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13.1 Introduction

Assume that q x,t( )  is real and integrable. If the domain is periodic, with period L, we 

can express q x,t( )  exactly by a Fourier series expansion:

q x,t( ) = q̂k t( )eikx
k=−∞

∞

∑ .

(1)
The complex coefficients q̂kk t( )  can be evaluated using

q̂k t( ) = 1
L

q x,t( )e− ikx dx
x−L/2

x+L/2

∫ .

(2)
Recall that the proof of (1) and (2) involves use of the orthogonality condition

1
L

e− ikxeilx dx
x−L /2

x+L /2

∫ = δk ,l ,

(3)
where

δk ,l ≡
1, k = l
0, k ≠ l

⎧
⎨
⎩

(4)
is the Kronecker delta. 

From (1), we see that the x-derivative of u satisfies
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∂q
∂x

x,t( ) = ikq̂k t( )eikx
k=−∞

∞

∑ .

(5)

Inspection of (5) shows that ∂q
∂x

 does not have a contribution from q̂0 ; the reason for this should 

be clear. 

A spectral model uses equations similar to (1), (2), and (5), but with a finite set of wave 
numbers, and with x defined on a finite mesh:

q xj ,t( ) ≅ q̂k t( )eikx j
k=−n

n

∑ ,

(6)

q̂k t( ) ≅ 1
M

q xj ,t( )e− ikx j
j=1

M

∑ ,−n ≤ k ≤ n ,

(7)
∂q
∂x

x j ,t( ) ≅ ikq̂k t( )eikx j
k=−n

n

∑ .

(8)
Note that  we have used “approximately equal signs” in (6) - (8). In (7) we sum over a grid with 
M  points. In the following discussion, we assume that the value of n  is chosen by the user. The 
relationship between M  and n  is discussed below.

Apart from the effects of round-off error, the transform (6) is exactly reversible by the 
inverse transform (7), provided that M  is large enough. 

Substitution of (6) into (7) gives

q̂k t( ) = 1
M

q̂ll t( )eilx j
l=−n

n

∑⎡
⎣⎢

⎤
⎦⎥
e− ikx j

⎧
⎨
⎩

⎫
⎬
⎭j=1

M

∑  for −n ≤ k ≤ n .

(9)
This is, of course, a rather circular substitution, but the result serves to clarify  some basic ideas. 
If expanded, each term on the right-hand side of (9) involves the product of two wave numbers, 
l  and k , each of which lies in the range −n  to n . The range for wave number l  is explicitly 
spelled out in the inner sum on the right-hand side of (9); the range for wave number k  is 
understood because, as indicated, we wish to evaluate the left-hand side of (9) for k  in the range 
−n  to n . Because each term on the right-hand side of (9) involves the product of two Fourier 
modes with wave numbers in the range −n  to n , each term includes wave numbers up to ±2n . 
We therefore need 2n+1  complex coefficients, i.e., 2n+1  values of the ûk t( ) .
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Because u is real, it turns out that  q̂−k = q̂k
* , where the *  denotes the conjugate. To see 

why this is so, consider the +k and −k  contributions to the sum in (6):

Τ k x j( ) ≡ q̂k t( )eikx j + q̂−k t( )e− ikx j

≡ Rke
iθeikx j + R−ke

iµe− ikx j ,
(10)

where Rke
iθ ≡ ûk t( )  and R−ke

iµ ≡ û−k t( ) , and Rk  and R−k  are real and non-negative. By linear 

independence, our assumption that q xj ,t( )  is real for all x j  implies that the imaginary part of 

Τ k x j( )  must be zero, for all x j . It follows that 

Rk sin θ + kx j( )+ R−k sin µ − kx j( ) = 0  for all x j .
(11)

The only way to satisfy this for all x j  is to set,

θ + kx j = − µ − kx j( ) = −µ + kx j , from which it follows that θ = −µ ,

(12)
and

Rk = R−k .
(13)

Eqs. (12) and (13) imply that 

û−k = ûk
* ,

(14)
as was to be demonstrated.

