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12.1 ! Introduction

Before we can formulate a finite-difference model on the sphere, we must first define a 
grid that covers the sphere. There are many ways to do this. Perhaps the most obvious possibility 
is to generate a grid using lines of constant latitude and longitude, i.e., a “spherical coordinate 
system.” A grid derived from a coordinate system is said to be “structured.” On a structured grid, 
indexing can be defined along coordinate lines, so that the neighbors of a particular cell can be 
specified by defining an index for each coordinate direction, and then simply incrementing the 
indices to specify neighbors, as we have done many times when using cartesian grids, which are 
structured grids derived from cartesian coordinates. 

It is also possible to define grids without reference to any  coordinate system. Examples 
are planar hexagonal and triangular grids, and spherical grids derived from the icosahedron, the 
octahedron, and the cube. These are called “unstructured grids,” although the name is not very 
descriptive. With an unstructured grid, the neighbors of each cell are listed in a table, which can 
be generated once and saved. 

The governing equations can be written either with or without a coordinate system. When 
a coordinate system is used, the components of the wind vector are defined along the coordinate 
directions. On an unstructured grid, the orientations of the cell walls can be used to define local 
normal and tangent components of the wind vector. For example, a model using a unstructured 
C-grid can predict the normal component of the wind on each cell wall. 

12.2 ! Spherical coordinates

We now express the shallow water equations in the spherical coordinate system. In three-
dimensional spherical coordinates λ,ϕ,r( ) , i.e., longitude, latitude, and radius, the gradient, 

divergence, and curl operators take the following forms:

∇A = 1
r cosϕ

∂A
∂λ
, 1
r
∂A
∂ϕ
,∂A
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⎛

⎝
⎜

⎞

⎠
⎟ ,

(1)
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For use with the two-dimensional shallow-water equations, we can simplify these to

∇A =
1

acosϕ
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∂λ
, 1
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⎛
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,

(4)
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⎢

⎤

⎦
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(6)
Here a is the radius of the spherical planet. 

The shallow water equations in spherical coordinates can be expressed as

∂u
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+
u
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∂u
∂λ

+
v
a
∂u
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a
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∂
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(7)
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(9)
Here h  is the depth of the fluid, and hS  is the height of the bottom topography.

In a spherical coordinate system, the lines of constant longitude converge at the poles, so 
longitude is multivalued at the poles. This means that the components of the wind vector are 
discontinuous at the poles, although the wind vector itself is perfectly well behaved at the pole. 
For example, consider a jet directed over the North Pole, represented by  the shaded arrow in Fig. 
12.1. Measured at points along the prime meridian, the wind consists entirely of a positive v 
component. Measured along the international date line, however, the wind consists entirely of a 
negative v component. A discontinuity occurs at the pole, where “north” and “south” have no 
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meaning. Similarly, the u component of the wind is positive measured near the pole along 
longitude, and is negative measured along longitude. This problem does not occur in a Cartesian 
coordinate system centered on the pole. At each point along a great circle that includes the pole, 

the components measured in Cartesian coordinates are well defined and vary continuously.

12.3 ! Map Projections

An early approach to numerically solving the shallow water equations on the sphere was 
to project the equations from the sphere to a plane, and solve the equations on a regular grid 
using a coordinate system defined in the plane. The surface of a sphere and that of a plane are not 
topologically equivalent, however. In other words, there does not exist a one-to-one mapping g 
such that for every point on the sphere λ,ϕ( )∈S  there exists x, y( )∈P ≡ x, y( ) −∞ < x, y < ∞{ }  

satisfying g λ,ϕ( ) = x, y( ) . It  is possible to map almost all of S onto P; examples are given 

below. Unfortunately, these mappings, also called projections, tend to badly distort distances and 
areas near the singular points of the associated transformations. Nevertheless, we can use a 
projection to map the piece of the sphere where the transformation is well behaved onto a finite 
region of the plane. An approach to map the entire sphere is the composite mesh method, 
discussed later.

