
Acta Numerica (2010), pp. 209–286 c© Cambridge University Press, 2010

doi:10.1017/S0962492910000048 Printed in the United Kingdom

Exponential integrators

Marlis Hochbruck

Karlsruher Institut für Technologie,

Institut für Angewandte und Numerische Mathematik,

D-76128 Karlsruhe,

Germany

E-mail: marlis.hochbruck@kit.edu

Alexander Ostermann

Institut für Mathematik,

Universität Innsbruck,

A-6020 Innsbruck,

Austria

E-mail: alexander.ostermann@uibk.ac.at

In this paper we consider the construction, analysis, implementation and ap-
plication of exponential integrators. The focus will be on two types of stiff
problems. The first one is characterized by a Jacobian that possesses eigen-
values with large negative real parts. Parabolic partial differential equations
and their spatial discretization are typical examples. The second class con-
sists of highly oscillatory problems with purely imaginary eigenvalues of large
modulus. Apart from motivating the construction of exponential integrators
for various classes of problems, our main intention in this article is to present
the mathematics behind these methods. We will derive error bounds that are
independent of stiffness or highest frequencies in the system.
Since the implementation of exponential integrators requires the evaluation

of the product of a matrix function with a vector, we will briefly discuss some
possible approaches as well. The paper concludes with some applications, in
which exponential integrators are used.
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1. Introduction

Exponential integrators constitute an interesting class of numerical methods
for the time integration of stiff systems of differential equations, that is,

u′(t) = F
(
t, u(t)

)
, u(0) = u0. (1.1)

In this survey article we will mainly consider two types of stiff problems.
The first one is characterized by a Jacobian that possesses eigenvalues with
large negative real parts. For these problems, the usual definition of stiffness
applies which states that a differential equation is stiff whenever the implicit
Euler method works (tremendously) better than the explicit Euler method.
The reason for this behaviour lies in the different linear stability properties
of the two methods. All available explicit integrators (with the exception of
Runge–Kutta–Chebyshev methods) have a relatively small linear stability
domain in the complex left half-plane, and this is the reason why explicit
methods require unrealistically small step sizes for integrating stiff problems.
The second class of stiff problems considered in this survey consists of

highly oscillatory problems with purely imaginary eigenvalues of large mod-
ulus. Again, explicit methods lack stability and are forced to use tiny time
steps. For this class, however, the implicit Euler scheme does not perform
well either. At first glance this behaviour is puzzling since the method has
the required stability properties. A closer look reveals that the step size
reduction is forced by accuracy requirements: the method tends to resolve
all the oscillations in the solution, hence its numerical inefficiency.
The basic idea behind exponential integrators is to identify a prototypi-

cal differential equation that has stiffness properties similar to those of the
underlying equation (1.1) and that can be solved exactly. This prototyp-
ical equation is often found by linearizing (1.1) at a certain state w. For
autonomous systems, this yields

v′(t) +Av(t) = g(v(t)), v(0) = u0 − w, (1.2)

with A = −DF (w) and v(t) = u(t)− w. This linearization procedure gives
rise to a semilinear equation with a comparably small nonlinear remainder
g, if u(t) is close to w. The linear part of (1.2),

v′(t) +Av(t) = 0, v(0) = v0, (1.3)

can then serve as the prototypical equation with exact solution

v(t) = e−tAv0. (1.4)

If, for example, A is symmetric positive definite or skew-Hermitian with
eigenvalues of large modulus, the exponential e−tA enjoys favourable prop-
erties such as uniform boundedness, independent of the time step t, in con-
trast to the propagator I − tA of the explicit Euler method. For oscillatory
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problems, the exponential contains the full information on linear oscillations,
in contrast to the propagator (I + tA)−1 of the implicit Euler method.
The numerical scheme for the full equation (1.1) or (1.2) is constructed

by incorporating the exact propagator of (1.3) in an appropriate way. In
the above situation, this can be achieved by considering the corresponding
Volterra integral equation

u(t) = e−tAu0 +

∫ t

0
e−(t−τ)Ag(u(τ)) dτ (1.5)

instead of (1.2). This representation of the exact solution is also called
variation-of-constants formula.
The simplest numerical method for (1.5) is obtained by interpolating the

nonlinearity at the known value g(u0) only, leading to the exponential Euler
approximation

u1 = e−hAu0 + hϕ1(−hA)g(u0). (1.6)

Here h denotes the step size and ϕ1 is the entire function

ϕ1(z) =
ez − 1

z
.