Eq. (14) implies that q̂k  and q̂−k  together involve only two distinct real numbers. In 

addition, it follows from (14) that û0  is real. Therefore, the 2n+1  complex values of ûk  embody 

the equivalent of only  2n+1  distinct real numbers. The Fourier representation up to wave 
number n is thus equivalent to representing the real function q x,t( )  on 2n+1  equally spaced 

grid points, in the sense that the information content is the same. We conclude that, in order to 
use a grid of M points to represent the amplitudes and phases of all waves up  to k = ±n , we need 
M ≥ 2n +1 ; we can use more than 2n+1  points, but not fewer. 

As a very  simple example, a highly truncated Fourier representation of q  including just 

wave numbers zero and one is equivalent to a grid-point representation of q  using 3 grid points. 

The real values of q  assigned at the three grid points suffice to compute the coefficient of wave 
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number zero (i.e., the mean value of q ) and the phase and amplitude (or “sine and cosine 

coefficients”) of wave number one. 

Substituting (7) into (8) gives 

∂q
∂x

xl ,t( ) ≅ ik
M

q xj ,t( )e−kx j
j=1

M

∑⎡

⎣
⎢

⎤

⎦
⎥eikxl

k=−n

n

∑ .

(15)
Reversing the order of summation leads to

∂q
∂x

xl ,t( ) ≅ α l
jq x j ,t( )

j=1

M

∑ ,

(16)
where

α l
j ≡

i
M

keik xl−x j( )
k=−n

n

∑ .

(17)
The point of this little derivation is that (16) can be interpreted as a finite-difference 
approximation. It is a member of the family of approximations discussed many  times in this 
course, but it is special in that it involves all grid points in the domain. From this point of view, 
spectral models can be regarded as a class of finite-difference models. 

Now consider the one-dimensional advection equation with a constant current, c: 

∂q
∂t

+ c ∂q
∂x

= 0 .

(18)
Substituting (6) and (8) into (18) gives

dq̂k
dt

eikx + c ikq̂ke
ikx = 0

k=−n

n

∑
k=−n

n

∑ .

(19)
By linear independence, we obtain

dq̂k
dt

+ ikcq̂k = 0  for −n ≤ k ≤ n .

(20)

Note that dq̂0
dt

 will be equal to zero; the interpretation of this should be clear. We can use (20) to 

predict q̂k t( ) . When we need to know q xj ,t( ) , we can get it from (6).
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Compare (20) with

dq̂k
dt

+ ikc sin kΔx( )
kΔx

⎡
⎣⎢

⎤
⎦⎥
q̂k = 0 ,

(21)
which, as we have seen, is obtained by using centered second-order space differencing. The 
spectral method gives the exact advection speed (for each Fourier mode), while the finite 
difference method gives a slower value. Similarly, spectral methods give the exact phase speeds 
for linear waves propagating through a uniform medium, while finite difference methods 
generally underestimate the phase speeds. 

Keep in mind, however, that the spectral solution is not really  exact, because only a finite 
number of modes are kept. In addition, the spectral method does not give the exact answer, even 
for individual Fourier modes, when the advection speed (or the phase speed) is spatially variable.

To evaluate the horizontal pressure gradient force, it is necessary  to take horizontal 
derivatives of the terrain height. Suppose that we have continents and oceans, as schematically 

shown in Fig. 13.1.  For use in a spectral model, the terrain heights have to be expanded and 
truncated, like all of the other variables. Truncation leads to “bumpy” oceans. Various 
approaches have been suggested to alleviate this problem (Hoskins, 1980; Navarra, et al., 1994; 
Boutelou, 1995; Holzer, 1996; Lindberg and Broccoli, 1996). 

Another strength of spectral methods is that they  make it very easy to solve boundary 
value problems. As an example, consider

∇2q = f x, y( ) ,
(22)

as a problem to determine u  for given f x, y( ) . In one dimension, (22) becomes

d 2q
dx2

= f x( ) .