We can derive the equations of motion in various map projections if we first  express them 
in a general orthogonal coordinate system x, y( ) , where x  and y  do not necessarily have the 

Fig. 12.1: For the wind vector shown in the sketch, points along the prime meridian have a strong 
northward component. There is a discontinuity  at the pole, and points along international date 
line have a strong southward component. Points near 90° longitude have a strong positive zonal 
component, while points near 270° longitude have a strong negative zonal component.
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dimensions of length. Define the metric coefficients to be hx  and hy  so that the distance 

increment satisfies 

dl2 = hx
2dx2 + hy

2dy2 .

(10)
As a matter of notation, the metric coefficients hx  and hy  are distinguished from the depth of the 

fluid, h, by a subscript. In the x, y( )  coordinate system, the horizontal velocity  components are 

given by

U = hx
dx
dt

,

(11)

V = hy
dy
dt

.

(12)
Williamson (1979) gives the equations of motion for the general velocity components: 
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The Lagrangian time derivative is given by 

D
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The continuity equation can be written as

Dh
Dt

+ h
hxhy

∂
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⎡
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⎦
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(16)
As an example, with spherical coordinates we have 

x = λ  and y = ϕ ,
(17)

and correspondingly set the metric coefficients to 
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hx = acosϕ  and hy = a ,

(18)
then by (11) and (12) we have

U = u ≡ acosϕ Dλ
Dt

 and V = v ≡ a Dϕ
Dt

.

(19)
Substituting (18) and (19) into (13), (14) and (16) gives (7), (8) and (9), the shallow water 
equations in spherical coordinates.

The Polar Stereographic and Mercator projections are sometimes used in modeling the 
atmospheric circulation. Both are examples of conformal projections, that is, they preserve 
angles, but not distances. Also, in both of these projections the metric coefficients are 
independent of direction at a given point, i.e., hx = hy . The effects of these projections on the 

outlines of the continents are shown in Fig. 12.2.

The polar stereographic projection can be visualized in terms of a plane tangent to the 
Earth at the North Pole. A line drawn from the South Pole that intersects the Earth will also 
intersect the plane. This line establishes a one-to-one correspondence between all points on the 
plane and all points on the sphere except for the South Pole itself. In the plane, we can define a 
Cartesian coordinate system (X, Y), where the positive X axis is in the direction of the image of 
λ = 0  (the Greenwich meridian), and the positive Y axis is in the direction of the image of 
λ = π / 2 . Obviously, similar mappings can be obtained by placing the plane tangent to the 

Fig. 12.2: Map projections of the continents: a.) Mercator projection. b.) North polar stereographic 
projection.
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sphere at points other than the North Pole. Haltiner and Williams (1984) give the equations 
relating the projection coordinates (X, Y) and the spherical coordinates λ,ϕ( ) :

X =
2acosϕ cosλ
1+ sinϕ

,

(20)

Y =
2acosϕ sinλ
1+ sinϕ

.

(21)
Note that there is a problem at the South Pole, where the denominators of (20) and (21) go to 
zero. Taking differentials of (20) and (21) gives

dX
dY
⎡

⎣
⎢

⎤

⎦
⎥=

2a
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⎞

⎠
⎟
⎟
dλ
dϕ
⎡

⎣
⎢

⎤

⎦
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(22)
The metrics of the polar stereographic map projection can be determined as follows: 

Substituting x = λ , y = ϕ , and the metrics for spherical coordinates into dl2 = hx
2dx2 + hy

2dy2  

gives

dl2 = acosϕ( )2 dλ2 + a2dϕ 2 .
(23)

Solving the linear system (22) for dϕ , and dλ , and substituting the results into (23), we obtain

dl2 = 1+ sinϕ
2

⎛
⎝⎜

⎞
⎠⎟
2

dX 2 +
1+ sinϕ
2

⎛
⎝⎜

⎞
⎠⎟
2

dY 2 .

(24)
Comparing (24) with (10), we see that metric coefficients for the polar stereographic projection 
are given by

hx = hy =
1+ sinϕ
2

.