Obviously, method (1.6) makes use of the matrix exponential of A and a
related function, hence its name ‘exponential integrator’.
In the early days of stiff problems, the direct approximation of the matrix

exponential and the related ϕ1-function was not regarded as practical for
large matrices. For this reason, the functions arising were approximated by
rational (Padé) approximations which resulted in implicit or semi-implicit
Runge–Kutta methods, Rosenbrock methods or W-schemes, just to mention
a few well-established methods for stiff problems. The view, however, has
changed as new methods for computing or approximating the product of a
matrix exponential function with a vector have become available.
Apart from motivating the construction of exponential integrators for var-

ious classes of problems, our main intention in this article is to present the
mathematics behind exponential integrators. We will derive error bounds
that are independent of stiffness or highest frequencies in the system. In
order to achieve this aim, we will distinguish – as already mentioned –
between systems that admit smooth solutions and systems with highly os-
cillatory solutions. We also emphasize the analytic conditions that underlie
the numerical schemes as well as the limitations of the given error bounds.
We hope that this will help in choosing the right integrator for a particular
application.
In this survey, we will concentrate on the convergence properties of ex-

ponential integrators for finite times. We will not discuss further important
properties such as long-term behaviour or geometric properties of the dis-
crete flow. For trigonometric integrators, such questions are fully addressed
in Hairer, Lubich and Wanner (2006).
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Whenever we speak about the order of convergence in this article, we
refer to the so-called stiff order. Recall that a method has stiff order p (for
a particular class of problems) if the global error on finite time intervals can
be uniformly bounded by Chp, where C is a constant that depends on the
length of the time interval and on the chosen class of problems, but neither
on the stiffness nor on the step size h. The stiff order of a method must
not be confused with its classical order. The classical order shows up in the
non-stiff case for sufficiently small step sizes and is always an upper bound
to the stiff order.
For stiff problems with smooth solutions, standard techniques from the

theory of stiff differential equations can be used. The local error is de-
termined by inserting the exact solution into the numerical scheme and
Taylor-expanding it to determine the defects. Such a Taylor expansion is
possible for smooth solutions with bounded derivatives of reasonable size
and leads to error bounds in terms of the solution. The linearization A has
to fulfil certain conditions to guarantee the stability of the error recursion.
A prominent example of this class of problems is that of parabolic partial
differential equations, either considered as abstract evolution equations in
an appropriate Banach space or their spatial discretizations which result in
large systems of stiff ordinary differential equations. For the latter, it is
vital to obtain temporal error bounds that are basically independent of the
spatial mesh width. In Section 2, we will discuss this approach for various
classes of exponential one step and multistep methods.
Problems with highly oscillatory solutions are discussed in Section 3. For

these problems, Taylor series expansion of the exact solution is not a viable
option. Completely new techniques for constructing efficient methods and
for proving error bounds have to be devised. In this section we discuss
the construction and error analysis for Magnus integrators for first-order
problems, and for trigonometric integrators for second-order problems. In
order to avoid resonances, particular filter functions are required. Adiabatic
integrators for singularly perturbed problems are briefly discussed as well.
The implementation of exponential integrators often requires the evalu-

ation of the product of a matrix function with a vector. Many different
approaches to evaluating this action in an efficient way have been proposed
in the literature. In Section 4, we review Chebyshev methods, Krylov sub-
space methods, interpolation methods based on Leja points, and contour
integral methods. For problems with dense matrices, we refer to the review
by Higham and Al-Mohy (2010) and to the monograph by Higham (2008).
Finally, we give some hints on the mathematical software.
Section 5 is devoted to applications of exponential integrators in science

and technology. Exponential integrators, often in combination with split-
ting methods, have a long tradition in quantum dynamics and chemistry.
New applications in mathematical finance and regularization of ill-posed
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problems, just to mention two fields, have emerged recently. We will briefly
discuss such applications in this section.
We conclude this review in Section 6 with some comments on how the