(23)

Fig. 13.1: The Earth is bumpy.

! Revised December 7, 2011 7:38 AM! 5

An Introduction to Numerical Modeling of the Atmosphere



We assume periodic boundary  conditions and expand both u  and f as Fourier series in x, 
following (1). Then (23) becomes

−k2( ) q̂keikx = f̂ke
ikx

k=−n

n

∑
k=−n

n

∑ ,

(24)

Equating coefficients of eikx , we find that

q̂k =
− f̂k
k2

 for −n ≤ k ≤ n  (unless k = 0 ).

(25)
Eq. (25) can be used to obtain q̂k , for k = 1,n . Then q x( )  can be constructed using (1). This 

completes the solution of (23), apart from the application of an additional boundary condition to 
determine û0 . The solution is exact for the modes that are included; it is approximate because 

not all modes are included. 

Now consider a nonlinear problem, such as

∂u
∂t

= −u ∂u
∂x

,

(26)
again with a periodic domain. Fourier expansion gives

dûk
dt

eilx
k=−n

n

∑ = − ûle
ilx

l=−n

n

∑⎛⎝⎜
⎞
⎠⎟

imûme
imx

m=−n

n

∑⎛⎝⎜
⎞
⎠⎟

.

(27)
Our goal is to predict ûk t( )  for k in the range −n  to n . 

The right-hand-side of (27) involves products of the form

eilxeimx ,
(28)

where l and m are in the range −n  to n . These products can generate “new” wave numbers, 
some of which lie outside the range −n  to n . Those that lie outside this range are simply 
neglected, i.e., they are not included when we evaluate and make use of the left-hand side of 
(27).

For a given Fourier mode, (27) implies that
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dûk
dt

= − im ûlûme
i l+m( )x⎡

⎣
⎤
⎦e

−ikx

m=−α

α

∑
l=−α

α

∑ , for −n ≤ k ≤ n .

(29)
Here we must choose α  large enough so that we pick up all possible combinations of l and m 

that lie in the range −n  to n . See Fig. 13.2. The circled X‘s in the figure denote excluded 
triangular regions. The number of points in each triangular region is

 
1+ 2 + 3…+ n −1( ) = n n −1( )

2
.

(30)
The number of points retained is

2n+1( )2 − 2 n n −1( )
2

⎡

⎣
⎢

⎤

⎦
⎥= 4n2 + 4n+1( )− n2 − n( )
= 3n2 + 5n+1.

(31)
This is the number of terms that must be evaluated in (27). The number of terms in the product of 
sums on the right-hand-side of (27) is thus of order n2 , i.e., it grows very rapidly as n  increases. 

Fig. 13.2:  Table of l +m ., showing which l,m( )  pairs can contribute to wave numbers in the 

range −n  to n  . The pairs in the triangular regions marked by X’s do not contribute.
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The amount of computation therefore grows rapidly  as n  increases, and of course the problem is 
“twice as hard” in two dimensions. At  first, this poor scaling with problem size appeared to make 
spectral methods prohibitively expensive for nonlinear (i.e., realistic) problems. 

A way around this practical difficulty was proposed by Orszag, and independently by 
Eliassen et al., both in 1970. They suggested a “transform method” in which (1) and (5) are used 

to evaluate u  and 
∂u
∂x

 on a grid. The number of grid points used is sufficient to allow the exact 

representation, for wave numbers in the range −n  to n , of quadratic nonlinearities like u ∂u
∂x

. Of 

course, here “exact” means “exact up  to wave number n.” Because the solution is exact for wave 
numbers up to n, there is no error for those wave numbers, and in particular, there is no aliasing 
error. Therefore, a model of this type is not subject to aliasing instability  arising from quadratic 

terms like u ∂u
∂x

. Aliasing can still arise, however, from “cubic” or higher-order nonlinearities.

To investigate the transform method, we proceed as follows. By analogy with (7), we can 
write

u ∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ k

=
1
M

u xj( ) ∂u∂x x j( )e− ikx j⎡
⎣⎢

⎤
⎦⎥j=1

M

∑ ,−n ≤ k ≤ n .