(25)
We define the map factor, m ϕ( ) , as the inverse of the metric coefficient, i.e., 

m ϕ( ) = 2 / 1+ sinϕ( ) . Using (13), (14), and (16), we can write the shallow water equations in 

north polar stereographic coordinates:

dU
dt

− f + UY −VX
2a2

⎛
⎝⎜

⎞
⎠⎟
V + gm ϕ( ) ∂

∂X
h + hS( ) = 0 ,

(26)
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dV
dt
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2a2
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∂Y
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(27)
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∂X

U
m ϕ( )

⎡

⎣
⎢

⎤

⎦
⎥ +

∂
∂Y

V
m ϕ( )

⎡

⎣
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⎦
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⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
= 0 .

(28)
The total derivative is given by (15).

As discussed above, a finite region of the plane will only  map onto a piece of the sphere, 
and vice versa. One technique to map the entire sphere is to partition it, for example, into 
hemispheres, and project the pieces separately. Each set  of projected equations then gets its 
boundary conditions from the solutions of the other projected equations. Phillips (1957) divided 
the sphere into three regions: a tropical belt, and extratropical caps to the north and south of the 
tropical belt. On each region, the shallow water equations are mapped to a new coordinate 
system. He used a Mercator coordinate system in the tropics, a polar stereographic coordinate 
system fixed to the sphere at the North Pole for the northern extratropical cap, and similarly, a 
polar stereographic coordinate system fixed to the sphere at the South Pole for the southern 
extratropical cap. When a computational stencil required data from outside the region covered by 
its coordinate system, that piece of information was obtained by interpolation within the 
neighboring coordinate system. The model proved to be unstable at the boundaries between the 
coordinate systems.

Fig. 12.3: Composite grid method grid. Two such grids are used to cover the sphere. Points 
labeled with are the boundary  conditions for the points labeled with +. Values at the points are 
obtained by  interpolation from the other grid. The big circle is the image of the Equator. Points 
labeled * are not used.
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Browning (1989) discussed a different composite mesh model in which the Northern and 
Southern Hemispheres are mapped to the plane with a polar stereographic projection. The 
equations used for the northern projection are just  (26), (27), and (28). The equations for the 
southern projection are the same as those for the northern, except for a few sign differences. This 
model is different from Phillips’ in that the regions interior to the coordinate systems overlap  a 
little bit as shown in Fig. 12.3. Values for dependent variables at grid points not covered by  the 
current coordinate system are obtained by  interpolation in the other coordinate system. The 
overlapping of the coordinate systems makes this scheme more stable than in Phillips’ model, in 
which the coordinate systems were simply butted together at a certain latitude. This model is also 
easier to write computer code for because the equations are only expressed in the polar 
stereographic coordinate systems. Browning tested the model and reported good results.

12.4 ! The “pole problem,” and polar filters

One eighth of a uniform latitude-longitude grid is shown in Fig. 12.4. The zonal rows of 
grid points nearest the two poles consist of “pizza slices” which come together at  a point at each 
pole. The other zonal rows consist of grid points which are roughly trapezoidal in shape. There 
are other ways to deal with the polar regions, e.g., by  defining local Cartesian coordinates at the 

poles. 

The scales of meteorological action do not vary dramatically from place to place, nor do 
the meridional and zonal scales of the circulations of interest differ very much. This suggests that 
average distance between neighboring grid points should not depend on location, and also that 
the distances between grid points in the zonal direction should not be substantially different from 
the distances in the meridional direction. Latitude-longitude grids lack these two desirable 
properties.

In addition, the convergence of the meridians at the poles demands a short time step  in 
order to satisfy  the Courant-Friedrichs-Lewy (CFL) requirement for computational stability, as 

Fig. 12.4: One octant of the latitude-longitude grid used 
by  Arakawa and Lamb (1981). In the example shown, 
there are 72 grid points around a latitude circle and 44 
latitude bands from pole to pole. The longitudinal grid 
spacing is globally  uniform, and in this example is 5 °. 
The latitudinal grid spacing is globally  uniform except 
for “pizza slices” ringing each pole, which are 1.5 times 
as “tall” as the other grid cells. The reason for this is 
explained by Arakawa and Lamb (1981). In the example 
shown here, the latitudinal grid spacing is 4° except that 
the pizza slices are 6° tall.
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discussed in Chapters 4 (for advection) and 7 (for wave propagation). This is often referred to as 
“the pole problem.” To derive the stability  criterion for the shallow water equations on the 
sphere, following Arakawa and Lamb (1977), we begin by linearizing (7), (8), and (9) about a 
state of rest, as follows:

∂u
∂t

+
g

acosϕ
∂h
∂λ

= 0 ,

(29)
∂v
∂t

+ g
a
∂h
∂ϕ

= 0 ,

(30)

∂h
∂t

+
H
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∂u
∂λ

+
∂
∂ϕ

vcosϕ( )⎡

⎣
⎢

⎤

⎦
⎥ = 0 .

