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[1] The task of providing an optimal analysis of the three state of the atmosphere requires
to efficiently integrate the observational data and the models, a process called data
assimilation. The background, or initial state of an atmospheric model, is not known
exactly, and can be correctly represented only in a probabilistic framework that accounts
for the uncertainty. It is widely accepted that a key ingredient of successful data
assimilation is a realistic estimation of the background error distribution. This paper
introduces a new method for modeling the background errors as autoregressive processes.
The method is motivated by a theoretical analysis of error propagation through the
linearized transport and chemical equations. The proposed approach is computationally
inexpensive, captures the error correlations along the flow lines, and results in nonsingular
background covariance matrices. We illustrate the benefits of the autoregressive
background covariance matrix in a four-dimensional Var experiment that uses real data.

Citation: Constantinescu, E. M., T. Chai, A. Sandu, and G. R. Carmichael (2007), Autoregressive models of background errors for

chemical data assimilation, J. Geophys. Res., 112, D12309, doi:10.1029/2006JD008103.

1. Introduction

[2] Our ability to anticipate and manage changes in
atmospheric pollutant concentrations relies on an accurate
representation of the chemical state of the atmosphere. As
our fundamental understanding of atmospheric chemistry
advances, novel data assimilation tools are needed to
integrate observational data and models together to provide
the best, physically consistent estimate of the evolving
chemical state of the atmosphere.
[3] The close integration of observational data is recog-

nized as essential in weather and climate analysis and
forecast activities, and this is accomplished by a mature
experience and infrastructure in meteorological data assim-
ilation [Daley, 1991; Kalnay, 2002; Courtier et al., 1998;
Rabier et al., 2000]. Data assimilation is vital for meteoro-
logical forecasting and has started to be applied in chemical
transport modeling [Elbern et al., 1997; Fisher and Lary,
1995; van Loon et al., 2000; Menut et al., 2000].
[4] In this paper we focus on data assimilation applied to

atmospheric chemical transport models (CTMs). CTMs are
designed to describe the fate and transport of atmospheric
chemical constituents associated with the gas and aerosol
phases. CTMs have become an essential element in atmo-
spheric chemistry studies, including important applications
such as providing science-based input into best alternatives
for reducing pollution levels in urban environments. They
can be used in designing cost-effective emission control

strategies for improved air quality, for the interpretation of
observational data such as those obtained during intensive
field campaigns, air-quality forecasting, and assessments
into how we have altered the chemistry of the global
environment.
[5] The distinguishing feature of CTMs is the presence of

nonlinear and stiff chemical interactions occurring at char-
acteristic timescales that are typically much shorter than the
transport timescales. CTMs propagate the model state
forward in time from the ‘‘initial’’ state c(tB) to the ‘‘final’’
state c(tF) [equation (1)]. Perturbations (small errors) evolve
according to the tangent linear model (2), and adjoint
variables according to the adjoint model (3):

c t F
� �

¼Mt B!t F c tB
� �� �

ð1Þ

dcðt FÞ ¼ Mt B!t FdcðtBÞ ð2Þ

lðtBÞ ¼ Mt F!t B
* lðt FÞ: ð3Þ

Here M, M, and M* denote the solution operators of the
CTM, the tangent linear, and the adjoint models, respec-
tively. The error covariance matrix evolves from B (at tB) to
P (at tF) according to

P ¼ MtB!tFBMtF!tB
* þQ; ð4Þ

where Q is the covariance of the 37 model errors.
[6] The background, or initial state of an atmospheric

model, is not known exactly, and can be correctly repre-
sented only in a probabilistic framework that accounts for
the uncertainty.
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[7] We can represent the background state cB as the sum
of an average (most likely) state �cB plus an error (uncer-
tainty) field dcB,

cB ¼ �cB þ dcB: ð5Þ

The error field is considered to be unbiased and with the
background covariance B,

dcB
� �

¼ 0; dcB dcB
� �TD E

¼ B: ð6Þ

[8] In ensemble forecasting, one of the major challenges
is the specification of the initial ensemble. For a correct
ensemble distribution, each member is drawn from the same
pdf that produced the true system state, and is impossible to
distinguish between ensemble members and truth. Hansen
[2002] argues that the initial ensemble should sample the
(local) system attractor.Molteni et al. [1996] and Barkmeijer
et al. [1998, 1999] use the leading singular vectors (with
respect to the energy norm) of the linear propagator to
identify the directions in phase space associated with
maximum perturbation growth during the early parts of
the forecast period. Toth and Kalnay [1997] determine the
directions of maximum error growth by ‘‘breeding’’ the
perturbation vectors, i.e., letting the perturbations grow
through the system evolution and periodic rescaling. Dis-
tance and flow information can also be used in ensemble
initialization [Buehner, 2004; Zupanski, A method for
initialization of ensemble data assimilation, submitted to
Tellus, 2007, hereinafter referred to as Zupanski, submitted
manuscript, 2007].
[9] The aim of this paper is to construct models of B

which account for the spatial correlations of errors in
atmospheric models in a ‘‘sensible’’ way, mimic the decay
of the correlation with distance, and are computationally
inexpensive and easy to implement. We focus on CTM
applications and investigate the effectiveness of this
new method on a CTM variational data assimilation prob-
lem. Constantinescu et al. [2007a] have already applied
the approach described in this paper to an ensemble
data assimilation problem. The contributions of this work
include: (1) the introduction of a new method to generate 60
autoregressive (AR) models for the background errors, (2)
the application of these models to variational and ensemble
data assimilation, and (3) the study of the 61 effects of using
the autoregressive models to solve a real chemical data
assimilation problem.
[10] The paper is organized as follows. Section 2 intro-

duces the chemical transport models and discusses the
correlation of errors. Section 3 develops the autoregressive
error model approach and section 4 describes the practical
implementation. Section 5 illustrates the use of the new
background error model in a real, large-scale data assimila-
tion test, and section 6 summarizes the results of this
research.

2. Chemical Transport Models and State Errors

[11] Chemical transport models solve the mass balance
equations for concentrations of trace species in order to
determine the fate of pollutants in the atmosphere
[Carmichael et al., 2003; Liao et al., 2006; Carmichael
et al., Predicting air-quality: Current status and future

directions, submitted to Journal of Computational Physics,
2007, hereinafter referred to as Carmichael et al., sumitted
manuscript, 2007].
[12] Let cs be the mole-fraction concentration of chemical

species s, Qs be the rate of surface emissions, Es be the rate
of elevated emissions, and fs be the rate of chemical
transformation for this species. Furthermore, u is the wind
field vector, K the turbulent diffusivity tensor, r is the air
density, and Vs

dep is the deposition velocity. The boundaries
G{in,out,ground} represent the inflow, outflow, and ground
boundaries, respectively. The evolution of cs is described
by the following equations

@cs
@t
¼ �urcs þ

1

r
rðrKrcsÞ þ

1

r
fsðrcÞ þ Es;

t0 	 t 	 tB; 1 	 s 	 Nspec

cs t0; x
� �

¼ c0s ðxÞ;
cs t; xð Þ ¼ cins t; xð Þ for x 2 Gin

K
@cs
@n

¼ 0 for x 2 Gout

K
@cs
@n

¼ V dep
s cs � Qs for x 2 Gground

ð7Þ

[13] We refer to the equations (7) as the ‘‘forward model’’.
[14] A perturbation dc0 of the initial conditions will result

in perturbations dc(t) of the concentration field at later
times. The evolution of these perturbations is governed by
the equations:

@dcs
@t

¼ �urdcs þ
1

r
rðrKrdcsÞ þ Fs;*ðrcÞdcþ fs;

t0 	 t 	 tB; 1 	 s 	 Nspec

dcsðt0; xÞ ¼ dc0s ðxÞ;
dcsðt; xÞ ¼ dcins ðt; xÞ for x 2 Gin

K @dcs
@n ¼ 0 for x 2 Gout

K
@dcs
@n

¼ V dep
s dcs � dQs for x 2 Gground

ð8Þ

[15] Equations (8) are referred to as the tangent ‘‘linear
model’’ associated with the forward model (7). Here F = @f/
@c denotes the Jacobian of the chemical rate function f, and
Fs;* is its s-th row. The stochastic forcing function fs

describes the model errors.
[16] Our approach to modeling the background errors is

as follows. We consider a simulation that starts at t0

(a distant time in the past) and ends at the background time
tB. During this interval errors (or uncertainties) in the
conditions at time t0 are evolved according to the TLM
equations, and correlations between different components of
the model error are established.
[17] To better understand the relationship between the

tangent linear model (8) which governs the evolution of
perturbations and autoregressive models, we first discuss
the one-dimensional advection diffusion equation, then the
box chemical model.

2.1. Correlation of Errors

[18] We now consider the correlation function between
errors in two species, at two different locations, at the same
time instant:

Rs;q t; x; yð Þ ¼ dcs t; xð Þ; dcqðt; yÞ
� �

: ð9Þ
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[19] Here h�i denotes the ensemble average.
[20] For simplicity, we consider the one-dimensional

advection-diffusion-reaction of a single species c in an
infinite spatial domain. Assume that u, r, K are constant
in space and time, and that the chemical reaction is a simple
decay equation, f(rc) = �Lc. The evolution of the concen-
tration perturbation in time is governed by

@dc
@t

¼ �u @dc
@x

þ K
@2dc
@x2

� Ldc; t0 	 t 	 tB

t0 ¼ 0; dcð0; xÞ ¼ dc0ðxÞ:
ð10Þ

The general solution of the equation (10) is derived in
Appendix A and has the form

dc t; xð Þ ¼ e�Ltffiffiffi
p

p 1

2
ffiffiffiffiffi
Kt

p
Z
R
e
� x�z�ut

2
ffiffiffi
Kt

p

	 
2

dc0ðzÞdz ð11Þ

2.2. Random Initial Perturbations

[21] Consider now that the initial perturbations dc0 are
a random process in space. Correlations develop due to
the TLM dynamics, and the covariance function at time
t > 0 as

R t; x; yð Þ ¼ dc t; xð Þ; dc t; yð Þ

¼ e�2Lt

4pKt

Z
R

Z
R
e
� x�z�ut

2
ffiffiffi
Kt

p

	 
2

� y�w�ut
2
ffiffiffi
Kt

p

	 
2

dc0ðzÞ; dc0ðwÞ
� �

dzdw

For the particular case where the initial random process has
uniform variance and is totally uncorrelated

dc0ðzÞ; dc0ðwÞ
� �

¼ s2dz�w

the covariance function is

R t; x; yð Þ ¼ s2 e
�2Lt

4pKt

Z
R
e
� x�z�ut

2
ffiffiffi
Kt

p

	 
2

� y�z�ut
2
ffiffiffi
Kt

p

	 
2

dz

¼ s2 e�2Ltffiffiffi
p

p e
� x�yffiffiffiffi

8Kt
p

	 
2

ffiffiffiffiffiffiffiffi
8Kt

p

For given x and y (with x 6¼ y) the covariance R(t, x, y) as a
function of time has a maximum value at

tmax ¼
t
8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

x� y

D

	 
2r
� 1

 !

where t is the chemical lifetime of the species defined as the
inverse of the destruction rate

t ¼ 1

L

and D is the ‘‘characteristic length’’

D ¼
ffiffiffiffi
K

L

r
¼

ffiffiffiffiffiffi
Kt

p
:

The maximum value of the covariance of the solution at two
locations x 6¼ y is

R tmax; x; yð Þ ¼ s2ffiffiffi
p

p
D

e
�1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4

x�y
Dð Þ2þ1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4 x�y
D

� �2þ1q
� 1

r
� s2ffiffiffiffiffiffi

2p
p

D

e�
x�yj j
Dffiffiffiffiffiffiffiffi
x�yj j
D

q for jx� yj � D

It is clear that the errors in initial conditions, when evolved
through the tangent linear convection-diffusion-reaction
equation, develop spatial correlations. The characteristic
distance D ¼

ffiffiffiffiffiffiffiffiffi
K=L

p
¼

ffiffiffiffiffiffi
Kt

p
is in fact the spatial correlation

distance. It increases with increased diffusion strength and
decreases with increased chemical destruction rate. Thus the
developed spatial correlation distance is smaller for fast-lived
species and larger for long-lived species.
[22] Note that in this simple example the spatial correlation

at t > 0 between the solution at points x and y depends on the
distance between the points x-y, the diffusion coefficient K
and the reaction rate L, but does not depend on the wind
velocity u. However, it should be clear from the above
derivation that if the initial condition is correlated (hdc0(z);
dc
0(w)i 6¼ 0 for some z 6¼ w), or if it is decorrelated but the
variance is space dependent (hdc0(z); dc0(w)i = s2(z) dz�w)
then the correlation R(t; x; y), t > 0, will depend on u as well.

2.3. Random Forcing

[23] Consider now the simple model (10) started from a
deterministic initial condition (dc0 = 0) but excited by an
additive white noise process z(t)

@dc
@t

¼ �u @dc
@x

þ K
@2dc
@x2

� Ldcþ z; 0 	 t 	 tB

dc 0; xð Þ ¼ 0; zh i ¼ 0; z t1; x1ð Þz t2; x2ð Þh i ¼ s2dt1�t2dx1�x2 :

ð12Þ
The derivation presented in Appendix B reveals that the
covariance function of the solution after long integration
times t ! 1 tends to the stationary value

R t ¼ 1; x; yð Þ ¼ ts2ffiffiffi
2

p
D
e
� x� yj j

D

The spatial correlation distance in the stationary regime is
D ¼

ffiffiffiffiffiffiffiffiffi
K=L

p
¼

ffiffiffiffiffiffi
Kt

p
.

[24] The conclusion of this analysis is that the random
perturbations in both the initial conditions and in the forcing,
lead, through the dynamics of the tangent linear model, to
random perturbations in the solution. The solution perturbations
are correlated in space with a characteristic correlation distance
D ¼

ffiffiffiffiffiffiffiffiffi
K=L

p
. The correlation distance is influenced directly by

the chemical reactions, with errors in fast-lived species having a
shorter correlation distance than long-lived species.