concept of exponential integrators has developed historically.
Having given this summary, we briefly discuss related topics that are, how-

ever, not included in this survey. As already mentioned, many interesting
classes of methods for parabolic problems have their origin in the early days
of exponential integrators. As the evaluation of the exponential of a large
matrix was not regarded as practical at that time, methods were developed
using rational approximations instead. Prominent classes are semi-implicit
Runge–Kutta methods, Rosenbrock methods and W-methods. These meth-
ods will not be discussed further in this survey; we refer to the textbooks
by Hairer and Wanner (1996) and Strehmel and Weiner (1992).
Splitting methods are in many respects competitive with exponential inte-

grators; sometimes they are also used in combination with them. We do not
discuss splitting methods here, but refer to the survey article of McLachlan
and Quispel (2002). Methods for ordinary differential equations on mani-
folds and Lie group methods will also not be further discussed here. We refer
to the review article by Iserles, Munthe-Kaas, Nørsett and Zanna (2000).

Some notation

We end this Introduction with some words on the notation employed. In
order to stress the fundamental difference between smooth and highly os-
cillatory solutions, we have used different letters to denote them. Smooth
solutions in Section 2 are generally denoted by u, whereas the letter ψ is
reserved for highly oscillatory solutions of first-order equations in Section 3.
Finally, (q, p) usually denotes the solution of a second-order problem, rewrit-
ten as a first-order system. The first component q is called the position and
p is the momentum.
The end of a proof is marked by , the end of an example by ⋄ , and

the end of an assumption by ◦ . The conjugate transpose of a matrix A is
denoted by A∗.
Throughout the paper, C > 0 will denote a generic constant.

2. Parabolic problems, smooth solutions

In this section, we consider semilinear problems of the form

u′(t) +Au(t) = g(t, u(t)), u(t0) = u0. (2.1)

We are most interested in parabolic problems, which can be written in the
form (2.1) either as an abstract ordinary differential equation on a suitable
function space or as a system of ordinary differential equations in R

n or Cn

stemming from a suitable spatial discretization. Throughout the section,
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we will only consider problems with temporally smooth solutions, so that
we can always expand the solution in a Taylor series.
After motivating the analytical framework for our error analysis, we will

first treat exponential quadrature rules for linear problems. The main part
of this section is devoted to exponential Runge–Kutta methods, exponential
Rosenbrock methods, exponential multistep methods, exponential general
linear methods, and Magnus integrators for semilinear problems (2.1).

2.1. Preliminaries

In order to motivate the analytical framework of our error analysis, we start
with a simple example.

Example 2.1. We consider the heat equation in one space dimension,

Ut(t, x) = Uxx(t, x), U(0, x) = U0(x), x ∈ Ω = (0, π), (2.2)

subject to homogeneous Dirichlet boundary conditions,

U(t, 0) = U(t, π) = 0.

We assume that the initial function satisfies U0 ∈ L2(Ω). In this case, it is
well known that the solution of (2.2) is given by

U(x, t) =
∞∑

k=1

µke
−k2t sin kx,

where the numbers µk are the Fourier coefficients of the initial function U0,

µk =
2

π

∫ π

0
U0(x) sin(kx) dx.

The assumption U0 ∈ L2(Ω) is equivalent to (µk)k ∈ ℓ2.
For an abstract formulation of (2.2), we consider the linear (differential)

operator A defined by

(Av)(x) = −vxx(x).
Obviously, A is an unbounded operator and not defined for all v ∈ L2(Ω).
In order to model homogeneous Dirichlet boundary conditions, we consider
A on the domain

D(A) = H2(Ω) ∩H1
0 (Ω), (2.3)

where H2 and H1
0 denote the familiar Sobolev spaces. In one space dimen-

sion, functions in D(A) are continuously differentiable and vanish on the
boundary of Ω.
This operator has a complete system of orthogonal eigenfunctions sin(kx)

corresponding to the eigenvalues k2, k = 1, 2, . . . . Due to the isomorphism
between L2 and ℓ2, the operator A induces a corresponding operator on ℓ2.
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An application of A to an L2-function corresponds to the multiplication of
its Fourier coefficients by k2 in ℓ2. Given a function φ : C → C, this allows
us to define the operator

φ(tA) : L2(Ω) → L2(Ω), t ≥ 0,

given by

φ(tA)v =
∞∑

k=1

νkφ(k
2t) sin kx for v(x) =

∞∑

k=1

νk sin kx.