(32)

Note that the entire quantity u ∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ k

 is represented in wave-number space rather than grid 

space. Now use (6) and (8) to express u xj( )  and 
∂u
∂x

x j( )  in terms of Fourier series:

u ∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ k

=
1
M

ûle
ilx j

l=−n

n

∑⎛⎝⎜
⎞
⎠⎟

imûme
−mxj

m=−n

n

∑⎛⎝⎜
⎞
⎠⎟
e− ikx j

⎡

⎣
⎢

⎤

⎦
⎥

j=1

M

∑ ,−n ≤ k ≤ n .

(33)
It is important to note that, in (33), the derivative has been computed using the spectral method, 
and not a finite-difference method.

Eq. (33) is analogous to (9). When expanded, each term on the right-hand side of (33) 
involves the product of three Fourier modes (k, l, and m), and therefore includes zonal wave 
numbers up to ±3n . We need 3n+1  complex coefficients to encompass wave numbers up to 

±3n . Because u ∂u
∂x

 is real, those 3n+1  complex coefficients actually correspond to 3n+1

independent real numbers. Therefore, we need
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M ≥ 3n +1
(34)

grid points to represent u ∂u
∂x

 exactly, up to wave number n .

In practice, the transform method to solve (26) works as follows:

1. Initialize the spectral coefficients ûk , for −n ≤ k ≤ n .

2. Evaluate both u  and 
∂u
∂x

 on a grid with M  points, where M ≥ 3n +1 . Here 
∂u
∂x

 is 

computed using the spectral method, i.e., Eq. (8).

3. Form u ∂u
∂x

 on the grid, by multiplication.

4. Using (33), transform the product u ∂u
∂x

 back into wave-number space, for −n ≤ k ≤ n .

5. Predict new values of the ûk , using 
dûk
dt

= − u ∂u
∂x

⎛
⎝⎜

⎞
⎠⎟ k

.

6. Return to Step 2, and repeat this cycle as many times as desired.

Note that the grid-point representation of u contains more information (3n+1  real values) 
than the spectral representation ( 2n+1  real values). For this one-dimensional problem the ratio 
is approximately 3/2. The additional information embodied in the grid-point representation is 
thrown away in Step  4 above, when we transform from the grid back into wave-number space. 
Therefore, it is not  “remembered” from one time step  to the next. In effect, we throw away about 
1/3 of the information that is represented on the grid. This is the price that we pay to avoid 
aliasing due to quadratic nonlinearities. 

13.2 Spectral methods on the sphere

Spectral methods on the sphere were first advocated by Silberman (1954). A function F
that is defined on the sphere can be represented by

F λ,ϕ( ) = Fn
mYn

m λ,ϕ( )
n= m

∞

∑
m=−∞

∞

∑ ,

(35)
where the

Yn
m λ,ϕ( ) = eimλPnm sinϕ( )

(36)
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are spherical harmonics, and the Pn
m sinϕ( )  are the associated Legendre functions of the first 

kind, which happen to be polynomials, satisfying

 

Pn
m x( ) = 2n( )!

2n n! n −m( )!
1− x2( )

m
2 xn−m −

n −m( ) n −m −1( )
2 2n −1( )

⎡

⎣
⎢ xn−m−2

+
n −m( ) n −m −1( ) n −m − 2( ) n −m − 3( )

2 ⋅ 4 2n −1( ) 2n − 3( )
xn−m−4 −…

⎤

⎦
⎥ .

(37)
Here m  is the zonal wave number and n − m  is the “meridional nodal number.” As discussed in 
the Appendix on spherical harmonics, we must require that n ≥ m . The spherical harmonics Yn

m  

are the eigenfunctions of the Laplacian on the sphere:

∇2Yn
m =

−n n +1( )
a2

Yn
m .

(38)
Here a  is the radius of the sphere. See the Appendix for further discussion.

