V( ) = ∇2ψ .

(59)
This relationship was used as an example of a boundary-value problem, back in Chapter 6. Eq. 
(5) can be rewritten as

∂ζ
∂t

= −∇ ⋅ Vζ( ) ,

(60)
or, alternatively, as

∂ζ
∂t

= J ζ ,ψ( ) .

(61)
From (60) we see that the domain-averaged vorticity is conserved:

dζ
dt

= ∂ζ
∂t

= 0 .

(62)
By combining (61) and (38), we obtain

ζ ∂ζ
∂t

= 0 ,

(63)
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from which it follows that the domain-average of the enstrophy is also conserved:

d
dt

1
2
ζ 2⎛

⎝⎜
⎞
⎠⎟
= 0 .

(64)
Similarly, from (61) and (37) we find that

ψ ∂ζ
∂t

= 0 .

(65)
To see what this implies, substitute (59) into (65), to obtain

ψ ∂
∂t
∇2ψ = 0 .

(66)
This is equivalent to

0 =ψ ∂
∂t

∇2ψ

=ψ ∂
∂t

∇ ⋅ ∇ψ( )⎡⎣ ⎤⎦

=ψ∇ ⋅ ∂
∂t

∇ψ

= ∇ ⋅ ψ ∂
∂t

∇ψ
⎛
⎝
⎜

⎞
⎠
⎟− ∇ψ ⋅ ∂

∂t
∇ψ

= − ∂
∂t

1
2
∇ψ 2⎛

⎝
⎜

⎞
⎠
⎟ .

(67)
Eq. (68) is a statement of kinetic energy  conservation, showing that (66) implies kinetic energy 
conservation. In fact, it can be shown that, for a purely rotational flow,

Κ =ψζ .
(68)

Since both kinetic energy and enstrophy  are conserved in frictionless two-dimensional 
flows, their ratio is also conserved, and has the dimensions of a length squared:

energy
enstrophy

~ L
2t −2

t −2
= L2 .

(69)
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This length can be interpreted as the typical scale of energy-containing vortices, and (69) states 
that it is invariant. The implication is that  energy does not cascade in frictionless two-
dimensional flows; it “stays where it is” in wave number space. 

The exchanges of energy and enstrophy  among different scales in two-dimensional 
turbulence were studied by Ragnar Fjortoft (1953), a Norwegian meteorologist who obtained 
some very fundamental and famous results, which can be summarized in a simplified way as 

follows. Consider three equally spaced wave numbers, as shown in Fig. 11.8. By  “equally 
spaced,” we mean that

λ2 − λ1 = λ3 − λ2 = Δλ .
(70)

The enstrophy, E, is

E = E1 + E2 + E3 ,
(71)

and the kinetic energy is

Κ = Κ1 +Κ2 +Κ3 .
(72)

It can be shown that

En = λ2nΚn ,
(73)

where λn  is a wave number, and the subscript n denotes a particular Fourier component. Suppose 

that kinetic energy is redistributed, i.e.,

Κn →Κn + δΚn ,
(74)

such that

δΚn∑ = 0 ,

(75)

Figure 11.8: Diagram used in the explanation of Fjortoft’s (1953) analysis of the exchanges of 
energy and enstrophy among differing scales in two-dimensional motion.
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δEn∑ = 0 ,

(76)
and note from (73) that

δEn = λ2nδΚn .
(77)

It follows that

δΚ1 + δΚ3 = −δΚ2 ,
(78)

λ21δΚ1 + λ
2
3δΚ 3 = −λ

2
2δΚ 2

= λ2
2 δΚ1 +δΚ 3( ) .

(79)
Collecting terms, we find that

δΚ3

δΚ1

=
λ22 − λ21
λ23 − λ22

.

(80)
Using (70), we get

δΚ3

δΚ1

=
λ2 + λ1
λ3 + λ2

< 1 .

(81)
Eq. (81) shows that the energy transferred to higher wave numbers δΚ3( )  is less than the energy 

transferred to lower wave numbers δΚ1( ) . This conclusion rests on both (75) and (76), i.e., on 

both energy conservation and enstrophy conservation. The implication is that kinetic energy 
actually “migrates” from higher wave numbers to lower wave numbers, i.e., from smaller scales 
to larger scales. 

We now perform a similar analysis for the enstrophy. As a first step, we use (77) and (81) 
to write

δE3
δE1

= λ23
λ21

λ2 + λ1
λ3 + λ2

⎛

⎝
⎜

⎞

⎠
⎟

=
λ2 +Δλ( )2

λ2 − Δλ( )2
λ2 −

1
2
Δλ

⎛
⎝
⎜

⎞
⎠
⎟

λ2 +
1
2
Δλ

⎛
⎝
⎜

⎞
⎠
⎟
>1 .

(82)
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To show that this ratio is greater than one, we demonstrate that δE3
δE1

= a ⋅b ⋅c , where a , b , and 

c  are each greater than one. We can choose:

a = λ2 + Δλ
λ2 − Δλ

> 1 ,

(83)

b =
λ2 −

1
2
Δλ

λ2 − Δλ
> 1 ,

(84)

c = λ2 + Δλ

λ2 +
1
2
Δλ

> 1 .

(85)
The conclusion is that enstrophy cascades to higher wave numbers in two-dimensional 
turbulence. Of course, such a cascade ultimately leads to enstrophy dissipation by viscosity.

When viscosity acts on two-dimensional turbulence, enstrophy is dissipated but kinetic 
energy is (almost) not. Then the denominator of (69) decreases with time, while the numerator 
remains nearly  constant. It follows that the length scale, L, will tend to increase with time. This 
means that the most energetic vortices will become larger. This is an “anti-cascade” of kinetic 
energy. The implication is that two-dimensional turbulence tends to remain smooth, so that the 
kinetic energy of the atmosphere tends to remain on large, quasi-two-dimensional scales, instead 
of cascading down to small scales where it can be dissipated.