(31)
Here we have neglected rotation and bottom topography, for simplicity, and H denotes the mean 
depth of the fluid. We spatially discretize (29) - (31) suing the C-grid, as follows:

du
i+1
2
, j

dt
+
g hi+1, j − hi, j( )
acosϕΔλ

= 0 ,

(32)
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2
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⎛

⎝
⎜

⎞

⎠
⎟

acosϕ jΔλ
+
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2
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2
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⎡
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⎢
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⎥
⎥

⎧

⎨
⎪
⎪

⎩
⎪
⎪

⎫

⎬
⎪
⎪

⎭
⎪
⎪

= 0 .

(34)
We look for solutions of the form

u
i+ 1
2
, j
= Re û j exp is i + 1

2
⎛
⎝⎜

⎞
⎠⎟
Δλ + iσ t⎡

⎣⎢
⎤
⎦⎥

⎧
⎨
⎩

⎫
⎬
⎭

,

(35)

v
i, j+ 1

2

= Re v̂
j+ 1
2

exp isiΔλ + iσ t⎡⎣ ⎤⎦
⎧
⎨
⎩⎪

⎫
⎬
⎭⎪

,

(36)
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hi, j = Re ĥj exp isiΔλ + iσ t⎡⎣ ⎤⎦{ } ,

(37)

where i ≡ −1 . Note that  the zonal wave number, s, is defined with respect to longitude rather 
than distance, and that the “hat” variables depend on latitude. Bu substitution of (35) - (37) into 
(32) - (34), we obtain

iσ û j +
is

acosϕ j

sin sΔλ / 2( )
sΔλ / 2

g Sj s( ) ĥj⎡
⎣

⎤
⎦= 0 ,

(38)
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2
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ĥj+1 − ĥj
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⎛

⎝
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⎞

⎠
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iσ ĥj + H
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Sj s( ) û j +
v̂cosϕ( ) j+ 1

2
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2
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⎢
⎢
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⎦

⎥
⎥

⎧
⎨
⎪

⎩⎪

⎫
⎬
⎪

⎭⎪
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(40)
where Sj s( )  is an artificially inserted “smoothing parameter” that depends on wave number. 

The smoothing parameter appears in the term of (38) corresponding to the zonal pressure 
gradient force, and also in the term of (40) corresponding to the zonal mass flux divergence. 
These are the key terms for zonally propagating gravity waves. Later in this discussion, Sj s( )  

will be set to values less than unity, in order to allow computational stability  with a “large” time 
step near the pole. For now, just consider it to be equal to one. 

By eliminating û j  and v̂
j+1
2

 in (38) - (40), we can obtain the “meridional structure 

equation” for ĥj : 

c2 s
acosϕ j
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sΔλ / 2
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⎢
⎢

⎤

⎦
⎥
⎥

2

ĥj +
c2

aΔϕ( )2
ĥj − ĥj−1( )

cosϕ
j−1
2

cosϕ j

− ĥj+1 − ĥj( )
cosϕ

j+1
2

cosϕ j

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
=σ 2ĥj .

(41)
Here c2 ≡ gH  is the square of the phase speed of a pure gravity wave. For high values of the 

zonal wave number s, the first  term on the left-hand side of (41) dominates the second, and we 
obtain
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σ ≅ c s
acosϕ j

sin sΔλ / 2( )
sΔλ / 2

Sj s( )
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= 2 c
Sj s( )sin sΔλ

2
⎛
⎝
⎜

⎞
⎠
⎟

acosϕ jΔλ
.