Clearly, any function φ(ξ) bounded for ξ ≥ 0 defines a bounded operator
φ(tA) for t ≥ 0. For instance, choosing φ(ξ) = e−ξ defines the bounded
exponential operator

e−tA : L2(Ω) → L2(Ω).

This operator has the properties of a semigroup, namely e−0A = I and

e−tAe−sA = e−(t+s)A, t, s ≥ 0. (2.4)

Moreover, it satisfies

‖e−tA‖L2(Ω)←L2(Ω) ≤ e−t ≤ 1, t ≥ 0,

and

‖(tA)γe−tA‖L2(Ω)←L2(Ω) = sup
k≥1

(tk2)γe−tk
2 ≤ C(γ), γ, t ≥ 0. (2.5)

Using the above notation, we can now formulate the heat equation as an
abstract ordinary differential equation on the Hilbert space X = L2(Ω) by
defining u(t) as the function that maps x to U(t, x):

u(t) = [x 7→ U(t, x)].

Problem (2.2) then reads

u′ +Au = 0, u(0) = u0,

and its solution is given by

u(t) = e−tAu0, t ≥ 0,

which looks formally like the familiar matrix exponential in R
n.

For homogeneous Neumann boundary conditions, the operator A has to
be considered on the domain

D(A) = {v ∈ H2(Ω) | vx(0) = vx(1) = 0}.
This operator has the complete system of orthogonal eigenfunctions cos(kx),
k = 0, 1, 2, . . . , corresponding to the eigenvalues k2. Functions of this oper-
ator can again be defined with the help of Fourier series. ⋄
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The above example motivates the following more general assumption.
Background information on semigroups can be found in the textbooks by
Henry (1981), Pazy (1992), Lunardi (1995), and Engel and Nagel (2000).

Assumption 2.2. Let X be a Banach space with norm ‖ · ‖. We assume
that A is a linear operator on X and that (−A) is the infinitesimal generator
of a strongly continuous semigroup e−tA on X. ◦
In particular, this assumption implies that there exist constants C and ω

such that

‖e−tA‖X←X ≤ C eωt, t ≥ 0. (2.6)

Our error analysis will make use of this estimate only.

Example 2.3. Readers unfamiliar with functional analysis may want to
think of X = R

n or X = C
n. In this case the linear operator can be

represented by an n × n matrix, and e−tA is just the well-known matrix
exponential function. It is important to note that condition (2.6) holds with
ω = 0 if the field of values of A is contained in the right complex half-plane.
For instance, if A is Hermitian positive semidefinite or skew-Hermitian,
then C = 1 and ω = 0 hold in the Euclidean norm, independently of the
dimension n. If A stems from a spatial discretization of a partial differential
equation, then using Assumption 2.2 will yield temporal convergence results
that are independent of the spatial mesh. ⋄
2.2. Linear problems; exponential quadrature

In this section, we will derive error bounds for exponential Runge–Kutta
discretizations of linear parabolic problems,

u′(t) +Au(t) = f(t), u(0) = u0, (2.7)

with a time-invariant operator A. The solution of (2.7) at time

tn+1 = tn + hn, t0 = 0, n = 0, 1, . . .

is given by the variation-of-constants formula

u(tn+1) = e−hnAu(tn) +

∫ hn

0
e−(hn−τ)Af(tn + τ) dτ. (2.8)

A first scheme is obtained by approximating the function f within the
integral by its interpolation polynomial in certain non-confluent quadrature
nodes c1, . . . , cs. This yields the exponential quadrature rule

un+1 = e−hnAun + hn

s∑

i=1

bi(−hnA)f(tn + cihn) (2.9a)
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with weights

bi(−hA) =
∫ 1

0
e−h(1−θ)Aℓi(θ) dθ. (2.9b)

Here, ℓi are the familiar Lagrange interpolation polynomials

ℓi(θ) =
s∏

m=1
m 6=i

θ − cm
ci − cm

, i = 1, . . . , s.