In three-dimensions, vorticity  is not conserved because of stretching and twisting, and 
enstrophy is not conserved because of stretching (although it  is unaffected by  twisting). Vortex 
stretching causes small scales to gain energy at  the expense of larger scales. As a result, kinetic 
energy cascades in three-dimensional turbulence. Ultimately the energy is converted from kinetic 
to internal by the viscous force. This is relevant to small-scale atmospheric circulations, such as 
boundary-layer eddies and cumulus cells.

In summary, vorticity  and enstrophy are conserved in two-dimensional flow but not in 
three-dimensional flow. Kinetic energy is conserved under inertial processes in both two-
dimensional and three-dimensional flows. Because two-dimensional flows are obliged to 
conserve both energy and enstrophy, they “have fewer options” than do three-dimensional flows. 
In particular, a kinetic energy cascade cannot happen in two dimensions. What happens instead is 
an enstrophy cascade. Enstrophy is dissipated but kinetic energy is (almost) not.

Because kinetic energy does not cascade in two-dimensional flow, the motion remains 
smooth and is dominated by “large” eddies. This is true with the continuous equations, and we 
want it to be true in our models as well.
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11.5 ! Kinetic energy and enstrophy conservation in two-dimensional non-divergent flow

Lorenz (1960) suggested that energy-conserving finite-difference schemes would be 
advantageous in efforts to produce realistic numerical simulations of the general circulation of 
the atmosphere. Arakawa (1966) developed a method for numerical simulation of two-
dimensional, purely  rotational motion, that conserves both kinetic energy and enstrophy. His 
method has been very widely used. The following is a summary of Arakawa’s approach.

We begin by writing down a spatially discrete version of (61), keeping the time derivative 
in continuous form:

σ i
dζ i
dt

=σ iJ i ζ,ψ( )

= ci, ′i , ′′i ζ i+ ′iψi+ ′′i
′′i
∑

′i
∑ .

(86)
Here the area of grid cell i  is denoted by  σ i . The ci, ′i , ′′i  are “coefficients” (we will refer to them 

that way) that must be specified to define the finite-difference scheme, following the approach 
that we first introduced in Chapter 2. The bold subscripts are two-dimensional counters that can 
be used to specify a grid cell on a two-dimensional grid by giving a single number, again as 
discussed in Chapter 2. For later reference, with double subscripts, (86) would become

σ i, j

dζ i, j

dt
= ci, j;i+ ′i , j+ ′j ;i+ ′′i , j+ ′′j( )ζ i+ ′i , j+ ′jψ i+ ′′i , j+ ′′j

′′i
∑

′′j
∑

′i
∑

′j
∑ .

(87)
The second line of (86) looks a little mysterious and requires some explanation. As can be 

seen by inspection of (33), the Jacobian operator, J ζ ,ψ( ) , involves derivatives of the vorticity, 

multiplied by derivatives of the stream function. We can anticipate, therefore, that the form we 
choose for the finite-difference Jacobian at the point i will involve products of the vorticity at 
some nearby grid points with the stream function at other nearby grid points. We have already 
seen an example of this in (42). Such products appear in (86). The neighboring grid points can be 
specified in (86) by assigning appropriate values to ′i  and ′′i . As you can see from the 
subscripts, ′i  picks up vorticity points, and ′′i  picks up  stream function points. The ci, ′i , ′′i  are 

“interaction coefficients.” Their form will be chosen later. It is by  appropriate choices of the ci, ′i , ′′i  

that we can construct an approximation to the Jacobian. The double sum in (86) essentially picks 
out the combinations of ζ  and ψ , at neighboring grid points, that we wish to bring into our 

finite-difference operator. This is similar to the notation that we used in Chapter 2, but  a bit more 
complicated.

Of course, there is nothing about  the form of (86) that shows that it is actually  a 
consistent finite-difference approximation to the Jacobian operator; all we can say at this point is 
that (86) has the potential to be a consistent finite-difference approximation to the Jacobian, if 
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we choose the interaction coefficients properly. The coefficients can be chosen to give any 
desired order of accuracy (in the Taylor series sense), using the methods discussed in Chapter 2.

The form of (86) is sufficiently general that it is impossible to tell what kind of grid is 
being used. It could be a rectangular grid on a plane, or a latitude-longitude grid on the sphere, or 
something more exotic like a geodesic grid on the sphere (to be discussed in Chapter 12).

As an example, consider the finite-difference Jacobian J1 , introduced in Eq. (42). 

Applying J1  to vorticity advection on a square grid with grid spacing d , we can write, 

corresponding to (86),

d 2
dζ i, j

dt
= d 2 1

4d 2
qi+1, j − qi−1, j( ) ψ i, j+1 −ψ i, j−1( )− qi, j+1 − qi, j−1( ) ψ i+1, j −ψ i−1, j( )⎡⎣ ⎤⎦

⎧
⎨
⎩

⎫
⎬
⎭

= 1
4
qi+1, jψ i, j+1 − qi+1, jψ i, j−1 − qi−1, jψ i, j+1 + qi−1, jψ i, j−1 − qi, j+1ψ i+1, j + qi, j+1ψ i−1, j + qi, j−1ψ i+1, j − qi, j−1ψ i−1, j( ) .

By inspection of the second line above, and comparing with (86), we see that for J1  each value 

of ci, j;i+ ′i , j+ ′j ;i+ ′′i , j+ ′′j  is either 1/ 4  or −1/ 4 . The values are as follows:

ci, j;i+1, j;i, j+1 = +
1
4
,

ci, j;i+1, j;i, j−1 = −
1
4
,

ci, j;i−1, j;i, j+1 = −
1
4
,

ci, j;i−1, j;i, j−1 = +
1
4
,

ci, j;i, j+1;i+1, j = −
1
4
,

ci, j;i, j+1;i−1, j = +
1
4
,

ci, j;i, j−1;i+1, j = +
1
4
,

ci, j;i, j−1;i−1, j = −
1
4
.