(42)
Although we have not  used a specific time differencing scheme here, we know that for a 

conditionally stable scheme the CFL criterion takes the form

σΔt < ε ,
(43)

where ε  is a constant of order one. In view of (42) and (43), the CFL criterion will place more 
stringent conditions on Δt  as cosϕ j  decreases, i.e., near the poles. In addition, the criterion 

becomes more stringent  as s increases, at a given latitude. Putting Sj s( ) = 1  temporarily, and 

assuming ε = 1 , we can write the stability condition for zonal wave number s as

c Δt
acosϕ jΔλ

sin sΔλ
2

⎛
⎝⎜

⎞
⎠⎟
<
1
2

.

(44)

The worst case is sin sΔλ
2

⎛
⎝
⎜

⎞
⎠
⎟ =1, for which (44) reduces to 

c Δt
Δx j

<
1
2

,

(45)
where we define Δx j ≡ acosϕ jΔλ . For the grid shown in Fig. 12.4, with a longitudinal grid 

spacing of  Δλ = 5  and a latitudinal grid spacing of  Δϕ = 4  (the values used to draw the 

figure), the northernmost row of grid points where the zonal component of velocity  is defined is 
at latitude 86 ˚N. The zonal distance between grid points there is Δx ≅ 39 km, which is less than 
one-tenth the zonal grid spacing at the Equator. Recall that the fast, external gravity wave has a 
phase speed of approximately  300 m s−1 . Substituting into (45), we find that the largest 
permissible time step  near the pole is about 70 seconds. This is roughly one tenth of the largest 
permissible time step at the Equator.

It would be nice if the CFL criterion were the same at all latitudes, permitting time steps 
near the pole as large as those near the Equator. In order to make this possible, models that use 
latitude-longitude grids typically employ “polar filters” that prevent computational instability, so 
that a longer time step can be used. 
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The simplest method is to use a Fourier filter to remove the high-wave number 
components  of the prognostic fields, near the poles. This can prevent a model from blowing up, 
but it leads to drastic violations of mass conservation (and many other conservation principles). 
The cure is almost as bad as the disease.

A better approach is to longitudinally  smooth the longitudinal pressure gradient in the 
zonal momentum equation and the longitudinal contribution to the mass flux divergence in the 
continuity  equation. This has the effect of reducing the zonal phase speeds of the gravity waves 
sufficiently so that the CFL criterion is not violated.

Inspection of (42) shows that this can be accomplished by choosing the smoothing 
parameter Sj s( )  so that

Sj s( )sin sΔλ
2

⎛
⎝⎜

⎞
⎠⎟

acosϕ jΔλ
=
1
d*

,

(46)
where d*  is a suitably chosen length, comparable to the zonal grid spacing at the Equator. When 
Sj s( )  satisfies (46), Eq. (42) reduces to

σ =
2 c
d*

,

(47)
and the CFL condition reduces to

c Δt
d*

< ε
2

,

(48)
so that the time step required is independent of latitude, as desired. If we choose 

d* ≡ aΔϕ ,
(49)

i.e., the distance between grid points in the meridional direction, then, referring back to (46), we 
see that Sj s( )  must satisfy

Sj s( ) = Δλ
Δϕ

⎛
⎝⎜

⎞
⎠⎟

cosϕ j

sin sΔλ
2

⎛
⎝⎜

⎞
⎠⎟

.

(50)
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Of course, at low latitudes (50) can give values of Sj s( )  which are greater than one; these should 

be replaced by one, so that we actually use

Sj s( ) = Min Δλ
Δϕ

⎛
⎝⎜

⎞
⎠⎟

cosϕ j

sin sΔλ
2

⎛
⎝⎜

⎞
⎠⎟
,1

⎧

⎨
⎪⎪

⎩
⎪
⎪

⎫

⎬
⎪⎪

⎭
⎪
⎪

.

(51)
A plot of (51) is given in Fig. 12.5, for the case of the shortest zonal mode. The plot shows that 
some smoothing is needed all the way down into the subtropics. 

12.5 ! Kurihara’s grid

Many authors have sought alternatives to the latitude-longitude grid, hoping to make the 
grid spacing more uniform, still within the “latitude-longitude” framework.