Obviously, the weights bi(z) are linear combinations of the entire functions

ϕk(z) =

∫ 1

0
e(1−θ)z

θk−1

(k − 1)!
dθ, k ≥ 1. (2.10)

These functions satisfy ϕk(0) = 1/k! and the recurrence relation

ϕk+1(z) =
ϕk(z)− ϕk(0)

z
, ϕ0(z) = ez. (2.11)

Assumption 2.2 enables us to define the operators

ϕk(−hA) =
∫ 1

0
e−h(1−θ)A

θk−1

(k − 1)!
dθ, k ≥ 1.

The following lemma turns out to be crucial.

Lemma 2.4. Under Assumption 2.2, the operators ϕk(−hA), k = 1, 2, . . .
are bounded on X.

Proof. The boundedness simply follows from the estimate

‖ϕk(−hA)‖ ≤
∫ 1

0
‖e−h(1−θ)A‖ θk−1

(k − 1)!
dθ

and the bound (2.6) on the semigroup.

Example 2.5. For s = 1 we have

un+1 = e−hnAun + hnϕ1(−hnA)f(tn + c1hn)

= un + hnϕ1(−hnA)
(
f(tn + c1hn)−Aun

)
.

The choice c1 = 0 yields the exponential Euler quadrature rule, while c1 =
1/2 corresponds to the exponential midpoint rule. ⋄
Example 2.6. For s = 2 we obtain the weights

b1(z) =
c2

c2 − c1
ϕ1(z)−

1

c2 − c1
ϕ2(z),

b2(z) = − c1
c2 − c1

ϕ1(z) +
1

c2 − c1
ϕ2(z).

The choice c1 = 0 and c2 = 1 yields the exponential trapezoidal rule. ⋄
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As a generalization to the exponential quadrature rules of collocation type
(2.9) considered so far, we will now consider methods where the weights
bi(−hA) do not necessarily satisfy condition (2.9b). This more general class
of methods,

un+1 = e−hnAun + hn

s∑

i=1

bi(−hnA)f(tn + cihn), (2.12)

only requires the weights bi(−hA) to be uniformly bounded in h ≥ 0.
In order to analyse (2.12), we expand the right-hand side of (2.8) in a

Taylor series with remainder in integral form:

u(tn+1) = e−hnAu(tn) +

∫ hn

0
e−(hn−τ)Af(tn + τ) dτ

= e−hnAu(tn) + hn

p∑

k=1

ϕk(−hnA)hk−1n f (k−1)(tn)

+

∫ hn

0
e−(hn−τ)A

∫ τ

0

(τ − ξ)p−1

(p− 1)!
f (p)(tn + ξ) dξ dτ.

(2.13)

This has to be compared with the Taylor series of the numerical solu-
tion (2.12):

un+1 = e−hnAun + hn

s∑

i=1

bi(−hnA)f(tn + cihn)

= e−hnAun + hn

s∑

i=1

bi(−hnA)
p−1∑

k=0

hknc
k
i

k!
f (k)(tn)

+ hn

s∑

i=1

bi(−hnA)
∫ cihn

0

(cihn − τ)p−1

(p− 1)!
f (p)(tn + τ) dτ.

(2.14)

Obviously the error en = un − u(tn) satisfies

en+1 = e−hnA en − δn+1 (2.15)

with

δn+1 =

p∑

j=1

hjnψj(−hnA)f (j−1)(tn) + δ
(p)
n+1, (2.16)

where

ψj(−hnA) = ϕj(−hnA)−
s∑

i=1

bi(−hnA)
cj−1i

(j − 1)!
(2.17)
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and

δ
(p)
n+1 =

∫ hn

0
e−(hn−τ)A

∫ τ

0

(τ − ξ)p−1

(p− 1)!
f (p)(tn + ξ) dξ dτ

− hn

s∑

i=1

bi(−hnA)
∫ cihn

0

(cihn − τ)p−1

(p− 1)!
f (p)(tn + τ) dτ.