(88)
Look carefully at the subscripts. As an example, you should be able to see that ci, j;i+1, j;i, j+1  

specifies the contribution of the vorticity east of the point i, j( )  combined with the stream 

function north of the point i, j( )  to the time rate of change of the vorticity at the point i, j( ) . 
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With the uniform square grid on a plane, the coefficients are very  simple, as seen in (88). 
The same methods can be applied to very different  cases, however, such as nonuniform grids on 
a sphere. Any finite-difference Jacobian should give zero if both of the input fields are spatially 
constant, so from (87), we require that

0 = ci, ′i , ′′i
′′i
∑

′i
∑  for all i ,

(89)
i.e., the sum of the coefficients is zero for all i. The requirement (88) would emerge 
automatically if we enforced, for example, second-order accuracy of the Jacobian. You can 
confirm that J1  satisfies (89).

Similarly, in case the vorticity field is spatially  constant, it should remain so for all time. 
From (86), this requirement takes the form

0 = ci, ′i , ′′i ψi+ ′′i
′′i
∑

′i
∑ for all i .

(90)
Eq. (90) can be interpreted as the condition that the motion is nondivergent. Note that (90) must 
be true regardless of how the stream function varies in space. This is only  possible if each grid-
point value of ψi+ ′′i  appears more than once (at least twice) in the sum. Then we can arrange that 

the “total coefficient” multiplying ψi+ ′′i , i.e., the sum of the two or more ci, ′i , ′′i ’s that multiply 

ψi+ ′′i , is zero. In that case, the actual values of ψi+ ′′i  have no effect on the sum in (90). You can 

confirm that J1  satisfies (90).

In order to ensure conservation of the domain-averaged vorticity under advection, we 
must require that 

0 = ci, ′i , ′′i ζ i+ ′iψi+ ′′i
′′i
∑

′i
∑

i
∑ .

(91)
Here we have a triple sum, because we are taking a spatial average. Eq. (91) is thus different in 
kind from (89) and (90). Eq. (91) is required to be true regardless of how the vorticity and stream 
function vary in space. This is only possible if each product ζ i+ ′′i ψi+ ′′i  appears more than once in 

the sum, such that the sum of the two or more ci, ′i , ′′i s that multiply each ζ i+ ′′i ψi+ ′′i , is zero. In that 

case, the actual values of ζ i+ ′′i ψi+ ′′i  have no effect on the sum in (91). 

With a little work, we can show that J1  satisfies (91). Each term of the triple sum in (91) 

involves the product of the vorticity and a stream function. Each product will appear exactly 
twice when we form the sum. In order for (91) to be satisfied for arbitrary distributions of the 
vorticity  and the stream function, we need the two contributions from each product to cancel in 
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the sum, i.e., their coefficients must be equal and opposite. As pointed out above, ci, j;i+1, j;i, j+1  

specifies the contributions of the vorticity at i +1, j and the stream function at  i, j +1 to the time 

rate of change of the vorticity at the point i, j . Similarly, ci+1, j+1;i+1, j;i, j+1  specifies the 

contributions of the vorticity at i +1, j and the stream function at i, j +1 to the time rate of 

change of the vorticity  at the point i +1, j +1. See Fig. 11.9. Cancellation will occur if the 

coefficients satisfy

ci, j;i+1, j;i, j+1 = −ci+1, j+1;i+1, j;i, j+1 .

(92)
To see whether or not this is the case, we use the essential fact that the scheme is the same for all 
points on the grid. We can “shift” the stencil for the scheme from one grid cell to another by 
adding any integer to all i  subscripts for each coefficient, and adding a (generally different) 
integer to all j  subscripts, without changing the numerical values of the coefficients. For 

example, the value of ci+1, j+1;i+1, j;i, j+1  remains unchanged if we subtract one from each i  subscript 

and one from each j  subscript. In other words, 

ci+1, j+1;i+1, j;i, j+1 = ci, j;i, j−1;i−1, j .

(93)
Therefore, the requirement (92) is equivalent to

ci, j;i+1, j;i, j+1 = −ci, j;i, j−1;i−1, j .

(94)
What has been accomplished by subtracting one from each subscript is that in the result, i.e., 
(94), both of the coefficients are associated with the time-rate of change of the vorticity at the 
point i, j( ) , and so both of them are explicitly  listed in (88). The meaning of (94) is that the “up, 

right” coefficient is equal to minus the “down-left” coefficient. By  symmetry, we can anticipate 
that the “up-left” coefficient will also be equal to minus the “down-right” coefficient. Inspection 
of (88) shows that (94) is indeed satisfied. Similar results apply for the remaining terms. In this 
way, we can satisfy ourselves that J1  conserves vorticity. 

Figure 11.9: Stencil used in the discussion of vorticity  conservation 
for J1 . See text for details.
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Returning to the general problem, what we are going to do now is find a way to enforce 
finite-difference analogs of (64) and (66):

0 = σ iζ iJ i ζ ,ψ( )
i
∑

= ζ i ci, ′i , ′′i ζ i+ ′iψ i+ ′′i
′′i
∑

′i
∑⎛⎝⎜

⎞
⎠⎟i

∑

= ci, ′i , ′′i ζ iζ i+ ′iψ i+ ′′i
′′i
∑

′i
∑⎛⎝⎜

⎞
⎠⎟i

∑ ,

(95)

0 = σ iψ iJ i ζ ,ψ( )
i
∑

= ψ i ci, ′i , ′′i ζ i+ ′iψ i+ ′′i
′′i
∑

′i
∑⎛⎝⎜

⎞
⎠⎟i

∑

= ci, ′i , ′′i ζ i+ ′iψ iψ i+ ′′i
′′i
∑

′i
∑⎛⎝⎜

⎞
⎠⎟i

∑ .

(96)
By enforcing these two requirements, we can ensure conservation of enstrophy and kinetic 
energy in the finite-difference model. The requirements can be met, as we will see, by  suitable 
choices of the interaction coefficients. Eqs. (95) and (96) look daunting, though, because they 
involve triple sums. How in the world are we ever going to work this out?