3. Autoregressive Models of Background Errors

3.1. One-Dimensional Advection-Diffusion Equation

[25] Consider the advection and diffusion of a single
species c:

@c

@t
¼ �u @c

@x
þ 1

r
@

@x
rK

@c

@x

� �
; t0 	 t 	 tB c t0; x

� �
¼ c0ðxÞ;

c t; xð Þ ¼ cin t; xð Þ for x 2 Gin; K
@c

@x
¼ 0 for x 2 Gout

ð13Þ
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We consider that the model started in the remote past from
an uncertain initial condition c0 + dc0, and is evolving with
known (deterministic) boundary conditions (dcin = 0).
[26] The model state perturbations evolve in time accord-

ing to the tangent linear model

@dc
@t

¼ �u @dc
@x

þ 1

r
@

@x
rK

@dc
@x

� �
þ f; t0 	 t 	 tB

dcðt0; xÞ ¼ 0; dcðt; xÞ ¼ 0 for x 2 Gin; K
@dc
@x

¼ 0 for x 2 Gout:

ð14Þ

The system evolves subject to an external stochastic forcing
function f which represents the model errors. We want to
estimate the cumulative effect of these perturbations at time
tB.
[27] Consider a discretization of equation (14). The

spatial discretization uses the first order upwind formula
for advection and central finite differences for diffusion. A
single implicit Euler step is taken from t0 to tB. The implicit
Euler method is unconditionally stable. Moreover, this
discretization is monotonic for any value of the step size.
[28] The discrete tangent linear model reads

dcBj ¼ dc0j �
uþj Dt

Dx
dcBj � dcBj�1
	 


�
u�j Dt

Dx
dcBjþ1 � dcBj
	 


þDt

�
rjþ1Kjþ1þrjKj

	 

dcBjþ1�4rjKjdcBj þ rjKjþrj�1Kj�1

	 

dcBj�1

2rjDx2

þDtfj

dc0 ¼ 0; dcj ¼ 0 for xj 2 G in; Kj

@dc
@x

¼ 0 for xj 2 Gout:

ð15Þ

Equation (14) has the form of an autoregressive model

aj�1 dcBj�1 þ aj dcBj þ ajþ1 dcBjþ1 ¼ xj

where the random variable xj = dcj
0 + Dt fj is the noise

added to the process. The values of the autoregressive
coefficients are given by the discretization:

aj�1 ¼ �
Dt

2Dx2rj
Kj�1rj�1 þ rj Kj þ 2Dxuþj

	 
	 

;

aj ¼ 1� Dt

Dx2
Dx u�j � uþj

	 

� 2Kj

	 

;

ajþ1 ¼ �
Dt

2Dx2rj
Kjþ1rjþ1 þ rj Kj � 2Dxu�j

	 
	 

:

A general spatial discretization with a stencil of 2p + 1
points and solved in time by implicit Euler leads to the
following AR model:

Xp
k¼�p

ajþp dcBjþp ¼ xj ð16Þ

3.1.1. Monotonicity
[29] Consider the case where the initial perturbation is

bounded, dcmin 	 dc0 	 dcmax, and the external forcing is
null, f = 0. The monotonicity of the implicit Euler scheme

coupled with the first order upwind advection and central
diffusion implies that dcmin 	 dcB 	 dcmax. Therefore the
magnitude of the initial perturbations is not increased, but
correlations are developed.
3.1.2. AR Moving Average (ARMA) Models
[30] It is clear that the AR model (16) of the background

error can be extended to a more general ARMA model (13):Xp
k¼�p

ajþp dcBjþp ¼
Xp
k¼�p

bjþpxjþp: ð17Þ

3.2. Box Model Chemistry

[31] We now consider the following singular perturbation
model for the chemical system:

d

dt

cslow
cfast

� �
¼ f cslow; cfastð Þ

e�1g cslow; cfastð Þ

� �
;

cslow t0ð Þ
cfast t

0ð Þ

� �
¼ c0slow

c0fast

� �
:

ð18Þ

As a technical condition in the chemical system [equation
(18)] we have the sub-Jacobian @g/@cfast nonsingular, which
implies that the limit differential-algebraic equation (DAE)
is of index one [Hairer et al., 1993]. This condition means
that the dynamics takes place essentially onto a slow
manifold of smaller dimension.
[32] The model (18) distinguishes between the fast and

the slow species. The separation of scales is given by the
parameter e since cslow evolves on Oð1Þ characteristic
times while cfast evolves on O(e) timescales. The smaller
e, the faster the evolution of cfast, and in the limit e! 0 we
have that

g cslow; cfastð Þ ¼ 0:

This condition formally expresses the quasi-equilibrium of
the system outside the initial transient. Since @g/@cfast is
nonsingular, the quasi-equilibrium relation allows expres-
sion of the fast species as a function of the slow ones.
[33] Small errors in the initial conditions propagate

according to the tangent linear model

d

dt

dcslow
dcfast

� �
¼

@f

@cslow

@f

@cfast

e�1
@g

@cslow
e�1

@g

@cfast

2664
3775 dcslow

dcfast

� �
;

dcslowðt0Þ
dcfastðt0Þ

� �
¼ dc0slow

dc0fast

� �
:

ð19Þ

The quasi-equilibrium condition for the perturbations
outside the initial transient is obtained by taking the limit
e ! 0

@g

cslow
dcslow þ

@g

cfast
dcfast ¼ 0 ) dcfast ¼ �

@g

cfast

� ��1 @g

cslow
dcslow:

ð20Þ

This shows that due to quasi-equilibrium the errors in the
fast components and slow components are strongly
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correlated (the errors in the fast components are determined
by the errors in the slow ones).
[34] One backward Euler step applied to equation (19)

leads to the discrete model

I ¼ �D t
@f

@cslow
�Dt

@f

@cfast

�Dt e�1
@g

@cslow
I �Dt e�1

@g

@cfast

2664
3775 � dcBslow

dcBfast

� �
¼ dc0slow

dc0fast

� �
;

ð21Þ

which again is an autoregressive model for the errors.
Taking the limit e ! 0 in equation (21) leads to
equation (20) for the fast and slow components of dcB.
Consequently, the autoregressive model (21) captures
the error correlations introduced by quasi-equilibrium in
the stiff chemical system evolution.

4. Three-Dimensional MultiComponent AR
Models

[35] We now discuss the construction of three-dimension-
al autoregressive models for background errors. Consider a
spatial domain D discretized using a structured grid of (NX,
NY, NZ) grid points. We will denote by (i, j, k) the space grid
point index. If NS is the total number of different chemical
species, then the dimension of the model state vector is N =
NX � NY � NZ � NS.
[36] The background state cB is represented as the sum of

the average state cB plus an error (uncertainty) field dcB.
The error field has zero mean and background covariance B
(5, 6).
[37] Our basic assumption is that the background state

errors form a multilateral autore-gressive (AR) process
[Hasselmann, 1976] of the form

dcBi;j;k þ a �1ð Þ
i;j;k dcBi�1;j;k þ b �1ð Þ

i;j;k dcBi;j�1;k þ g �1ð Þ
i;j;k dcBi;j;k�1 ¼ si;j;kxi;j;k :

ð22Þ

The model (22) captures bilateral correlations among
neighboring grid points in the x, y, and z directions (with
the coefficients a, b, and g, respectively). Constant
correlation coefficients a, b, g imply fixed spatial directional
correlations, whereas space-dependent coefficients allow to
capture flow dependent correlations. The last term represents
the uncertainty from (distant) past at each grid point, if no
chemical or transport processes were present, with x 6¼
N (0; 1) normal random variables and s, the local error
variance. The motivation behind multilateral AR models is
the fact that equation (22), with proper coefficients, can be
regarded as a finite difference approximation of the tangent
linear model of the advection-diffusion-reaction equation.
[38] The AR process (22) can be represented compactly as