We can approximate F  by a truncated sum:

F = Fn
mYn

m

n= m

N m( )

∑
m=−M

M

∑ .

(39)
Here the overbar indicates that F  is an approximation to F . In (39), the sum over m  from –M 
to M ensures that F  is real. The choice of N(m) is discussed below. For smooth F , F  converges 
to F  very quickly. Only a few terms are needed to obtain a good representation.

Why should we expand our variables in terms of the eigenfunctions of the Laplacian on 
the sphere? The Fourier representation discussed earlier is also based on the eigenfunctions of 
the Laplacian, in just one dimension, i.e., sines and cosines. What is so special about the 
Laplacian operator? There are infinitely many differential operators, so why choose the 
Laplacian? A justification is that:

• the Laplacian consumes scalars and returns scalars, unlike, for example, the gradient, the 
curl, or the divergence;

• the Laplacian can be defined without reference to any coordinate system;

• the Laplacian is isotropic, i.e., it does not favor any particular direction on the sphere;

• the Laplacian is simple.
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How should we choose N m( ) ? This is the problem of truncation. The two best-known 

possibilities are triangular truncation and rhomboidal truncation:

Rhomboidal: N − m = M = constant
(40)

Triangular: N = M = constant, or N − m = M − m .
(41)

These are illustrated in Fig. 13.3. As shown in Fig., 13.4, triangular truncation represents the 
observed kinetic energy spectrum more accurately, with a small number of terms, than does 
rhomboidal truncation (Baer, 1972). The thin lines in Fig. show the modes kept with triangular 
truncation. With rhomboidal truncation the thin lines would be horizontal. The thick lines show 
the observed kinetic energy percentage in each component. For example, we might want to 
truncate so that we keep all modes with ≥ 0.01% of the kinetic energy, and discard all others. 
Triangular truncation can do that.

In addition, triangular truncation has the beautiful property that  it  is not tied to a 
coordinate system. Here is what this means: In order to actually perform a spherical harmonic 
transform, it  is necessary to adopt a spherical coordinate system λ,ϕ( ) . There are, of course, 

infinitely many such systems, which differ in the orientations of their poles. There is no reason, 
in principle, that the coordinates have to be chosen in the conventional way, so that the poles of 
the coordinate system coincide with the Earth’s poles of rotation. The choice of a particular 
spherical coordinate system is, therefore, somewhat arbitrary. Suppose that we choose two 
different spherical coordinate systems (tilted with respect to one another in an arbitrary way), 

Fig. 13.3: Rhomboidal and triangular truncation. From Jarraud and Simmons (1983).
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perform a triangularly  truncated expansion in both, then plot the results. It can be shown that the 
two maps will be identical, i.e.,

F λ1,ϕ1( ) = F λ2 ,ϕ2( ) ,

(42)
where the subscripts indicate alternative spherical coordinate systems. This means that the 
arbitrary orientations of the spherical coordinate systems used have no effect whatsoever on the 
results obtained. The coordinate system used “disappears” at  the end. Triangular truncation is 

very widely used today, in part because of this nice property.

In order to use (39), we need a “spherical harmonic transform,” analogous to a Fourier 
transform. From (36), we see that a spherical harmonic transform is equivalent to the 
combination of a Fourier transform and a Legendre transform. The Legendre transform is 
formulated using a method called “Gaussian quadrature.” The idea is as follows. Suppose that we 
are given a function f x( )  defined on the interval −1 ≤ x ≤ 1, and we wish to evaluate

I = f x( )dx
−1

1

∫ ,

(43)
by a numerical method. If f x( )  is defined at a finite number of points, denoted by x j , then

Fig. 13.4: Percentage of total kinetic energy  in each spectral component. From Jarraud and 
Simmons (1983), based on Baer (1972).
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I ≅ f xi( )wi
i=1

N

∑ ,

(44)
where the wi  are “weights.” Now suppose that f x( )  is a weighted sum of Legendre 

polynomials. Gauss showed that in that case (44) gives the exact value of I , provided that the xi  
are chosen to be the roots of the highest Legendre polynomial used. In other words, we can use 
(44) to evaluate the integral (43) exactly, provided that we choose the latitudes so that they are 
the roots of the highest Legendre polynomial used. These latitudes can be found by a variety of 
iterative methods. The Gaussian quadrature algorithm is used to perform the Legendre transform. 