For example, Kurihara (1965) proposed a grid in which the number of grid points along a 
latitude circle varies with latitude. By placing fewer points at higher latitudes, he was able to 
more homogeneously cover the sphere. The grid is constructed by  evenly placing N +1  grid 
points along the longitude meridian, from the North Pole to the Equator. The point at the North 
Pole is given the label j = 1 , the next  latitude circle south is given the label j = 2 , and so on until 

the Equator is labeled j = N +1. Along latitude circle j there are 4 j −1( )  equally spaced grid 

Fig. 12.5: A plot of the smoothing parameter as given by  (12.51), for the “worst case” of the 
shortest zonal mode. The dashed vertical lines demarcate the belt  of latitude centered on the 
Equator for which no smoothing is needed. It  has been assumed that Δλ = 5 / 4( )Δϕ , which is 

true for the grid shown in Fig. 12.4.
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points, except at each pole, where there is a single point. One octant of the sphere is shown in 
Fig. 12.6; compare with Fig. 12.4. For a given N, the total number of grid points on the sphere is 

4N 2 + 2 . The Southern Hemisphere grid is a mirror image of the Northern Hemisphere grid.

We can measure the homogeneity of the grid by examining the ratio of the zonal distance, 

acosϕ jΔλ j , and the meridional distance aΔϕ , for a grid point at latitude ϕ j . Here, Δϕ ≡
π
2
1
N

 

and Δλ j ≡
1
j −1

. At j = N +1 , the Equator, the ratio is one, and near the pole the ratio 

approaches π / 2 ≅1.57 .

Kurihara built a model using this grid, based on the shallow water equations. He tested it 
in a simulation of the Rossby-Haurwitz wave, with zonal wave number 4 as the initial condition. 
This set of initial conditions was also used by Phillips (1959), and later in the suite of seven test 
cases for shallow water models proposed by Williamson et al. (1992). The model was run with a 
variety of time-stepping schemes and with varying amounts of viscosity. Each simulation 
covered 16 simulated days, with N = 20. The Rossby-Haurwitz wave should move from west to 
east, without distortion. In several of Kurihara’s runs, however, the wave degenerated to higher 
wave numbers.

12.6 ! The Wandering Electron Grid

An approach to constructing a mesh of grid points that homogeneously covers a sphere is 
to model the equilibrium distribution of a set of electrons confined to the surface of the sphere. 

Fig. 12.6: Kurihara grid on one octant of the sphere. Compare with Fig. 12.4.
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Because each electron is repelled by every other electron, it will move to maximize the distance 
between it  and its closest neighbors. In this way, the electrons will distribute themselves as 
evenly as possible over the sphere. We associate a grid point with each electron. It  seems 
advantageous to constrain the grid so that it is symmetric across the Equator. An Equator can be 
defined by  restricting the movement of a subset of the electrons to a great circle. The remaining 
electrons can be paired so that each has a mirror image in the opposite hemisphere. We can also 
fix an electron at each of the poles. Experience shows that unless we fix the positions of some of 
the electrons, their positions tend to wander indefinitely. Fig. 12.7. shows a grid constructed 
using the wandering electron algorithm. Most cells have six walls, but  some have five or seven 
walls. While this approach more or less homogeneously covers the sphere, it is not very 
satisfactory.

12.7 ! Unstructured spherical grids

Fig. 12.8 shows several discretizations of the sphere. The left-most panel shows the 
structured latitude-longitude grid. The second and third panels show triangular and hexagonal-
pentagonal grids, respectively, generated from the icosahedron. 

The fourth panel shows a “cubed sphere” grid, generated from the sphere (e.g., Ronchi et 
al., 1996; Nair et al., 2005; Putman and iLn, 2007; Lauritzen and Nair, 2008; Ulrich et al., 2009). 
The cells of the cubed sphere grid are quadrilaterals. 

The last panel shows the “Ying-Yang” grid proposed by Kageyama and Satoh (2004), and 
Kagayama (2005). The grid is composed of two “sleeves” that wrap together like the leather 
patches that are stitched together to cover the outside of a baseball. The sleeves overlap slightly, 
and an interpolation is used to patch them together, something like the methods used to patch 
together two polar stereographic grids. Overlapping grids of this type are sometimes called 

Fig. 12.7: Wandering electron grid. White cells have five walls, light gray cells have six walls, and 
dark gray cells have seven walls.
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“overset grids.” There have also been recent attempts to use grids based on octahedrons (e.g., 
McGregor, 1996; Purser and Rancic, 1998). A “Fibonacci grid” has also been suggested 
(Swinbank and Purser, 2006).