AdcB ¼ Sx; S ¼ diagðsi;j;kÞ x 2 Nð0; 1Þ: ð23Þ

The N � N background error covariance matrix is

B ¼ dcB dcB
� �TD E

¼ A�1Sx A�1Sx
� �TD E

¼ A�1 SxxTS
� �

A�T ¼ A�1S2A�T ;
ð24Þ

and the corresponding correlation matrix is

C ¼ diagðBÞ�1=2BdiagðBÞ�1=2:

4.1. AR Models in Data Assimilation

[39] We now discuss the application of the AR background
covariance error model to ensemble Kalman filter
[Houtekamer and Mitchell, 2001; Houtekamer et al., 2005;
Constantinescu et al., 2007a, 2007c] and to four-dimensional
Var [Elbern and Schmidt, 1999, 2001; Elbern et al., 1999;
Fisher and Lary, 1995;Menut et al., 2000; Chai et al., 2006,
2007; Constantinescu et al., 2007b] data assimilation appli-
cations. A good review of the latest techniques in atmospher-
ic chemical data assimilation can be found in the work of
Carmichael et al. (sumitted manuscript, 2007). It is well
known that a representative background covariance matrix is
essential for both techniques in order to achieve a good fit of
the results.
[40] In chemical atmospheric modeling data assimilation

problems, the covariance matrix is usually approximated
using the NMC method [Parrish and Derber, 1992], which
was originally applied in numerical weather prediction. In the
NMC method, the differences between several forecasts
verifying at the same time are used to approximate the
background error Chai et al. [2007]. In this study, the differ-
ences in the forecast are produced by a variation in the
meteorological fields. The model error correlation coefficient
c between two grid points (‘ and k) is calculated as

c ‘; kð Þ ¼ heke‘iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hekeki � he‘e‘i

p ;

where e is the simulation deviation. We consider three
different forecasts initialized at 1, 2, and 3 days before the
realization time. Deviation from the mean of the three
predictions is used as model ‘‘error’’ to construct the error
covariance.
[41] The AR approach proves less expensive and more

effective than the NMC approach.
4.1.1. Ensemble Data Assimilation: EnKF
[42] In the ensemble Kalman filter data assimilation, the

error is evolved in time through an ensemble of model runs.
An important problem is the generation of the initial ensem-
ble. Each member is formed by adding a different perturba-
tion dcB to the initial ‘‘best guess’’ (background) state. The
ensemble of perturbations should correctly sample the prob-
ability distribution of background errors. Building the initial
ensemble based on the distance and flow dependence has
been discussed in [Riishojgaard, 1998; Buehner, 2004;
Zupanski, submitted manuscript, 2007]. In their formulation,
the background representation relied on a certain mathemat-
ical model and/or a set of empirical assumptions. Here we
introduce an analytic approach to this problem that can be
adapted to a large class of models reducing the empirical
assumptions to a minimum, if any.
[43] Using the AR model (23), the background perturba-

tion that defines the m-th member of the ensemble is
obtained as

dcB½m� ¼ A�1Sx½m�;
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where x[m] 2 (N (0; 1))N is a vector of realizations of N
independent normal random variables ofmean 0 and standard
deviation 1. The perturbation is generated by scaling the
normal variables with the proper standard deviations, then
solving a linear system with the AR coefficient matrix A.
[44] The above described approach was successfully used

by Constantinescu et al. [2007a, 2007b, 2007c] to initialize
EnKF data assimilation experiments applied to a reactive
transport problem.
4.1.2. Variational Data Assimilation:
Four-Dimensional Var
[45] In the four-dimensional Var data assimilation the best

state estimate is obtained as the minimizer of the following
cost function:

J ¼ 1

2
c� cB
� �TB�1 c� cB

� �
þ 1

2

Xn
i¼0

obsi � Hicið ÞTR�1i obsi � Hicið Þ
ð25Þ

Using the AR representation of the background covariance
[equation (24)], we have

B�1 ¼ ATS�2A:

The four-dimensional Var cost function can be computed as

z ¼ S�1A c� cB
� �

;

J ¼ 1

2
zT zþ 1

2

Xn
i¼0

obsi � Hicið ÞTR�1i obsi � Hicið Þ:

The AR model is particularly advantageous in the four-
dimensional Var context where the evaluation of the
background term in the cost function only requires one
matrix-vector multiplication by the AR coefficient matrix A,
and one componentwise scaling (multiplication by the
diagonal matrix S�1).
[46] In the numerical results section of this paper we show

a comparison between data assimilation experiments applied
to the same reactive flow problem using different types of
background covariances: diagonal, NMC, and AR.

4.2. Implementation Aspects

[47] Our approach is to construct the AR model (22)
using the coefficients A of a discretization of the advec-
tion{diffusion{reaction operator. A computationally effi-
cient approach is to obtain A via operator splitting of the
chemistry and transport, followed by dimensional splitting
of the three-dimensional advection-diffusion equation.
[48] The dimension of the background covariance matrix

is N � N with N � 106–108 for realistic chemical transport
models. Operator and dimensional splitting allow the rep-
resentation of A and B as products of small, sparse matrices,
thus reducing dramatically the costs associated with matrix-
vector multiplications and linear system solutions, as well as
the total storage requirements.
[49] Specifically, let us consider a three-dimensional

atmospheric model solved by splitting the horizontal trans-
port from the vertical transport and the chemistry. The
concentration of species s in grid point (i,j,k) at tn is denoted
ci,j,k,s. The vector of concentrations of species s in a

horizontal plane is denoted by c1:NX
,1:NY,k,s, and in a

column by ci,j,1:NZ
,s. The vector of concentrations of all

species in the grid point is denoted by ci,j,k,1:NS
. The vector

of all concentrations is c = c1:NX ,1:NY ,1:NZ ,1:NS
.

[50] Using monotonic space discretizations and the back-
ward Euler time integration method, the solution of the
horizontal transport over a time step Dt is obtained as

Hk;s Dtð Þdcnþ11:NX ;1:NY ;k;s
¼ dcn1:NX ;1:NY ;k;s

; 8 k; s; ð26Þ

and the solution of the vertical transport as

Vi;j;s Dtð Þdcnþ1i;j;1:NZ ;s
¼ di;j;1:NZ ;sc

n; 8i; j; s: ð27Þ

Over the entire domain we will write formally the horizontal
discretization operator as

I 1	k	NZð Þ� 1	s	NSð Þ � Hk;s Dtð Þ
� �

dcnþ1 ¼ dcn;

and the vertical discretization operator as

I 1	i	NXð Þ� 1	j	NYð Þ� 1	s	NSð Þ�Vi;j;s Dtð Þ
� �

dcnþ1¼dcn:

where the Kronecker product operator �, denotes the fact
that the operation is repeated for each species, horizontal
slice, or column.
[51] Similarly, the solution is changed during one time-

step due to chemical processes. In absence of transport
processes (which are accounted for separately), the chemical
interactions at each grid point are independent of other grid
points, and are represented by a system of ODE

c0i;j;k ¼ f t; ci;j;k
� �

; 8i; j; k:

Errors are propagated through the tangent linear chemical
model, which is also an independent set of ODE at each grid
point

dc0i;j;k;1:NS
¼ F t; ci;j;k;1:NS

� �
dci;j;k;1:NS

; F t; cð Þ ¼ @f t; cð Þ
@c

; 8 i; j; k:

This error equation at each grid point is discretized in time
by the backward Euler method to obtain

Ci;j;k Dtð Þdcnþ1i;j;k;1:NS
¼ I �DtF tn; cni;j;k;1:NS

	 
	 

dcnþ1i;j;k;1:NS

¼ dcni;j;k ;

or, over the entire domain

I 1	i	NXð Þ� 1	j	NYð Þ� 1	k	NZð Þ � Ci;j;k Dtð Þ
� �

dcnþ1 ¼ dcn: ð28Þ

[52] The autoregressive model obtained through operator
splitting is of the form:

A ¼ I 1	i	NXð Þ� 1	j	NYð Þ� 1	k	NZð Þ � Ci;j;k Dtð Þ
� �
� I 1	i	NXð Þ� 1	j	NYð Þ� 1	s	NSð Þ � Vi;j;s Dtð Þ
� �
� I 1	k	NZð Þ� 1	s	NSð Þ � Hk;s Dtð Þ
� �

ð29Þ

A symmetric operator split version is also possible.
[53] With dimensional splitting, the storage of A requires

NXNY(NZ�NZ)fortheverticaloperator,andNZ(NXNY�NXNY)
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NXNY) for the horizontal operator, yielding a reduction in
storage of NXNYþNZ

NXNYNZ
times compared to the full storage of

A. Furthermore, each of the operators are sparse matrices to
a certain degree. Inverting A can be computed by inverting
C(�), V(�), and H(�, �) independently.

4.3. Chemical Lifetime and Correlation Distances

[54] In CTMs, different species can have widely different
‘‘chemical lifespans’’. Short-lived species (for example,
OH) take part in fast chemical reactions and their abundance
varies quickly with time. Our theoretical analysis in section
2.1 has shown that the spatial correlation distance is limited
by the characteristic lifetime of the chemical species.
Specifically, for the chemical species s with a chemical
lifetime ts an integration of length O(ts) is necessary for the
spatial correlations to develop; but longer integration times
will lead to spurious spatial correlations to develop. Our
practical experience has revealed that fast species like NO2

need correlation lengths smaller than O3, while slow species
like HCHO need longer correlation lengths. The reason for
choosing variable correlation lengths for different species
has been explained analytically in the previous sections.
Another sensible reason is that fast reacting species vanish
in relative short amounts of time, and thus they cannot give
correlations past a certain ‘‘destruction’’ or damping time.
Slower reaction species persist a longer amount of time,
hence the correlation distance needs to be longer in time.
[55] For a correct representation of the spatial correlations

being limited by the chemical lifetimes, we take the fol-
lowing approach. For each chemical species s the transport
part of the autoregressive model (29) is constructed by
applying ms consecutive implicit Euler steps with step size
Dt such that msDt � ts, the chemical lifetime of species s.
Similarly, pi,j,k chemical steps are applied to allow chemical
correlations in grid (i, j, k) to fully develop during the time
interval ni,j,kDt.
[56] The AR coefficient matrix reads

A ¼ I 1	i	NXð Þ� 1	j	NYð Þ� 1	k	NZð Þ � C
ni;j;k
i;j;k Dtð Þ

	 

� I 1	i	NXð Þ� 1	j	NYð Þ� 1	s	NSð Þ � V

ms

i;j;s Dtð Þ
	 

� I 1	k	NZð Þ� 1	s	NSð Þ � Hms

k;s Dtð Þ
	 


: ð30Þ

[57] Equation (30) can be interpreted in the following
way: ni;j;k is the number of local time steps necessary to
have cross correlations among species developed during the
chemical processes, and is a fraction of the model overall
integration time. The value for ms represents the number of
local time steps that fit the chemical lifetime of species s.
The horizontal and vertical correlation distances are there-
fore proportional to the chemical lifetimes. If species s is
short-lived, the spatial correlation is restricted by a small ms

value; conversely, if the species is long-lived then the
correlation distance are larger (perturbations propagate
during a longer chemical lifetime), and this is obtained
automatically by a larger ms. Chemical lifetime information
can be extracted form the Jacobian of the chemical reaction
component of the model (F(t, c)).
[58] In our experiments, the resulting background covari-

ance matrix turns out to be well conditioned, easy to
compute, and with acceptable storage requirements.

4.4. Construction of Spatial Operators

[59] The individual spatial operators Vi,j,s(Dt) and
Hk;s(Dt) depend on the meteorological data:

Vi;j;s ¼ Vi;j;s wn
i;j;1:NZ

;Kvni;j;1:NZ
;Dt

	 

and

Hk;s ¼ Hk;s un1:NX ;1:NY ;k
;Khn1:NX ;1:NY ;k

;Dt
	 


;

where un, vn, wn the latitudinal, longitudinal, and vertical
components of the wind field, and Khn and Kvn are the
horizontal and vertical turbulent diffusion coefficients
respectively. In the regular finite difference approach, the
operators are constructed using the meteorological field
values at the current time tn. In order to capture correlation
patterns developed over a longer time interval, the transport
AR operators are constructed from time averaged meteor-
ological data. The averaging interval can be for example
12 hours before the background time, tB:

Vi;j;s ¼ Vi;j;s
1

N

XN
n¼1

wn
i;j;1:NZ

;
1

N

XN
n¼1

Kvni;j;1:NZ
;Dt

 !

and

Hk;s ¼ Hk;s
1

N

XN
n¼1

un1:NX ;1:NY ;k
;
1

N

XN
n¼1

Khn1:NX ;1:NY ;k
;Dt

 !
:

5. Numerical Results

[60] In this section we show some preliminary numerical
results of our AR model of the error covariance in the
context of four-dimensional Var data assimilation. We
construct an error covariance matrix for a data assimilation
atmospheric chemical and transport application, and we test
it against other ways of modeling the background error,
namely diagonal (D) and NMC. NMC is a popular tech-
nique used in these type of applications, while D is a simple
and accessible approach to modeling the background errors
that does not consider error cross correlations among
the solution components yielding a diagonal background
matrix. The investigation is carried out in a variational data
assimilation framework using four-dimensional Var.
Constantinescu et al. [2007a] employed the AR model
described in this work to initialize an ensemble data assim-
ilation experiment applied to a problem similar to the one
described in this paper.