With either triangular or rhomboidal truncation, choosing M fixes the expansion; hence 
the expressions “R15” or “T106.” The numeral is the value of M . The numbers of complex 
coefficients needed are

fR = M +1( )2 + M 2 + M  for rhomboidal truncation,
(45)

and

fΤ = M +1( )2  for triangular truncation.
(46)

With the transform method described earlier, the number of grid points needed to avoid 
aliasing of quadratic nonlinearities exceeds the number of degrees of freedom in the spectral 
representation. The number of grid points around a latitude circle must be ≥ 3M +1 . The number 

of latitude circles must be ≥
3M +1( )
2

 for triangular truncation, and so the total number of grid 

points needed is ≥
3M +1( )2
2

. Referring back to (46), we see that, for large M , the grid 

representation uses about 2.25 times as many  equivalent real numbers as the triangularly 
truncated spectral representation. A similar conclusion holds for rhomboidal truncation. 
Computing the physics on a “nonaliasing grid” is standard procedure, but wasteful.

In summary, the spectral transform method as it is applied to global models works as 
follows.

First, we choose a spectral truncation, e.g., T42. Then we identify the number of grid 
points needed in the longitudinal and latitudinal directions, perhaps with a view to avoiding 
aliasing due to quadratic nonlinearities. Next, we identify the highest degree Legendre 
polynomial needed with the chosen spectral truncation, and find the latitudes where the roots of 
that polynomial occur. These are called the “Gaussian latitudes.” At this point, we can set up  our 
“Gaussian grid.”
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The horizontal derivatives are evaluated in the spectral domain, essentially through 
“multiplication by wave number.” When we transform from the spectral domain to the grid, we 
combine an inverse fast Fourier transform with an inverse Legendre transform. The nonlinear 
terms and the model physics are computed on the grid. Then we use the Legendre and Fourier 
transforms to return to the spectral domain.

The basic logic of this procedure is the same as that described earlier for the simple one-
dimensional case. 

We have a fast Fourier transform, but no one has yet discovered a “fast Legendre 
transform,” although some recent work points towards one. Lacking a fast Legendre transform, 
the operation count for a spectral model is of O N 3( ) , where N  is the number of spherical 

harmonics used. Finite difference methods are, in effect, of O N 2( ) . This means that spectral 

models become increasingly expensive, relative to grid-point models, at high resolution.

13.3 The “equivalent grid resolution” of spectral models

Laprise (1992) distinguishes four possible ways to answer the following very natural 
question: “What is the equivalent grid-spacing of a spectral model?”

1. One might argue that the effective grid spacing of a spectral model is the average 
distance between latitudes on the Gaussian grid. With triangular truncation, this is the same as 

the spacing between longitudes at the Equator, which is L1 =
2πa
3M +1

. Given the radius of the 

Earth, and using units of thousands of kilometers, this is equivalent to 13.5 /M . For a T31 
model (with M = 31 ), we get L1 ≅ 425  km. An objection to this measure is that, as discussed 

above, much of the information on the Gaussian grid is thrown away when we transform back 
into spectral space. 

2. A second possible measure of resolution is half the wavelength of the shortest resolved 

zonal wave at the Equator, which is L2 =
πa
M

, or about 20 /M  in units of thousands of 

kilometers. For a T31 model, L2 ≅ 650  km. 