Grids based on icosahedra offer an attractive framework for simulation of the global 
circulation of the atmosphere; their advantages include almost uniform and quasi-isotropic 
resolution over the sphere. Such grids are termed “geodesic,” because they resemble the geodesic 
domes designed by Buckminster Fuller. Williamson (1968) and Sadourny (1968) simultaneously 
introduced a new approach to more homogeneously discretize the sphere. They constructed grids 
using spherical triangles which are equilateral and nearly equal in area. Because the grid points 
are not regularly  spaced and do not lie in orthogonal rows and columns, alternative finite-
difference schemes are used to discretize the equations. Initial tests using the grid proved 
encouraging, and further studies were carried out. These were reported by  Sadourny  et al. (1968), 
Sadourny and Morel (1969), Sadourny (1969), Williamson (1970), and Masuda (1986).

The grids are constructed from an icosahedron (20 faces and 12 vertices), which is one of 
the five Platonic solids. A conceptually simple scheme for constructing a spherical geodesic grid 
is to divide the edges of the icosahedral faces into equal lengths, create new smaller equilateral 
triangles in the plane, and then project onto the sphere. See Fig. 12.9. One can construct a more 
homogeneous grid by partitioning the spherical equilateral triangles instead. Williamson (1968) 
and Sadourny (1968) use slightly  different techniques to construct their grids. However, both 
begin by partitioning the spherical icosahedral triangle. On these geodesic grids, all but twelve of 
the cells are hexagons. The remaining twelve are pentagons. They are associated with the twelve 
vertices of the original icosahedron.

Williamson (1968) chose the nondivergent shallow water equations to test the new grid. 
He solved the two-dimensional nondivergent vorticity equation

∂ζ
∂t

= −J ψ ,η( ) ,

(52)
where ζ  is relative vorticity, η = ζ + f  is absolute vorticity  and ψ  is the stream function, such 

that

Fig. 12.8: Various ways of discretizing the sphere. Figure made by Bill Skamarock of NCAR.

Mesoscale & Microscale Meteorology Division / ESSL / NCAR

MPAS

Future Weather/Climate Atmospheric Dynamic Core

Consideration of alternative spatial discretizations:

Priority Requirements:

Lat-Lon Icosahedral-triangles Icosahedral-hexagons Cubed Sphere Yin-Yang

•  Efficient on existing and proposed supercomputer architectures

•  Scales well on massively parallel computers

•  Well suited for cloud (nonhydrostatic) to global scales

•  Capability for local grid refinement and regional domains

•  Conserves at least mass and scalar quantities

Problems with lat-lon coordinate for global models

• Pole singularities require special filtering

• Polar filters do not scale well on massively parallel computers

• Highly anisotropic grid cells at high latitudes
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ζ = ∇2ψ .
(53)

For arbitrary functions α  and β , it follows from the form J α,β( ) = k ⋅ ∇× (α∇β)  that the 

Jacobian satisfies

 
J α ,β( ) = lim

A→0

1
A

α ∂β
∂s

ds
S∫

⎧
⎨
⎩

⎫
⎬
⎭

,

(54)

where A  is a small area, and s  measures distance along the curve bounding A . Integrating (52) 
over the area A , and using (54), we get

 

d
dt

ζ dA
A∫ = −

∂ψ
∂s

ηds
S∫ .

(55)

Fig. 12.9: A spherical geodesic grid is generated recursively by starting from an icosahedron. 

Icosahedron Bisect each edge
and connect the dots

Pop out onto
the unit sphere

And so on, until we reach our target resolution...
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This can be discretized with reference to Fig. 12.10. We approximate the line integral along the 
polygon defined by the path P1,P2 , ...P5 ,P1 . Let ζ0  be the relative vorticity defined at  the point 

P0 , and let ηi  be the absolute vorticity defined at the point Pi . We can approximate (55) by

dζ0
dt

=
1
A

ψ i+1 −ψ i−1

Δs
⎛
⎝⎜

⎞
⎠⎟

η0 +ηi

2
⎛
⎝⎜

⎞
⎠⎟i=1

Κ

∑ Δs .