Inspection of (95) shows that the individual terms of the triple sum are going to involve 
products of vorticities at pairs of grid points. With this in mind, we go back to (87) and rewrite 
the scheme as

σ iJ i ζ,ψ( ) = ci, ′i , ′′i ζ i+ ′iψi+ ′′i
′′i
∑

′i
∑

= ai, i+ ′i ζ i+ ′i
′i
∑ ,

(97)
where, by definition,

ai, i+ ′i ≡ ci, ′i , ′′i ψi+ ′′i
′′i
∑ .

(98)
Using (98), we can write (97) times ζ i  as

σ iζ iJ i ζ,ψ( ) = ai,i+ ′iζ iζ i+ ′i
′i
∑ .

(99)
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Here we have simply taken ζ i  inside the sum, which we can do because the sum is over ′i , not 

i . From this point it is straightforward to enforce (95), which can be rewritten as

0 = ai,i+ ′iζ iζ i+ ′i
′i
∑
⎛

⎝
⎜

⎞

⎠
⎟

i
∑ .

(100)
Think of the outer sum in (100) as a “DO” loop. As we sweep over the grid, each product ζ iζ i+ ′′i  

will enter the sum exactly twice. We can specify the vorticities any way we want, e.g., when we 
set up  the initial conditions, so the only way to make sure that (100) is satisfied regardless of the 
spatial distribution of the vorticity is to force these two contributions to the sum to be equal and 
opposite, i.e., we must take

ai,i+ ′i = −ai+ ′i ,i for all i  and ′i .

(101)
By enforcing (101), we can ensure enstrophy conservation. Notice that Eq. (101) implies that

ai,i = 0  for all i .
(102)

With the definition (98), we can rewrite the nondivergence condition (90) as

0 = ai,i+ ′i
′i
∑  for all i .

(103)
A scheme that satisfies (101) and (102) will also satisfy (103), which means that the 
nondivergence condition will be satisfied “automatically.” 

Kinetic energy conservation can be guaranteed by  a very similar approach. We rewrite 
(87) as

σ iJ i ζ ,ψ( ) = ci, ′i , ′′i ζ i+ ′iψ i+ ′′i
′′i
∑

′i
∑

= bi,i+ ′′iψ i+ ′′i
′′i
∑ ,

(104)
where

bi,i+ ′′i ≡ ci, ′i , ′′i ζ i+ ′i
′i
∑ .

(105)
The requirement for kinetic energy conservation, (96), can then be written as
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0 = bi,i+ ′′iψ iψ i+ ′′i
′′i
∑⎛⎝⎜

⎞
⎠⎟i

∑ ,

(106)
which is analogous to (100). By an argument similar to that given above, we find that

bi,i+ ′′i = −bi+ ′′i ,i  all i  and ′′i .

(107)
is necessary to ensure kinetic energy conservation. 

Actually, that’s not quite true. To ensure kinetic energy conservation, we must also make 
sure that the finite-difference analog of (67) holds, i.e.,

σ iψi
dζ i
dt

⎛
⎝
⎜

⎞
⎠
⎟

i
∑ = − σ i

d
dt

1
2
∇ψ 2

i

⎛
⎝
⎜

⎞
⎠
⎟

⎡
⎣⎢

⎤
⎦⎥i

∑ ,

(108)
so that we can mimic with the finite-difference equations the derivation that we did with the 
continuous equations. In order to pursue this objective, we have to define a finite-difference 
Laplacian. 

As an example, we use the simplest possibility, assuming a square grid with grid spacing 
d :

ζi, j = ∇2ψ( )i, j
≡ 1
d 2

ψi+1, j +ψi−1, j +ψi, j+1 +ψi, j−1 − 4ψi, j( ) .
(109)

Here we have reverted to a conventional double-subscripting scheme, for clarity. We also define 
a finite-difference kinetic energy by

Κ i, j ≡
1
2
∇ψ 2

i, j

≡ 1
4d 2

ψi+1, j −ψi, j( )2 + ψi, j+1 −ψi, j( )2 + ψi, j −ψi−1, j( )2 + ψi, j −ψi, j−1( )2⎡
⎣

⎤
⎦

(110)
Because the right-hand side of (110) is a sum of squares, we are guaranteed that kinetic energy is 
non-negative. By substitution of (109) and (110) into (108), and after a little algebra, we can 
demonstrate that (108) is actually satisfied.

The results obtained above are very general; they apply on an arbitrary  grid, and on a 
two-dimensional domain of arbitrary shape. It could be a sphere.
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This is all fine, as far as it goes, but we still have some very basic and important business 
to attend to: We have not yet  ensured that the sum in (87) is actually  a consistent finite-difference 
approximation to the Jacobian operator. The approach that we will follow is to write down three 
independent finite-difference Jacobians and then identify, by inspection, the c’s in (87). When we 
say that the Jacobians are “independent,” we mean that it is not possible to write any one of the 
three as a linear combination of the other two. The three finite-difference Jacobians are:

J1( )i, j =
1
4d 2

ζi+1, j −ζi−1, j( ) ψi, j+1 −ψi, j−1( )⎡⎣ − ζi, j+1 −ζi, j−1( ) ψi+1, j −ψi−1, j( )⎤⎦ ,

(111)

J2( )i, j =
1
4d 2

− ζi+1, j+1 −ζi+1, j−1( )ψi+1, j + ζi−1, j+1 −ζi−1, j−1( )ψi−1, j
⎡⎣

+ ζi+1, j+1 −ζi−1, j+1( )ψi, j+1 − ζi+1, j−1 −ζi−1, j−1( )ψi, j−1
⎤⎦ ,

(112)

J3( )i, j =
1
4d 2

ζi+1, j ψi+1, j+1 −ψi+1, j−1( ) −ζi−1, j ψi−1, j+1 −ψi−1, j−1( )⎡⎣

−ζi, j+1 ψi+1, j+1 −ψi−1, j+1( ) +ζi, j−1 ψi+1, j−1 −ψi−1, j−1( )⎤⎦ .
(113)

These can be interpreted as finite-difference analogs to the right-hand sides of (33) - (35), 
respectively. We can show that all three of these finite-difference Jacobians vanish if either of the 
input fields is spatially constant, and all three conserve vorticity, i.e., they all satisfy (91).