3. A third method is based on the idea that  the spectral coefficients, which are the 
prognostic variables of the spectral model, can be thought of as a certain number of real 
variables per unit area, distributed over the Earth. A triangularly truncated model has the 
equivalent of M +1( )2  real coefficients. The corresponding resolution is then 

L3 =
4πa2

M +1( )2
=
2 πa
M +1

, which works out to about 725 km for a T31 model.
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4. A fourth measure of resolution is based on the equivalent total wave number 
associated with the Laplacian operator, for the highest mode. The square of this total wave 

number is Κ 2 =
M M +1( )
2a2

. Suppose that we equate this to the square of the equivalent total 

wave number on a square grid, i.e. Κ 2 = kx
2 + ky

2 , and let kx = ky = k  for simplicity. One half of 

the corresponding wavelength is L4 =
π
k
=

2πa
M

, which is equivalent to 28.3 /M  in units of 

thousands of kilometers. For a T31 model this gives about 900 km.

These four measures of spectral resolution range over more than a factor of two. The 
measure that makes a spectral model “look good” is L1 , and so it is not surprising that  spectral 

modelers almost always use it when specifying the equivalent grid spacing of their models. 

13.4 Semi-implicit time differencing

As we have already discussed in Chapters 5 and 8, gravity waves limit the time step that 
can be used in a primitive-equation (or shallow water) model. A way to get around this is to use 
semi-implicit  time differencing, in which the “gravity wave terms” of the equations are treated 
implicitly, while the other terms are treated explicitly. This can be accomplished much more 
easily in a spectral model than in a finite-difference model.

A detailed discussion of this approach will not be given here, but the basic ideas are as 
follows. The relevant terms are the pressure-gradient terms of the horizontal equations of motion, 
and the mass convergence term of the continuity  equation. These are the same terms that we 
focused on in the discussion of the pole problem, in Chapter 11. The terms involve horizontal 
derivatives of the “height field” and the winds, respectively. Typically the Coriolis terms are also 
included, so that the waves in question are inertia-gravity waves.

Consider a finite-difference model. If we implicitly difference the gravity-wave terms, the 
resulting equations will involve the “ n+1” time-level values of the heights and the winds at 
multiple grid points in the horizontal. This means that we must solve simultaneously for the 
“new” values of the heights and winds. Such problems can be solved, of course, but they can be 
computationally expensive. For this reason, most finite-difference models do not use semi-
implicit time differencing.

In spectral models, on the other hand, we prognose the spectral coefficients of the heights 
and winds, and so we can apply the gradient and divergence operators simply by multiplying by 
wave number (roughly  speaking). This is a “local” operation in wave-number space, so it is not 
necessary to solve a system of simultaneous equations.

The use of semi-implicit time differencing allows spectral models to take time steps 
several times longer than those of (explicit) grid-point models. This is a major advantage in 
terms of computational speed, which compensates, to some extent, for the expense of the spectral 
transform.
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13.5 ! Conservation properties and computational stability

Because the spectral transform method prevents aliasing for quadratic nonlinearities, but 
not cubic nonlinearities, spectral models are formulated so that the highest nonlinearities that 
appear in the equations (other than in the physical parameterizations) are quadratic. This means 
that the equations must be written in advective form, rather than flux form. As a result, the 
models do not exactly conserve anything - even mass - for a general, divergent flow.

It can be shown, however, that in the limit of two-dimensional non-divergent flow, 
spectral models do conserve kinetic energy and enstrophy. Because of this property, they  are well 
behaved computationally. Nevertheless, all spectral models need some artificial diffusive 
damping to avoid computational instability. In contrast, it is possible to formulate finite-
difference models that are very  highly conservative and can run indefinitely with no artificial 
damping at all. 

13.6 ! Moisture advection

The mixing ratio of water vapor is non-negative. We have already discussed the 
possibility of spurious negative mixing ratios caused by dispersion errors in finite-difference 
schemes, and we have also discussed the families of finite-difference advection schemes that are 
“sign-preserving” and do not suffer from this problem.

Spectral models have a very strong tendency to produce negative water vapor mixing 
ratios (e.g., Williamson and Rasch, 1994). In the global mean, the rate at  which “negative water” 
is produced can be a significant fraction of the globally  averaged precipitation rate. Negative 
water vapor mixing ratios occur not only locally  on individual time steps, but even in zonal 
averages that have been time-averaged over a month. 