(56)
We must also discretize the Laplacian. Consider the smaller, inner polygon in Fig. 12.10. 

Its walls are formed from the perpendicular bisectors of the line segments P0Pi . We can use 

Gauss’s Theorem to write

 
ζ dA
a∫ = − ∇ψ( ) ⋅nd ′s

′s∫ ,

(57)
where a is the area of the small polygon, ′s  is its boundary, and n  is the outward-normal unit 
vector on the boundary. Eq. (57) is approximated by

aζ0 =
li
P0Pi

ψ i −ψ 0( )
i=1

Κ

∑ ,

(58)
where P0Pi  is the distance from P0  to Pi , and li  is the length of wall i. Eq. (58) can be solved 

for ψ i  by relaxation, using the methods discussed in Chapter 6.

Williamson showed that his scheme conserves kinetic energy and enstrophy, as the exact 
equations do. When applied to regular grid on a plane, the scheme is second-order accurate. 

Fig. 12.10: Configuration of grid triangles for the case of a pentagon.
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Williamson performed a numerical experiment, using a Rossby-Haurwitz wave as the initial 
condition. A run of 12 simulated days produced good results. Sadourny  et  al. (1968) discussed a 
nondivergent model very similar to Williamson’s. Also, Sadourny and Morel (1969) developed a 
geodesic-grid model based on the free-surface shallow water equations.

Masuda (1986) developed an elegant algorithm for solving the shallow water equations 
on the sphere. He used the Z-grid (see Chapter 7). Like Williamson, Masuda chose the Rossby-

Haurwitz wave with wave number 4 as his initial condition. Fig. 12.11 shows the evolution of the 
velocity  potential field in a 96-simulated-day run using Masuda’s model. The initial conditions 
are nondivergent, so initially the velocity potential is zero. As time progresses, a wave number 4 
pattern develops. As time progresses further, the pattern at higher latitudes begins to break down, 
forming a wave number 1 pattern. Significantly, the wave number 1 pattern is antisymmetric 
across the Equator, even though the initial condition is symmetric across the Equator. Masuda 
suggested that this is due to the antisymmetry of the grid across the Equator. 

Heikes and Randall (1995 a, b) extended Masuda’s work, through the use of a “twisted 
icosahedral grid” that has symmetry across the equator. They used a multi-grid method to 
compute the stream function and velocity potential from the vorticity  and divergence, 
respectively. Heikes and Randall (1995 b) also showed that the grid (twisted or not) has to be 
slightly altered, or “optimized,” to permit consistent finite-difference approximations to the 
divergence, Jacobian, and Laplacian operators that are used in the construction of the model. 
They  tested their model using certain standard test cases for shallow water on the sphere 

Fig. 12.11: Masuda’s velocity potential field.
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(Williamson et al. 1992), and obtained good results. Ringler et  al. (1999) constructed a full-
physics global atmospheric model using this approach.

12.8 ! Summary

In order to construct a numerical model on the sphere, it is necessary  to map the sphere 
onto a computational domain. There are various ways of doing this. The most straightforward is 
to use latitude-longitude coordinates, but this leads to the pole problem. The pole problem can be 
dealt with by using filters, but these approaches suffer from some problems of their own. Semi-
implicit differencing could be used to avoid the need for filtering.

Another approach is to use a regular grid on the sphere. A perfectly  regular grid is 
mathematically impossible, but geodesic grids can come close.

A third approach, discussed in the next chapter, is to use the spectral method, with 
spherical harmonics as the basis functions.

Problems
1. Program the one-dimensional linearized C-grid shallow-water equations with a leapfrog 

time step. Use a grid spacing corresponding to a longitudinal grid spacing of 5 ˚ and a 
latitude of 70 ˚N. Construct and apply a “polar filter” designed to allow computational 
stability in a model with a meridional grid spacing of 4 degrees. 
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