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Introduction

» This presentation is a digest of two major events
this year:

= THORPEX DAOS
= ECMWF annual seminar
> We will concentrate on:

= Progress in data assimilation methods

= Observation Usage and Impact
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ECMWF SEMINAR

6—9 September 2011

Data assimilation
for atmosphere
and ocean
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Historical Background:
What has been important for getting the best NWP

forecast?  (over last 3 decades)

NWP systems are improving by 1 day of predictive skill per
decade. This has been due to:

1.Model improvements, especially resolution.

2.Careful use of forecast & observations, allowing for

their information content and errors. Achieved by variational
assimilation e.g. of satellite radiances. (Simmons & Hollingsworth 2002)

3.Advanced assimilation using forecast model: 4D-Var

4.Better observations. Andrew Lorenc
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Statistical, incremental 4D-Var
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optionally augmented by a model error correction term.

Andrew Lorenc
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Background error (prior) covariance B modelling
assumptions

The first operational 3D multivariate statistical analysis method (Lorenc
1981) made the following assumptions about the B which characterizes
background errors, all of which are wrong!

» Stationary — time & flow invariant

» Balanced — predefined multivariate relationships exist
» Homogeneous — same everywhere

» Isotropic — same in all directions

» 3D separable — horizontal correlation independent of vertical
levels or structure & vice versa.

Since then many valiant attempts have been made to address them
individually, but with limited success because of the errors remaining in
the others. The most attractive ways of addressing them all are
long-window 4D-Var or hybrid ensemble-VAR. Andrew Lorenc
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Hybrid Var/EnKF - best of both worlds?

Features from EnKF Features from VAR

Extra flow-dependence in PP Localization done correctly (in
model space)

More flexible treatment of Reduction in sampling error in
model error (can be treated in  time-lagged covariances (full
ensemble) rank evolution of P? in

assimilation window in 4DVar).

Automatic initialization of Ease of adding extra constraints
ensemble forecasts, to cost function

propagation of covariance info

from one cycle to the next.

--: covariance inflation, --: scalability,
covariance localization static B, maintenance cost

Jeff Whitaker S ECMWF




Hybrid methods

Hybrid method: Use flow-dependent state error estimates (from
an
EnKF/EDA system) in the deterministic 3/4D-Var analysis system:

1) Integrate flow-dependent state error covariance information
into the “static” variational analysis

2) Keep the full rank representation of B and its implicit
evolution that 3/4D-Var provide inside the assimilation
window

3) More robust than pure EnKF for limited ensemble sizes and
large model errors

4) Allow for flow-dependent QC of observations

AT SO ECMWEF



Operational hybrid methods

In operational use (or in an advanced testing), there are currently
two
main approaches to doing an hybrid DA in a variational context:

1. Alpha control variable method (Met Office, NCEP/GMAO, CMC)

2. Ensemble of Data Assimilations method (Météo-France,
ECMWEF)
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Comparison of 4D-Var/EnKF

(Buehner et al 2010) Dale Barker
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Hybrid methods: a control variable
1. Alpha control variable method (Met Office, NCEP/GMAQ)

Conceptually add a flow-dependent term to the climatological B
matrix: B = /))cch + ﬁezl)e o C

loc

B, is the static, climatological covariance
P,o C,,. is the localised ensemble covariance

In practice this is done through augmentation of control
variable: 5x = B B%V+/J) X oa

loc

and introducing an gdditiongl term in the cost function:
J=—viv+—a'Cla+J +J
2 2 from: A.Clayton, MetOffice
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Hybrid methods: EDA

2. The Ensemble of Data Assimilations (EDA, Raynaud et al.,
2010, Isaksen et al. 2010) can be considered a flow-dependent

extension of the way the climatological background error
matrix is estimated (Fisher, 2003).
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Scalability — exploiting massively parallel
computers

» 4D-Var as usually implemented requires sequential running of
a reduced resolution linear PF model and its adjoint. It will be
difficult to exploit computers with more (but not faster)
processors to make 4D-Var run as fast at higher resolution.

» Improved current 4D-Var algorithms postpone the problem a
few years, but it will probably return, hitting 4D-Var before the
high-resolution forecast models.

>

» Ensemble DA methods run a similar number of model
integrations in parallel. It is attractive to replace the iterated
running of the PF model by precalculated ensemble
trajectories: 4D-Ensemble-Var. Other advantages of VAR can

be retained. Andrew Lorenc
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Incremental 4D-Ensemble-Var

Andrew Lorenc

Trajectories of perturbations from ensemble mean

Full model evolves mean of PDF
Localised trajectories define 4D PDF of possible increments

4D analysis is a (localised) linear combination of nonlinear
trajectories. It is not itself a trajectory.
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Long window weak constraint 4D-Var

Suppose we extend the window by a few hours:

Parallelisation
over sub-windows

time

We expect very little change in the the analysis for the first sub-window:

Mike Fisher
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Other important aspects

» Diagnostics for specifying observation error
covariances in the assimilation

= Desroziers, Lonnberg & Hollingsworth, etc.

Gerald Desroziers

= Effort in all centres to better characterize structure and amplitude

Diagnostics in observation space
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Other important aspects

» Enhanced diagnostics of » The invisible world: pre-
assimilation and forecast and post- processing in
performance (obs, R, B) Data Assimilation

Transforming the raw data
05 Transforming into a different space
s = Averaging the data
g Filtering the observations
L . Comparing model and observations

AMSU-A
HIRS

Monitoring and choice of observations
Bias correction
Removing wrong data
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Thinning the data
Reducing data quantity and error correlation
Choosing the most relevant local data
Selective thinning depending on the flow
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Carla Cardinali

Filtering the analysis
Initialisation methods

A T
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Other important aspects: DA in stratosphere
» What are the challenges in stratospheric and mesospheric
data assimilation?

= Separation of model and observation error biases

 Add more low-bias obs with vertical structure information (more limb data
needed)

= Vertical spreading of information through covariances

* Are background error covariances appropriately defined in the upper

stratosphere given the poor vertical resolution provided by the observing
system?

 Ad hoc measures prevent spurious increments from contaminating
mesosphere.

= Lack of wind information in tropics

 Without clear mass-wind balance, temperature information of limited use.
Solution: new obs such as ADM or SWIFT? 4D-var and tracer assimilation?

Saroja Polavarapy Y CCECMWF




Improving the stratosphere improves 5-
day forecasts in the troposphere

On June 22, 2009 Canadian Meteorological Centre
implemented operationally a global stratospheric
model (0.1 hPa) for medium range weather forecasts
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Other important aspects: Ocean Data
assimilation
Summary

* Ocean DA is diverse and mature
* Many basic challenges still exist:
- expansion of control vector (B?)
- tracer assimilation
- initialization shock & filtering
- vertical projection of satellite obs
- covariance models
- biogeochemical data assimilation
- model error
- internal tides
- quality control & bias correction
- air-sea coupling at all scales
* Sub-mesoscale and deep ocean Andy Moore
are poorly observed (and poorly
constrained)

A O ECMWF




Other important aspects: Ocean/atmosphere
coupled data assimilation
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Other important aspects

» Regional aspects

= High resolution data assimilation, hydrometeors

» Challenge of satellite data assimilation

» Assimilation of the hydrological cycle

» Ocean/atmosphere coupled data assimilation

> Nonlinear data assimilation

= Particle filters, etc.

CSECMWF