The coefficients (2.17) of the low-order terms in (2.16) being zero turn out
to be the desired order conditions of the exponential quadrature rule (2.12).
We are now ready to state our convergence result.

Theorem 2.7. Let Assumption 2.2 be fulfilled and let f (p) ∈ L1(0, T ).
For the numerical solution of (2.7), consider the exponential quadrature
rule (2.12) with uniformly bounded weights bi(−hA) for h ≥ 0. If the
method satisfies the order conditions

ψj(−hA) = 0, j = 1, . . . , p, (2.18)

then it converges with order p. More precisely, the error bound

‖un − u(tn)‖ ≤ C
n−1∑

j=0

hpj

∫ tj+1

tj

‖f (p)(τ)‖ dτ

then holds, uniformly on 0 ≤ tn ≤ T , with a constant C that depends on
T , but is independent of the chosen step size sequence.

Proof. Solving the error recursion (2.15) yields the estimate

‖en‖ ≤
n−1∑

j=0

‖e−(tn−tj)A‖ ‖δ(p)j ‖.

The desired bound follows from the stability bound (2.6) and the assumption
on the weights.

Corollary 2.8. Let Assumption 2.2 be fulfilled. Then the exponential
quadrature rule (2.9) satisfies the order conditions up to order s. It is thus
convergent of order s.

Proof. The weights bi of the exponential quadrature rule (2.9) satisfy the
order conditions (2.18) for p = s by construction. The boundedness of the
weights follows from Lemma 2.4.

Theorem 2.7 is not yet optimal for methods whose underlying quadrature
rule (bi(0), ci) satisfies additional order conditions, e.g., ψs+1(0) = 0; see
Hochbruck and Ostermann (2005b, Section 3) for details.
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2.3. Exponential Runge–Kutta methods

For the numerical solution of semilinear problems (2.1), we proceed anal-
ogously to the construction of Runge–Kutta methods. We start from the
variation-of-constants formula

u(tn + hn) = e−hnAu(tn) +

∫ hn

0
e−(hn−τ)Ag

(
tn + τ, u(tn + τ)

)
dτ. (2.19)

Since, in contrast to linear problems, the integral now contains the unknown
function u, we use (2.19) with hn replaced by cihn to define internal stages.
This leads to the following general class of one-step methods:

un+1 = χ(−hnA)un + hn

s∑

i=1

bi(−hnA)Gni, (2.20a)

Uni = χi(−hnA)un + hn

s∑

j=1

aij(−hnA)Gnj , (2.20b)

Gnj = g(tn + cjhn, Unj). (2.20c)

Here, the method coefficients χ, χi, aij , and bi are constructed from expo-
nential functions or (rational) approximations of such functions evaluated at
the matrix or operator (−hnA). For consistency reasons, we always assume
that χ(0) = χi(0) = 1.
It seems worth mentioning that (2.20) reduces to a Runge–Kutta method

with coefficients bi = bi(0) and aij = aij(0) if we consider the (formal) limit
A→ 0. The latter method will henceforth be called the underlying Runge–

Kutta method, while (2.20) will be referred to as an exponential Runge–Kutta

method. Throughout this section, we suppose that the underlying Runge–
Kutta method satisfies

s∑

j=1

bj(0) = 1,
s∑

j=1

aij(0) = ci, i = 1, . . . , s,

which makes it invariant under the transformation of (2.1) to autonomous
form.
A desirable property of numerical methods is that they preserve equilibria

u⋆ of the autonomous problem

u′(t) +Au(t) = g(u(t)).

Requiring Uni = un = u⋆ for all i and n ≥ 0 immediately yields necessary
and sufficient conditions. It turns out that the coefficients of the method
have to satisfy

s∑

j=1

bj(z) =
χ(z)− 1

z
,

s∑

j=1

aij(z) =
χi(z)− 1

z
, i = 1, . . . , s. (2.21)
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Table 2.1. The exponential Runge–Kutta method (2.20) in tableau form. For χ,
χi being the standard exponential functions (2.22), we omit the last column.

c1 χ1(−hA)
c2 a21(−hA) χ2(−hA)
...

...
. . .