5.1. The Test Problem

[61] Variational data assimilation experiments are carried
out on a real-life scenario of air pollution in North-Eastern
United States in July 2004 as shown in Figure 1 (the dash-
dotted line delimits the computational domain). We analyze
the convergence of the optimization algorithm and the fit of
the assimilation results in the presence of different back-
ground error models.
5.1.1. The Model
[62] The numerical tests use the state-of-the-art regional

atmospheric chemical transport model STEM [Carmichael
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et al., 2003]. The chemical reaction and transport equation
(7) is solved using an operator splitting approach. STEM
uses linear finite difference discretization of the transport
terms. The advection terms are solved using a third order
one-dimensional upwind finite difference formula [Sandu et
al., 2005]. The diffusion terms are discretized using second
order central differences. The order of whole scheme is
quadratic for the interior points. Atmospheric chemical
kinetics result in stiff ODE equations that use a stable
numerical integration that preserve linear invariants. The
gas phase mechanism is SAPRC-99 [Carter, 2000] which
accounts for 93 chemical species (88 variable and 5 con-
stant), and involves in chemical reactions. The chemistry
time integration is done by Rosenbrock 2 numerical inte-
grator [Sandu et al., 2003], and is implemented using the
kinetic preprocessor (KPP) [Damian et al., 2002].
[63] The computational domain covers 1500 � 1320 �

20 km with a horizontal resolution of 60 � 60 km and a
variable vertical resolution (resulting in a three-dimensional
computational grid of 25 � 22 � 21 points). The initial
concentrations, meteorological fields, boundary values, and
emission rates correspond to ICARTT (International Con-
sortium for Atmospheric Research on Transport and Trans-
formation) (ICARTT, ICARTT home page http://
www.al.noaa.gov/ICARTT) conditions starting at 12 GMT
of July 20th, 2004.
5.1.2. Analysis Setting
[64] Now we briefly describe the analysis setting of the

four-dimensional Var data assimilation experiments.
[65] The simulations are started at 8 EDT 20 July. We

consider 283 a 12-hour assimilation window that starts at
8 EDT 20 July and ends at 20 EDT 20 July during which
model predictions are fitted with the observations in order to
decrease the cost function [equation (25)].
[66] The ‘‘best guess’’ of the state of the atmosphere is

obtained from a longer simulation over the entire USA
performed in support of the ICARTT experiment [Tang et
al., 2007]. This best guess is used to initialize the deter-
ministic (nonassimilated) solution shown in the results
section. The best guess evolved to 8 EDT 20 July represents
the background state in four-dimensional Var.

[67] The observations comprise of ground-level (AIRNow,
http://airnow.gov/), airplane (NOAA (2004a), P3, URL http://
www.al.noaa.gov/ICARTT/fieldoperations/fomp.shtml and
others), and ozonesonde O3 measurements taken during the
ICARTT campaign in summer 2004 (ICARTT, ICARTT
home page http://www.al.noaa.gov/ICARTT). Figure 1a
shows the location of the ground stations (340 in total) that
measured ozone concentrations. Not all the stations provide
observations each hour (the number of hourly observations
varies between 160 and 326 during the assimilation window).
A detailed description of the ICARTT fields and data can be
found in [Chai et al., 2007; Tang et al., 2007].
[68] An independent set of measurements are used to

validate the data assimilation results using different back-
ground models. These measurements are collected by a
NOAA vessel called Ronald H. Brown (NOAA (2004b),
New England Air Quality Study - Intercontinental Transport
and Chemical Transformation, URL http://saga.pmel.noaa.
gov/Field/NEAQS-ITCT/). The location of the Ronald H.
Brown ship is shown in Figure 1b.
[69] Four-dimensional Var adjusts the initial concentrations

of the ozone at each grid point at the beginning of the
assimilation window (8 EDT 20 July). The optimization algo-
rithm used to minimize the cost function is L-BFGS-B [Byrd et
al., 1995]. The optimization process is manually stopped after a
certain number of iterations which depends on the decrease of
the cost function in the particular data assimilation scenarios
under consideration. More information about the optimization
setup can be found in the work of Chai et al. [2007].
[70] The AR model was constructed using the averaged

12-hour wind fields prior to the assimilation window:
20 EDT 19 July–8 EDT 20 July. The inverse of the B
matrix for the NMC model used in our numerical experi-
ments was obtained using a truncated SVD [Gwak and
Masada, 2004]. This approach inverts only the contribu-
tions corresponding to the largest singular values, and thus
circumvents the errors coming from inverting the NMC
matrix which can be ill conditioned and reduces the cost
function computational effort. The NMC model used in
this paper for the numerical experiments is described in the
work of Chai et al. [2007].

Figure 1. Computational domain and (a) AIRNow ground measuring stations in support of the ICARTT
campaign (340 in total) and Ronald H. Brown (R.B.) vessel location and (b) two ozonesondes (S1, S2)
and the flight path of a P3 airplane.
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[71] The performance of each data assimilation experi-
ment is measured both by RMS and R2 correlation factor
between observations and model predictions. The RMS and
R2 correlation factor of two series X and Y of length n are

RMS X ; Yð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

X � Yð Þ2
s

R2ðX ; Y Þ

¼
n
Pn

i¼1 XiYi �
Pn

i¼1 Xi

Pn
i¼1 Yi

� �2
n
Pn

i¼1 X
2
i �

Pn
i¼1 Xi

� �2	 

n
Pn

i¼1 Y
2
i �

Pn
i¼1 Yi

� �2	 
 :
5.2. AR Models Capture Flow Dependent Correlations

[72] To illustrate the correlations generated by autore-
gressive models we consider the wind fields over North-
Eastern United States (see Figure 1a), on 20 July 2004,
corresponding to the ICARTT field campaign. An autore-
gressive model (22) of background errors is constructed
using flow dependent coefficients. Top views of the spatial
correlations of the resulting uncertainty fields are shown in
(Figure 2) for several grid points located on the ground layer
(Figure 2a) and on the top layer (Figure 2b). The correla-
tions match the shape and magnitude of the wind field. Note
that the wind speed near the ground is smaller than at the
top and this is reflected by the correlations. Moreover, from
the numerical point of view, the covariance matrix is well
conditioned: cond(B) = 640.

5.3. Comparison Between AR, Diagonal, and NMC
Background Error Results

[73] In this section we analyze the data assimilation
results using the variational framework (four-dimensional
Var) described in previous sections. Here we consider the
analysis scenario described in section 5.1.
[74] Figure 3 shows the optimization parameters when

using different background operators: D, NMC, and AR.
The total cost represents the cost functional described in

equation (25). The first term in equation (25) is referred to
as the ‘‘background’’, while the second term is called
‘‘misfit’’. The background contribution in equation (25)
constrains the optimization solution from ‘‘departing’’ from
the best guess solution according to the background error
model. The misfit acts in the opposite direction by trying to
fit the solution with the observations. Each iteration in
Figure 3 represents at least one forward and one adjoint
model time integration which is the most costly part of the
data assimilation procedure.
[75] On the basis of the results shown in Figure 3, we

conclude that when using the D background model, the
optimization solution quickly converges to a solution which
does not fit very well with the observations, while both AR
and NMC converge to solutions that better fit the observa-
tions. However, the cost function using the AR operator
converges to a solution in 25 iterations, which is much faster
than when using the NMC operator (which is typically four
times slower than the AR convergence); moreover, the AR
solution has a slightly better fit. The use of a diagonal
background (D) model clearly impairs the optimization
process bymisrepresenting (ignoring) the correlations among
background error components.
[76] Figure 4 shows scatterplots of observations against

model predictions during the analysis window of the unopti-
mized solution and the optimized solution using the D, NMC,
and AR background operators. Below each figure we show the
RMS and R2 measures for the corresponding time window and
scenario. In our experimental setting, both RMS and R2

measures show the best fit for the optimized solution using
the AR background (RMS = 11.05; R2 = 0.72). The results
using the NMCmodel (RMS = 11.92; R2 = 0.68), qualitatively,
are very close to the ones using AR; however, as described
above, the number of iterations required by the NMC is
significantly greater than for the AR model. The solution using
the D model (RMS = 14.03; R2 = 0.55) shows an improvement
when compared against the unoptimized solution (RMS =
24.46; R2 = 0.15); however, the convergence is limited to an
unfit solution (the total cost is about 2.7e + 04, while AR and