What we need to do next is identify the coefficients a and b for each of (110), (111), and 
(112), and then check to see whether the requirements (101) and (106) are satisfied by any  of 
them. In order to understand more clearly what these requirements actually mean, look at Fig.  
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11.11. The Jacobians J1 , J2 , and J3  are represented in the top row of the figure. The colored 

lines show how each Jacobian at the point i, j( )  is influenced (or not) by the stream function and 

vorticity  at the various neighboring points. We begin by rewriting (97) using the conventional 
double-subscript notation and equating it to J1( )i

σ i, j J1( )i, j ζ,ψ( ) = c ′i , ′j ; ′′i , ′′j ζi, j;i+ ′i , j+ ′jψi+ ′′i , j+ ′′j′′j∑′′i∑′j∑′i∑
= ai, j;i+ ′i , j+ ′j ζi, j;i+ ′i , j+ ′j′j∑′i∑
= 1
4

ζi+1, j −ζi−1, j( ) ψi, j+1 −ψi, j−1( )⎡⎣ − ζi, j+1 −ζi, j−1( ) ψi+1, j −ψi−1, j( )⎤⎦

= 1
4

ζi+1, j ψi, j+1 −ψi, j−1( ) −ζi−1, j ψi, j+1 −ψi, j−1( )⎡⎣

−ζi, j+1 ψi+1, j −ψi−1, j( ) +ζi, j−1 ψi+1, j −ψi−1, j( )⎤⎦ .
(114)

Here we have used

σ i, j = d
2 .

(115)

Figure 11.10: The central point in each figure is i, j( ) . Stream function and vorticity are both 

defined at each of the mesh points indicated by the black dots. The colored lines represent 
contributions to Ji, j  from ψ  , ζ  , or both, from the various neighboring points.
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In the last line of (114), we have collected the coefficients of each distinct value of the vorticity. 
By inspection of (13) and comparison with (97), we can read off the a s for J1 :

ai, j;i+1, j =
1
4
ψ i, j+1 −ψ i, j−1( ),

(116)

ai, j;i−1, j = −
1
4
ψ i, j+1 −ψ i, j−1( ),

(117)

ai, j;i, j+1 = −
1
4
ψ i+1, j −ψ i−1, j( ),

(118)

ai, j;i, j−1 =
1
4
ψ i+1, j −ψ i−1, j( ),

(119)
Are these consistent with (101)? To find out, replace i  by i +1 in (117); this gives:

ai+1, j;i, j = −
1
4
ψ i+1, j+1 −ψ i+1, j−1( ) .

(120)
Now simply compare (119) with (115), to see that (101) is not satisfied by J1 . This shows that 

J1  does not conserve enstrophy.

We can interpret that ai,i+ ′i denotes ζ -interactions of point i  with point i+ ′i , while ai+ ′i ,i  

denotes ζ -interactions of point i+ ′i with point i . When we compare ai,i+ ′i  with ai+ ′i ,i , it is like 

peering along one of the red lines in Fig. 11.10, first outward from the point i. j( ) , to one of the 

other points, and then back toward the point i. j( ) . The condition (101) on the a s essentially 

means that all such interactions are “equal and opposite” allowing suitable algebraic 
cancellations to occur when we sum over all points. The condition (106) on the b s has a similar 
interpretation.

By proceeding as illustrated above, we can reach the following conclusions:

• J1  conserves neither enstrophy nor kinetic energy;

• J2  conserves enstrophy but not kinetic energy; and

• J3  conserves kinetic energy but not enstrophy.

It looks like we are out of luck.
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We can form a new Jacobian, however, by combining J1 , J2 , and J3  with weights, as 

follows:

JA = αJ1 + βJ2 + γ J3 ,
(121)

such that

α + β + γ = 1 .
(122)

With three unknown coefficients, and only one constraint, namely (122), we are free to satisfy 
two additional constraints; and we take these to be (101) and (107). In this way, we can show that 
JA  will conserve both enstrophy and kinetic energy if we choose

α = β = γ = 1 / 3 .
(123)

The composite Jacobian, JA , is often called the “Arakawa Jacobian.”

Fig. 11.11 shows the results of tests with J1 , J2 , and J3 , and also with three other 

Jacobians called J4 , J5 , and J6 , as well as with JA . The leapfrog time-differencing scheme was 

used in these tests; the influence of time differencing on the conservation properties of the 
schemes will be discussed later; it  is minor, as long as we do not violate the criteria for linear 
computational instability. The various space-differencing schemes do indeed display the 
conservation properties expected on the basis of the preceding analysis.

The approach outlined above yields a conservative second-order accurate (in space) 
finite-difference approximation to the Jacobian. Arakawa (1966) also showed how to obtain the 
corresponding conservative Jacobian with fourth-order accuracy.

The preceding analysis shows how vorticity, kinetic energy  and enstrophy can be 
conserved under advection in numerical simulations of two-dimensional non-divergent flow. In 
practice, however, we have to consider the presence of divergence. When the flow is divergent, 
vorticity  and enstrophy  are not conserved, but potential vorticity and potential enstrophy are 
conserved.

In Chapter 4, we concluded that, by suitable choice of the interpolated “cell-wall” values 
of an arbitrary advected quantity, A , it is possible to conserve exactly one non-trivial function of 
A, i.e., F A( ) , in addition to A  itself. Conserving more than A  and one F A( )  was not possible 
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because the only freedom that we had to work with was the form of the interpolated “cell-wall” 
value, which will be denoted here by Â . Once we chose Â  so as to conserve, say, A2 , we had 
no room left to maneuver, so we could not conserve anything else. 

We have just shown, however, that the vorticity equation for two-dimensional 
nondivergent flow can be discretized so as to conserve two quantities, namely the kinetic energy 
and the enstrophy, in addition to the vorticity itself. How is that possible?