Because of this disastrous situation, many spectral models are now using non-spectral 
methods for advection (e.g. Williamson and Olson, 1994). This means that they are only “partly 
spectral.” When non-spectral methods are used to evaluate the nonlinear advection terms, the 
motivation for using the high-resolution, non-aliasing grid disappears. Such models can then use 
a coarser “linear grid,” with the same number of grid points as the number of independent real 
coefficients in the spectral representation. This leads to a major savings in computational cost. 

13.7 ! Physical parameterizations

Because most physical parameterizations are highly nonlinear, spectral models evaluate 
such things as convective heating rates, turbulent exchanges with the Earth’s surface, and 
radiative transfer on their Gaussian grids. The tendencies due to these parameterizations are then 
applied to the prognostic variables, which are promptly transformed into wave-number space. 

Recall that when this transform is done, the spectral representation contains less 
information than is present on the grid, due to the spectral truncation to avoid aliasing due to 
quadratic nonlinearities. This means that  if the fields were immediately transformed back onto 
the grid (without any changes due, e.g., to advection), the physics would not “see” the fields that 
it had just finished with. Instead, it would see spectrally truncated versions of these fields.
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For example, suppose that the physics package includes a convective adjustment that  is 
supposed to adjust convectively unstable columns so as to remove the instability. Suppose that 
on a certain time step  this parameterization has done its work, removing all instability as seen on 
the Gaussian grid. After spectral truncation, some convective instability may re-appear, even 
though “physically” nothing has happened!

In effect, the spectral truncation that  is inserted between the grid domain and the spectral 
domain prevents the physical parameterizations from doing their work properly. This is a 
problem for all spectral models. It can be solved by doing the physics on a “linear” grid that has 
the same number of degrees of freedom as the spectral representation.

13.8 Summary

In summary, the spectral method has both strengths and weaknesses:

Strengths:

• Especially with triangular truncation, it eliminates the “pole problem.”

• It gives the exact phase speeds for linear waves and advection by a constant current such 
as solid-body rotation.

• It converges very rapidly, and gives good results with just a few modes.

• Semi-implicit time-differencing schemes are easily implemented in spectral models.

Weaknesses:

• Spectral models do not exactly conserve anything - not even mass.

• Partly because of failure to conserve the mass-weighted total energy, artificial damping is 
needed to maintain computational stability.

• Spectral models have bumpy oceans.

• Because of truncation in the transform method, physical parameterizations do not always 
have the intended effect. 

• Moisture advection does not work well in the spectral domain.

• At high resolution, spectral methods are computationally expensive compared to grid 
point models.
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Problems

1.  Write subroutines to compute Fourier transforms and inverse transforms, for arbitrary 
complex q xj , j( ) . The number of waves to be included in the transform, and the number 

of grid points to be used in the inverse transform, should be set through the argument lists 
of subroutines. Let

q xj( ) = 14cos k0x j( ) + 6icos k1x j( ) + 5 ,

(47)
where

k0 =
2π
L0

 and L0 =
X
4

,

k1 =
2π
L1

 and L1 =
X
8

.

(48)
Here X is the size of the periodic domain. Compute the Fourier coefficients starting from 
values of x j  on a grid of M  points, for M = 3 , M = 9 , M =17 , and M =101 . Discuss 

your results.

2. Consider a periodic step function, defined by

H x( ) = −1  when the integer part of x  is odd,

H x( ) = +1  when the integer part of x  is even.

With this definition, H x( )  is discontinuous at  integer points on the real line, and 

infinitely differentiable elsewhere. Sample H x( )  on the domain −1≤ x ≤1 , using M  

evenly spaced points, for M =11 , M =101 , and M =1001 , and feel free to go to larger 
values if you like. Plot the results for −1≤ x ≤1 , for each value of M . Discuss in terms 
of the Gibbs phenomenon.
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