Figure 2. Horizontal background error correlations captured by the ARmodel: (a) ground and (b) top levels.
Shown are five points (marked with white ‘‘x’’ symbols) using the ICARTTwind fields on 20 July 2001.
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NMC amount to about 1.e + 04). A summary of all the results
used in the assimilation process is shown in Table 1. Here we
show the combined and ground (AIRNow), airplane measure-
ments, and ozonesonde results in separate columns.
[77] The evolution of the ozone concentration measured by

the P3 airplane (see Figure 1b) and predicted by themodel using
the the best guess, and the optimized solution using the three
types of background error models under investigation is shown
in Figure 5. Here we note that the solutions that use AR and
NMC fit equally well the measurements. In Figure 6 we show
the evolution of the ozone concentration measured by the
Ronald H. Brown vessel (see Figure 1a) and predicted by the
model using the unoptimized solution and the optimized (D,
NMC, and AR) solutions. These measurements come from an
independent source and are not used during the assimilation
process. Here we consider the analysis and a 66-hour forecast
window. The results are summarized in Table 2. These results
support the conclusions presented above: (1) AR solution is
closest to the observations (during analysis) and (2) NMC also

shows a good fit, while D falls behind. The overall validation
results (see Table 2) show a nearly equally good fit of the
optimized solutions using AR and NMC background models.
[78] We note that during our experiments we also considered

an ARmodel constructed with wind fields that corresponded to
another period of time. The results, not shown in this study,
were unsatisfactory, reinforcing the idea that the background
errors depend on the particular flow and time.

6. Conclusions and Future Work

[79] Data assimilation is the process to integrate obser-
vations and models in order to obtain simulation results that
closer match reality. The information from observations can
be used to adjust the initial conditions and other model
parameters like emissions and boundary conditions. It is
widely accepted that the quality of the assimilation results
depends on how well the errors in the initial conditions (the
‘‘background errors’’) are represented. The background
errors are typically not well known and they need to be

Figure 3. Evolution of the (a) total cost function, (b) projected gradient, and the contributions of the
(c) background, and (d) misfit parts of the cost function when using the D (50 iterations), NMC
(100 iterations), and AR (25 iterations) background operators.

D12309 CONSTANTINESCU ET AL.: AR BACKGROUND MODELS

10 of 14

D12309



modeled. In this paper we construct autoregressive models
of the background errors and apply them in the context of
chemical transport models. The proposed approach is gen-
eral and can be used in other applications, for example,
numerical weather prediction models.
[80] In this paper we discuss the construction of back-

ground error models using multilateral autoregressive (AR)
processes. The AR coefficients are given by a monotonic
discretization of the tangent linear model; thus they capture

the error correlations resulting from the error propagation
through the model. The resulting AR models are computa-
tionally inexpensive and represent well the error correlations
along the flow lines. Correlations between errors in different
chemical species (arising due to stiff chemical interactions)
are also captured by the AR model. The AR model can be
extended to an ARMA model.
[81] The full background covariance matrix requires an

O(n2) storage where n � 107 is the number of state and

Figure 4. Scatter plots of all observations versus model predictions used during the analysis window for
the best guess and the optimized initial conditions using D, NMC, and AR background operators. For
each scenario we show the RMS and R2 measures.

Table 1. RMS [ppb] and R2 Fit Measures of the Best Guess and Optimized Solution Using D, NMC, and AR

Background Operatorsa

Scenario

All (3596) AIRNow (2075) Airplane (1486) Ozonesonde (35)

RMS R2 RMS R2 RMS R2 RMS R2

Best Guess 24.46 0.15 26.30 0.04 21.73 0.08 20.02 0.09
Diagonal 14.03 0.55 13.98 0.43 14.16 0.40 10.92 0.89
NMC 11.92 0.68 10.90 0.62 13.32 0.50 5.51 0.95
AR 11.05 0.72 9.65 0.70 12.84 0.53 4.60 0.96

aWe show the RMS and R2 for all, AIRNow, airplane, and ozonesonde observations used during the assimilation process (in
parenthesis we show their corresponding number).
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parameter variables. In the discussed AR framework an
operator splitting approach (applied to the tangent linear
model) allows easy computation of the product of the
covariance matrix (or its inverse) times a vector. This
removes the need to store the entire covariance matrix and
greatly reduces the computational costs. Moreover, the
resulting background covariance matrix is full rank and
well conditioned. Sparse matrix representations of individ-
ual operators further reduce the storage and the computa-
tional costs. Furthermore, the same spatial operator is
applied to all chemical species and the same operators can
be applied to multiple grid cells. This further reduces the
cost by precomputing and reusing the operators. The cost of
constructing the AR background operator is that of applying
several time steps of the simplified operator-split of the
underlying discretization scheme.

[82] The NMC method requires multiple model forecast
fields. In the current application, all the forecasts used in the
NMC approach were carried out during the ICARTT field
campaign. It would be computationally expensive to con-
struct such forecast fields if they were not already available.
Therefore in practice, the statistics are obtained from
precomputed (available) sets of simulations. In addition,
the resulting covariance matrices using the NMC approach
are typically ill conditioned. This requires preprocessing
such as Truncated SVD (TSVD) before implementing the
covariance matrices into data assimilation applications
[Chai et al., 2007]. In the current application, the compu-
tational cost of applying the NMC background error cova-
riance operator is less than that of the AR approach.
However, this is mainly due to the additional assumptions
made in the TSVD NMC approach, i.e., assuming homo-
geneous and horizontally isotropic error statistics. The
computational costs of the NMC and AR would be similar
without these assumptions.
[83] AR models can be applied in both variational and

ensemble data assimilation settings. In this paper we consider
the variational approach, where the autoregressive model is
used to compute the background term of the cost function. In
ensemble data assimilation, ARmodels can be used to generate
the initial ensemble. The inversion of the inverse covariance
matrix is obtained easily via operator splitting. This method has
already been applied successfully in an EnKF data assimilation
study using real data [Constantinescu et al., 2007a].
[84] Several data assimilation experiments have been

carried out with the STEM chemical transport model using
observed data from a simulation of air pollution in Eastern
USA. A comparison of data assimilation results has been
carried out using the AR model of the background errors, a
model obtained through the NMC approach and a diagonal
model. In our setting, the ARmodel results are superior to the
other methods tested (measured by the RMS and the R2 fit
indicators). Of particular importance is the fact that the AR
model is significantly better than the diagonal model. The
optimization using the AR model takes considerably fewer
iterations than the one using the NMC model. The results of
the diagonal model are inferior when compared with AR or
NMC. An independent set of observations was used for
validation. The optimized solution using the AR and NMC
models was shown to improve the analysis and the forecast.
[85] We note that the results we present in this paper

using the AR and NMC background models can be further
improved. The NMC background operator was obtained
using some simplifications [Chai et al., 2007] from the
original NMC method [Parrish and Derber, 1992], while in

Figure 5. Time series of the observed ozone concentra-
tion, best guess, and optimized solution using D, NMC, and
AR background operators for the P3 flight campaign.