The key difference with the vorticity equation is that we can choose not only how to 
interpolate the vorticity (so as to conserve the enstrophy), but also the actual finite-difference 
expression for the advecting wind itself, in terms of the stream function, because that expression 
is implicit in the form of the Jacobian that we use. In choosing the form of the advecting current, 
we have a second “freedom,” which allows us to conserve a second quantity, namely  the kinetic 
energy.

Figure 11.11: Results of tests with the various finite-difference Jacobians. Panel c shows that the 
initial kinetic energy is at a low wave number.
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As discussed earlier, the constraint  of enstrophy conservation is needed to ensure that 
kinetic energy does not cascade in two-dimensional nondivergent flow. If kinetic energy does not 
cascade, the flow remains smooth. When the flow is smooth, kinetic energy conservation is 
approximately satisfied, even if it  is not exactly  guaranteed by the scheme. This means that a 
scheme that exactly  conserves enstrophy and approximately conserves kinetic energy will behave 
well.

These considerations suggest that formal enstrophy conservation is “more important” 
than formal kinetic energy conservation.

11.6 ! Angular momentum conservation

Finally, for completeness, define the relative angular momentum per unit mass, M, by

Mrel ≡ uacosϕ .
(124)

This is actually the component of the relative angular momentum vector in the direction of the 
axis of the Earth’s rotation. Here we consider motion on the sphere, a is the radius of the Earth, 
and u is the zonal component of the wind. From the momentum equation we can show that in the 
absence of pressure-gradient forces and friction,

∂M
∂t

= − V ⋅ ∇( )M ,

(125)
where λ  is longitude, and

M ≡ Mrel +Ωa
2 cosϕ

(126)
is the component of the absolute angular momentum vector in the direction of the axis of the 
Earth’s rotation. From (125) it  follows that  the absolute angular momentum is conserved under 
advection.

Using integration by parts, it can be demonstrated that

Mrel = a
2 ς sinϕ cosϕdλ

0

2π

∫ dϕ
−
π
2

π
2∫ .

(127)
We can also prove that

d
dt
Mrel = a

2 ∂ς
∂t
sinϕ cosϕdλ

0

2π

∫ dϕ
−
π
2

π
2∫ = 0 .

(128)
This means that angular momentum is conserved.
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11.7 ! Conservative schemes for the two-dimensional shallow water equations with rotation

The approach outlined below follows Arakawa and Lamb (1981). We adopt the C-grid, as 
shown in Fig. 11.12. Recall that on the C-grid, the zonal winds are east and west of the mass 
points, and the meridional winds are north and south of the mass points. The divergence “wants” 
to be defined at mass points, e.g., at point (i + 1/2, j + 1/2); and the vorticity “wants” to be 
defined at  the corners of the mass boxes that lie along the diagonal lines connecting mass points, 
e.g., at the point (i, j).

The finite-difference form of the continuity equation is

dh
i+ 1
2
, j+ 1

2

dt
=

hu( )i, j+ 1
2
− hu( )i+1, j+ 1

2

Δx
+
hv( )i+ 1

2
, j − hv( )i+ 1

2
, j+1

Δy
.

(129)
The various mass fluxes that appear in (129) have not yet been defined, but mass will be 
conserved regardless of how we define them.

Simple finite-difference analogs of the two components of the momentum equation are

du
i, j+ 1

2

dt
− ζ + f

h
⎛
⎝
⎜

⎞
⎠
⎟ hv( )

⎡
⎣⎢

⎤
⎦⎥i, j+ 1

2

+
Κ

i+ 1
2
, j+ 1

2

−Κ
i− 1
2
, j+ 1

2

Δx

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
+ g

h + hS( )i+ 1
2
, j+ 1

2
− h + hS( )i− 1

2
, j+ 1

2

Δx

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥= 0 ,

(130)
and

Figure 11.12: The arrangement of the mass, zonal 
wind, and meridional wind on the C grid.
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dv
i+ 1
2
, j

dt
+ ζ + f

h
⎛
⎝
⎜

⎞
⎠
⎟ hu( )

⎡
⎣⎢

⎤
⎦⎥i+ 1

2
, j

+
Κ

i+ 1
2
, j+ 1

2

−Κ
i+ 1
2
, j− 1

2

Δy

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
+ g

h + hS( )i+ 1
2
, j+ 1

2
− h + hS( )i+ 1

2
, j− 1

2

Δy

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥= 0 ,

(131)
respectively. As in the one-dimensional case, the kinetic energy per unit mass, Κ

i+ 1
2
, j+ 1

2

, is 

undefined at this stage, but resides at mass points. The potential vorticities 
ζ + f
h

⎛
⎝⎜

⎞
⎠⎟ i, j+ 1

2

 and 

ζ + f
h

⎛
⎝⎜

⎞
⎠⎟ i+ 1

2
, j

, and the mass fluxes hv( )i, j+ 1
2

 and hu( )i+ 1
2
, j  are also undefined.

Note that on the C-grid the mass fluxes that appear in (130) and (131) are in the “wrong” 
places; the mass flux hv( )i, j+ 1

2
 that appears in the equation for the u-wind is evidently at a u-wind 

point, and the mass flux hu( )i+ 1
2
, j  that appears in the equation for the v-wind is evidently at a v-

wind point. The vorticities that appear in (130) and (131) are also in the “wrong” places. 
Obviously, what we have to do is interpolate somehow to obtain mass fluxes and vorticities 
suitable for use in the vorticity terms of (130) and (131). Note, however, that it is actually 
products of mass fluxes and vorticities that are needed.