...

cs as1(−hA) . . . as,s−1(−hA) χs(−hA)

b1(−hA) . . . bs−1(−hA) bs(−hA) χ(−hA)

Without further mention, we will assume throughout this section that these
conditions are fulfilled. We mainly consider methods with

χ(z) = ez and χi(z) = eciz, 1 ≤ i ≤ s. (2.22)

For this choice, the simplifying assumptions (2.21) read

s∑

j=1

bj(z) = ϕ1(z),
s∑

j=1

aij(z) = ciϕ1(ciz), i = 1, . . . , s. (2.23)

Our main interest lies in explicit methods for which, due to c1 = 0,

χ1(z) = 1 and aij(z) = 0, 1 ≤ i ≤ j ≤ s. (2.24)

The general construction principle together with an error analysis is pre-
sented in Hochbruck and Ostermann (2005b). Explicit methods of the form
(2.20) have already been proposed by Friedli (1978). He also presented non-
stiff order conditions, which, however, are not sufficient to analyse parabolic
problems. Methods of the form (2.20) with rational functions χ and χi in
place of (2.22) have been proposed and analysed by Strehmel and Weiner
(1987, 1992).
As usual, we represent the coefficients of (2.20) in a Butcher tableau: see

Table 2.1. With the help of (2.21), the functions χ and χi can be eliminated
in (2.20). The numerical scheme then takes the form

un+1 = un + hn

s∑

i=1

bi(−hnA)(Gni −Aun), (2.25a)

Uni = un + hn

s∑

j=1

aij(−hnA)(Gnj −Aun). (2.25b)

Conditions (2.21) also imply that we can restrict ourselves to autonomous
problems,

u′(t) +Au(t) = g(u(t)), u(0) = u0, (2.26)

since all methods satisfying (2.21) are invariant under the transformation
of (2.1) to autonomous form.
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In order to study interesting examples, we have to take care of the norms
in which we derive error estimates. Our analysis will make use of the vari-
ation-of-constants formula and this will involve bounds of terms of the form

e−tnA
(
g(u(tn))− g(un)

)
.

Bounding g in the L2-norm, for example, would exclude even very simple
functions, such as polynomials of degree higher than one. Therefore, we
have to refine our framework.

Assumption 2.9. Let X be a Banach space with norm ‖ · ‖. We assume
that A is a linear operator on X and that (−A) is the infinitesimal generator
of an analytic semigroup e−tA on X. ◦
In a similar way to our motivating Example 2.1, generators of analytic

semigroups allow us to define fractional powers of the operator. To be more
precise, if A satisfies Assumption 2.9, then there exists an ω ∈ R such that
(A + ωI)α is defined for real powers α; see Henry (1981) and Pazy (1992).
Writing

Au+ g(u) = (A+ ωI)u+
(
g(u)− ωu

)

enables us to set ω = 0 without loss of generality. Then Assumption 2.9
implies that there exist constants C = C(γ) such that

‖e−tA‖X←X + ‖tγAγe−tA‖X←X ≤ C, γ, t ≥ 0. (2.27)

With this bound at hand, we can estimate the difference of g in a weaker
norm:

‖e−tnAAα ·A−α
(
g(u(tn))− g(un)

)
‖ ≤ Ct−αn ‖A−α

(
g(u(tn))− g(un)

)
‖.

This observation leads to the following framework, where our main assump-
tion on the nonlinearity g is that of Henry (1981) and Pazy (1992).

Assumption 2.10. For 0 ≤ α < 1, let

V = {v ∈ X | Aαv ∈ X}
be a Banach space with norm ‖v‖V = ‖Aαv‖. We assume that g : [0, T ] ×
V → X is locally Lipschitz-continuous in a strip along the exact solution u.
Thus, there exists a real number L = L(R, T ) such that, for all t ∈ [0, T ],

‖g(t, v)− g(t, w)‖ ≤ L‖v − w‖V (2.28)

if max
(
‖v − u(t)‖V , ‖w − u(t)‖V

)
≤ R. ◦

Example 2.11. It is well known that reaction–diffusion equations fit into
this abstract framework, as well as the incompressible Navier–Stokes equa-
tions in two and three space dimensions; see, e.g., Henry (1981, Chapter 3)
and Lunardi (1995, Section 7.3). ⋄
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Convergence of the exponential Euler method

We next study the convergence of the simplest method of the class (2.20).