Figure 6. Time series of the observed ozone concentra-
tion, best guess, and optimized solution using D, NMC, and
AR background operators for the Ronald H. Brown
platform validation measurements during the analysis (8–
20 EDT) and forecast windows (20–72 EDT).

Table 2. RMS [ppb] and R2 Fit Measures of the Best Guess and

Optimized Solution Using D, NMC, and AR Background

Operators for the Independent Validation Results, Ronald H.

Brown, That are not Used During the Assimilation Processa

Scenario

Analysis (71) Forecast (306)

RMS R2 RMS R2

Best Guess 19.77 0.72 23.42 0.49
Diagonal 11.41 0.68 15.98 0.59
NMC 12.22 0.59 12.80 0.68
AR 10.64 0.66 13.29 0.66

aWe show the analysis, and forecast measures separately (in parenthesis
we show their corresponding number).
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the AR approach we used only the decorrelation distances
provided by the chemistry, and thus further tuning is
possible. Furthermore, a combination of AR and NMC
background contributions can be explored (for example,
the use the decorrelation distance provided by the NMC
when fine-tuning the AR model).
[86] Future workwill consider the use of theARbackground

models in an operational setting. This is possible sinceARneeds
averages of known meteorological data (from the period pre-
ceding the initial time). Such AR models can be constructed
using current data for the next assimilation window.

Appendix A: Solution of Linear, One-
Dimensional Convection-Diffusion-Reaction
Equation

[87] For simplicity we consider the one-dimensional
advection-diffusion-reaction of a single species c in an
infinite spatial domain. Assume that u, r, K are constant
in space and time, and that the chemical reaction is a simple
decay equation, f(rc) = �Lc. The evolution of the concen-
tration perturbation in time is governed by

@dc
@t

¼ �u @dc
@x

þ K
@2dc
@x2

� Ldc; t0 	 t 	 tB;

t0 ¼ 0; dcð0; xÞ ¼ dc0ðxÞ:

[88] The Fourier transform (in space) of the solution in
equation (10) is

bdcðt;wÞ ¼ F dc t; xð Þð Þ ¼ 1ffiffiffiffiffiffi
2p

p
Z
R
e�iwxdcðt; xÞdx:

For a Dirac delta space distribution

F dx�zð Þ ¼ 1ffiffiffiffiffiffi
2p

p e�iwz:

Taking the Fourier transform of equation (10) leads to

d bdc
d
¼ �iwu�Kw2�L
� � bdc; bdcð0;wÞ ¼ bdc0ðwÞbdcðt;wÞ ¼ e �iwu�Kw2�Lð Þt bdc0ðwÞ

dcðt; xÞ ¼ F�1 bdcðt;wÞ	 

¼ e�Ltffiffiffiffiffiffi

2p
p

Z
R
eiwðx�utÞe�Kw

2t bdc0ðwÞdw:
If the initial condition is a Dirac delta function dc(0; x) =
dx�z then the solution at later times t > 0 is

Cz t; xð Þ ¼ e�Ltffiffiffiffiffiffi
2p

p
Z
R
eiwðx�utÞe�Kw

2 t e
�iwzffiffiffiffiffiffi
2p

p dw

¼ e�Ltffiffiffiffiffiffi
2p

p 1ffiffiffiffiffiffi
2p

p
Z
R
eiwðx�z�utÞe�Kw

2tdw

¼ e�Ltffiffiffiffiffiffi
2p

p F�1 e�Kw
2t

	 
���
x�z�ut

¼ e�Ltffiffiffi
p

p e
� x�z�ut

2
ffiffiffi
Kt

p

	 
2

2
ffiffiffiffiffi
Kt

p

[89] By the principle of superposition the solution
corresponding to a general initial condition dc(0; z) =
dc0(z) is obtained by summing up elementary solutions that
correspond to delta initial conditions:

dc t; xð Þ ¼
Z
R
dCzðt; xÞdc0ðzÞdz

¼ e�Ltffiffiffi
p

p 1

2
ffiffiffiffiffi
Kt

p
Z
R
e
� x�z�ut

2
ffiffiffi
Kt

p

	 
2

dc0ðzÞdz

Appendix B: Solution of Linear, One-Dimensional
Convection-Diffusion-Reaction Equation With
Random Forcing

[90] Consider now the simple model (10) started from a
deterministic initial condition (dc0 = 0) but excited by an
additive white noise z

@�c

@t
¼ �u @�c

@x
þK

@2�c

@x2
�L�cþ�; 0 	 t 	 tB

�cð0; xÞ ¼ 0; �h i ¼ 0; �ðt1; x1Þ�ðt2; x2Þh i ¼ �2�t1�t2�x1�x2 :

[91] The solution can be obtained via Duhamel’s principle
from the solution (11) of the nonforced (homogeneous)
equation (12) as

dc t; xð Þ ¼
Z t

0

e�L t�qð Þ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pK t � qð Þ

p
�
Z
R
e

�
x� z� u t � qð Þ
2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K t � qð Þ

p !2

z q; zð Þdzdq

The covariance function

Rðt; x; yÞ ¼
Z t

0

Z t

0

e�Lð2t�q�mÞ

4pK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � qÞðt � mÞ

p
�
Z
R

Z
R
e
� x�z�uðt�qÞ

2
ffiffiffiffiffiffiffiffi
Kðt�qÞ

p
	 
2

� y�w�uðt�mÞ
2
ffiffiffiffiffiffiffiffi
Kðt�mÞ

p
	 
2

� zðq; zÞ; zðm;wÞh idz dw dq dm

¼ s2

Z t

0

Z t

0

e�Lð2t�q�mÞ

4pK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt � qÞðt � mÞ

p
�
Z
R

Z
R
e
� x�z�uðt�qÞ

2
ffiffiffiffiffiffiffi
Kðt�qÞ

p
	 
2

� y�w�uðt�mÞ
2
ffiffiffiffiffiffiffiffi
Kðt�mÞ

p
	 
2

dq�m dz�w dz dw dq dm

¼ s2

Z t

0

Z t

0

e�L 2t�q�mð Þ

4pK
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t � qð Þ t � mð Þ

p
�
Z
R

Z
R
e
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2
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0@ 1A
�dq�m dqdm
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Z t

0
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0
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4pK
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p
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e
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2
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p
	 
2

� y�z�u t�mð Þ
2
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2
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Z t

0

Z t

0

e�Lð2t�q�mÞ

4pK
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p
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s
e
�ðx�y�uðm�qÞÞ

2
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 !
dq�m dq dm

¼ s2ffiffiffiffiffiffiffiffiffi
4pK

p
Z t

0

Z t

0

e�L 2t�q�mð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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� x�y�u m�qð Þð Þ2
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p

p
Z t
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e
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8Kðt�qÞ
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2
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p dq
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In the limit t ! 1 we obtain that

R 1; x; yð Þ ¼ s2ffiffiffi
p

p
Z 1

0

e�2Lq
e
� x�yffiffiffiffiffi

8Kq
p

	 
2

ffiffiffiffiffiffiffiffiffi
8Kq

p dq

¼ s2ffiffiffiffiffiffiffiffiffi
2KL

p e
� x�yj jffiffiffiffiffi

K=L
p

¼ t s2ffiffiffi
2

p
D

e�
x�yj j
D

where

t ¼ 1

L
and D

ffiffiffiffiffiffiffiffiffi
K=L

p
:
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