One obvious and important question is: Is there a finite-difference scheme that allows us 
to “mimic” the identity (8), i.e., hV( ) ⋅ k × hV( )⎡⎣ ⎤⎦ = 0 ? Since (8) is a purely  mathematical 

identity, the input variables are irrelevant, and the approach is to mimic the identity itself. 
Arakawa and Lamb constructed the finite-difference vorticity  terms in such a way  that a finite-
difference analog to (8) is satisfied, regardless of the specific forms of the mass fluxes and 
potential vorticities that are chosen. They constructed the vorticity terms as follows:

ζ + f
h

⎛
⎝
⎜

⎞
⎠
⎟ hv( )

⎡
⎣⎢

⎤
⎦⎥i, j+ 1

2

=α
i, j+ 1

2
;i+ 1
2
, j+1

hv( )i+ 1
2
, j+1 + βi, j+ 1

2
;i− 1
2
, j+1

hv( )i− 1
2
, j+1

+γ
i, j+ 1

2
;i− 1
2
, j
hv( )i− 1

2
, j +δi, j+ 1

2
;i+ 1
2
, j
hv( )i+ 1

2
, j

(132)
and

ζ + f
h

⎛
⎝
⎜

⎞
⎠
⎟ hu( )

⎡
⎣⎢

⎤
⎦⎥i+ 1

2
, j

= γ
i+ 1
2
, j;i+1, j+ 1

2

hu( )i+1, j+ 1
2
+δ

i+ 1
2
, j;i, j+ 1

2

hu( )i, j+ 1
2

+α
i+ 1
2
, j;i, j− 1

2

hu( )i, j− 1
2
+ β

i+ 1
2
, j;i+1, j− 1

2

hu( )i+1, j− 1
2
.

(133)
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In reality, the forms assumed by Arakawa and Lamb are slightly  more general and slightly more 
complicated than these; we simplify here for ease of exposition. In (132) and (133), the α ‘s, 
β ’s, γ ’s, and δ ’s obviously represent interpolated potential vorticities whose forms are not yet 

specified. Each of these quantities has four subscripts, to indicate that it links a specific u-wind 
point with a specific v-wind point. The α ‘s, β ’s, γ ’s, and δ ’s are somewhat analogous to the 

a’s and b’s that were defined in the discussion of two-dimensional non-divergent flow, in that the 
a’s and b’s also linked pairs of points. In (132), the interpolated potential vorticities multiply the 

mass fluxes hv  at the four v-wind points surrounding the u-wind point i, j + 1
2

⎛
⎝⎜

⎞
⎠⎟

, and similarly 

in (133), the interpolated potential vorticities multiply the mass fluxes hu  at the four u-wind 

points surrounding the v-wind point i + 1
2
, j⎛

⎝⎜
⎞
⎠⎟

.

When we form the kinetic energy equation, we have to take the dot product of the vector 
momentum equation with the mass flux hV . This means that we have to multiply (132) by 
hu( )i+ 1

2
, j  and (133) by hv( )i, j+ 1

2
, and add the results. With the forms given by (132) and (133), 

the vorticity terms will sum to

− hu( )i, j+ 1
2

ζ + f
h

⎛
⎝
⎜

⎞
⎠
⎟ hv( )

⎡
⎣⎢

⎤
⎦⎥i, j+ 1

2

+ hv( )i+ 1
2
, j

ζ + f
h

⎛
⎝
⎜

⎞
⎠
⎟ hu( )

⎡
⎣⎢

⎤
⎦⎥i+ 1

2
, j

= − hu( )i, j+ 1
2
α
i, j+ 1

2
;i+ 1
2
, j+1

hv( )i+ 1
2
, j+1 + βi, j+ 1

2
;i− 1
2
, j+1

hv( )i− 1
2
, j+1 + γ i, j+ 1

2
;i− 1
2
, j
hv( )i− 1

2
, j +δi, j+ 1

2
;i+ 1
2
, j
hv( )i+ 1

2
, j

⎡

⎣
⎢

⎤

⎦
⎥

+ hv( )i+ 1
2
⋅ j γ i+ 1

2
, j;i+1, j+ 1

2

hu( )i+1, j+ 1
2
+δ

i+ 1
2
, j;i, j+ 1

2

hu( )i, j+ 1
2

⎡

⎣
⎢ +α

i+ 1
2
, j;i, j− 1

2

hu( )i, j− 1
2
+ β

i+ 1
2
, j;i+1, j− 1

2

hu( )i+1, j− 1
2

⎤

⎦
⎥ .

(134)
Inspection of (134) makes it clear that cancellation will occur when we sum over the grid. This 
means that the vorticity terms will drop  out of the finite-difference kinetic energy equation, just 
as they drop out of the continuous kinetic energy equation. This cancellation will occur 
regardless of the expressions that we choose of the mass fluxes, and regardless of the expressions 
that we choose for the α ‘s, β ’s, γ ’s, and δ ’s. The cancellation arises purely  from the forms of 

(132) and (133), and is analogous to the cancellation that makes (8) work, i.e.,

AV ⋅ k × V( ) = A ui + vj( ) ⋅ −vi + uj( ) = A −uv + uv( ) = 0 ,

(135)
regardless of the input quantities A and V. This is yet another example of “mimetic 
discretization.”
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The above discussion shows that the finite-difference momentum equations represented 
by (130) and (131) with the use of (132) and (133), will guarantee kinetic energy  conservation 
under advection, regardless of the forms chosen for the mass fluxes and the interpolated potential 
vorticities α , β , γ , and δ . From this point, the methods used in the discussion of the one-

dimensional purely divergent flow will carry through essentially without change to give us 
conservation of mass, potential energy, and total energy. Arakawa and Lamb (1981) went much 
further, however, showing how the finite-difference momentum equations presented above (or, 
actually, slightly  generalized versions of these equations) allow conservation of both potential 
vorticity  and potential enstrophy. The details are rather complicated and will not be presented 
here.

11.8 ! The effects of time differencing on energy conservation

A family of finite-difference schemes for (27) can be written in the generic form

qi, j
n+1 − qni, j
Δt

= Ji, j q
*,ψ( ) ,

(136)
where Ji, j  is a finite difference analog to the Jacobian at the point i, j( ) , and different choices of

q*  give different time-differencing schemes. Examples are given in Table 11.1. Multiplying 

(136) by q* , we get

q* qn+1 − qn( ) = Δtq*J q*,ψ( ) ,

(137)
or, after some algebraic sleight-of-hand,

qn+1( )2 − qn( )2 = 2 qn+1 + qn

2
− q*

⎛
⎝⎜

⎞
⎠⎟
qn+1 − qn( ) + 2Δtq*J q*,ψ( ) .

(138)

The left-hand side of (138) represents the change of q2  in one time step. Consider the 

summation of q2  over all grid points, divided by  the number of grid points, and let this mean be 

denoted by an overbar. We find that

qn+1( )2 − qn( )2 = 2 qn+1 + qn

2
− q*

⎛
⎝⎜

⎞
⎠⎟
qn+1 − qn( ) + 2Δtq*J q*,ψ( ) ,

(139)
which shows that the change of the mean-square of q  depends on two terms. The first involves 

the choice of q* , so this is where the time-differencing comes in. For q* = qn , the contribution of 
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this term is positive and so tends to increase q2 . On the other hand, for q* = qn+1 , the 

contribution is negative and so tends to decrease q2 . If we use the trapezoidal scheme, which is 

absolutely stable and neutral (in the linear case with constant coefficients), there is no 
contribution from the first term. This means that the trapezoidal scheme is consistent with 
(allows) exact energy  conservation. This could be anticipated given the time-reversibility  of the  
trapezoidal scheme, which was discussed earlier. Of course, the form of the finite-difference 
Jacobian must also be consistent with energy conservation.

In most cases, time truncation errors that  interfere with exact energy conservation do not 
cause serious problems, provided that the scheme is stable in the linear sense, e.g., as indicated 
by von Neumann’s method.

11.9 ! Summary

We began this chapter by discussing two-dimensional advection. When the advecting 
current is variable, a new type of instability can occur, which can be called “aliasing instability.” 

Name of Scheme Form of Scheme

Euler forward q* = qn

Backward implicit q* = qn+1

Trapezoidal implicit q* = 1
2
qn + qn+1( )

Leapfrog, with time interval 
Δt / 2 q* = q

n+ 1
2

Second-order Adams 
Bashforth

q* = 3
2
qn − 1

2
qn−1

Heun q* = qn + Δt
2
J qn ,ψ( )

Lax-Wendorff
(here S is a smoothing 
operator)

q* = Sqn + Δt
2
J qn ,ψ( )

Matsuno q* = qn + ΔtJ qn ,ψ( )

Table 11.1: Examples of time differencing schemes obtained through various choices of q* . 
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In practice, it is often called “non-linear instability.” This type of instability  occurs regardless of 
the time step, and cannot be detected by von Neumann’s method. It  can be detected by the energy 
method, and it  can be controlled by enforcing conservation of appropriate quadratic variables, 
such as energy  or enstrophy. It is particularly likely  to cause trouble with the momentum 
equations, which describe how the wind is “advected by itself.” Conservation of potential 
vorticity  is an extremely important  dynamical principle, as discussed in courses on atmospheric 
dynamics. Conservation of potential enstrophy is key to determining the distribution of kinetic 
energy with scale. Schemes that permit conservation of potential vorticity  and potential 
enstrophy under advection therefore provide major benefits in the simulation of geophysical 
circulations.

Problems
1. A wagon wheel rotates at R  revolutions per second. It is featureless except for a single 

dot painted near its outer edge. The wheel is filmed at F  frames per second.

a)  What inequality must F satisfy to avoid aliasing?

b)  How does the apparent rotation rate, R* , vary as a function of F  and R ? Assume R > 0  
and F > 0 . 

2. Prove that J1  satisfies (90). Assume periodic boundary conditions.

3. Prove that  J3  gives kinetic energy conservation for the case of two-dimensional 

nondivergent flow. Assume periodic boundary conditions.

4. Prove that J2  gives exact vorticity conservation (ignoring time truncation error). Assume 

periodic boundary conditions.

5. Work out the continuous form of the Jacobian for the case of spherical coordinates 
(longitude, λ , and latitude, ϕ ).

6. For the case of two-dimensional non-divergent flow on a periodic domain, prove that if 
the vorticity  is an eigensolution of the Laplacian, then the time-rate-of-change of the 
vorticity is zero.

7. Using the form of the Laplacian for the hexagonal grid that you worked out earlier in the 
semester, and using a suitable definition of the kinetic energy  at the cell centers (which 
you must invent), show that Eq. (108) of the notes can be satisfied. Note that (108) need 
only hold for the sum over all grid points, as shown.

8. For a hexagonal grid, show that a finite-difference Jacobian of the form
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dζ 0
dt

= 1
A

ψ i+1 −ψ i−1

Δs
⎛
⎝⎜

⎞
⎠⎟

ς 0 +ς i
2

⎛
⎝⎜

⎞
⎠⎟i=1

6

∑ Δs

(140)
conserves vorticity, enstrophy, and kinetic energy  when used with the nondivergent 
barotropic vorticity  equation. Here subscript 0 denotes the central point, the sum is over 
the six surrounding points (assumed to be numbered consecutively in a counter-clockwise 
fashion), A  is the area of a hexagon, and Δs  is the length of a side.

9. 

a)  Make a finite-difference model that solves the non-divergent vorticity equation on a 
doubly periodic plane, using an approximately square hexagonal grid with about 8000 
grid cells, like the one used in the Chapter 2 homework. Use the Jacobian given by (140), 
with Matsuno time differencing. You should check your Jacobian code by using a test 
function for which you can compute the Jacobian analytically.

b) Create diagnostics for the domain-averaged enstrophy and kinetic energy.

c) Invent an analytical function that you can use to specify an initial condition such that  the 
periodic domain contains two pairs of (nearly) circular large-scale vorticies of equal 
strength but opposite sign  -- two “highs” and two “lows.” Because of the periodic 
boundary conditions, the solution will actually represent infinitely  many vortices. Run the 
model with this smooth initial condition and discuss the results.

d) Run the model again using initial conditions that approximate “white noise,” and 
examine the time evolution of the solution. Does it follow the behavior expected for two-
dimensional turbulence? You may have to run a thousand time steps or more to see the 
expected evolution.
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