Example 2.12. For s = 1, the only reasonable choice is the exponential
version of Euler’s method. Applied to (2.1), it has the form

un+1 = e−hnAun + hnϕ1(−hnA)g(tn, un). (2.29)

The Butcher tableau of the method reads

0
ϕ1

. ⋄
In order to simplify the notation, we set

f(t) = g(t, u(t)),

and we consider constant step sizes hn = h only.
Our proofs are heavily based on the representation of the exact solution

by the variation-of-constants formula (2.19), which coincides with (2.8) in
our notation. We expand f in a Taylor series with remainder in integral
form to receive

f(tn + τ) = f(tn) +

∫ τ

0
f ′(tn + σ) dσ. (2.30)

Inserting the exact solution into the numerical scheme yields

u(tn+1) = e−hAu(tn) + hϕ1(−hA)f(tn) + δn+1 (2.31)

where, by (2.13), the defect is given by

δn+1 =

∫ h

0
e−(h−τ)A

∫ τ

0
f ′(tn + σ) dσ dτ. (2.32)

For this defect we have the following estimate.

Lemma 2.13. Let the initial value problem (2.1) satisfy Assumption 2.9.
Furthermore, let 0 < β ≤ 1 and Aβ−1f ′ ∈ L∞(0, T ;V ). Then

∥∥∥∥
n−1∑

j=0

e−jhAδn−j

∥∥∥∥
V

≤ Ch sup
0≤t≤tn

‖Aβ−1f ′(t)‖V (2.33)

holds with a constant C, uniformly in 0 ≤ tn ≤ T .

Proof. We denote the supremum by

M := sup
0≤t≤tn

‖Aβ−1f ′(t)‖V ,
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and write

e−jhAδn−j = e−jhA
∫ h

0
e−(h−τ)AA1−β

∫ τ

0
Aβ−1f ′(tn−j−1 + σ) dσ dτ.

Using the stability bound (2.27), the term for j = 0 can be bounded in V by

CM

∫ h

0
τ(h− τ)β−1 dτ ≤ CMh1+β ,

whereas the remaining sum is bounded by

∥∥∥∥
n−1∑

j=1

e−jhAδn−j

∥∥∥∥
V

≤ CMh2
n−1∑

j=1

(jh)β−1 ≤ CMh

∫ tn−1

0
tβ−1 dt ≤ CMh.

This proves the desired estimate.

For the exponential Euler method, we have the following convergence
result.

Theorem 2.14. Let the initial value problem (2.1) satisfy Assumptions 2.9
and 2.10, and consider for its numerical solution the exponential Euler
method (2.29). Further assume that f : [0, T ] → X is differentiable and
that β ∈ (0, 1] can be chosen such that Aβ−1f ′ ∈ L∞(0, T ;V ). Then, the
error bound

‖un − u(tn)‖V ≤ C h sup
0≤t≤tn

‖Aβ−1f ′(t)‖V

holds uniformly in 0 ≤ nh ≤ T . The constant C depends on T , but it is
independent of n and h.

Proof. The exponential Euler method satisfies the error recursion

en+1 = e−hAen + hϕ1(−hA)
(
g(tn, un)− f(tn)

)
− δn+1 (2.34)

with defect δn+1 defined in (2.32). Solving this recursion yields

en = h

n−1∑

j=0

e−(n−j−1)hAϕ1(−hA)
(
g(tj , uj)− f(tj)

)
−

n−1∑

j=0

e−jhAδn−j .

Using (2.27), Assumption 2.10 and Lemma 2.13, we may estimate this in
V by

‖en‖V ≤ Ch
n−2∑

j=0

t−αn−j−1‖ej‖V + Ch1−α‖en−1‖V + Ch sup
0≤t≤tn

‖Aβ−1f ′(t)‖V .

The application of Lemma 2.15 concludes the proof.

In the previous proof we used the following standard Discrete Gronwall
Lemma. For its proof see Dixon and McKee (1986), for instance.
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Lemma 2.15. (Discrete Gronwall Lemma) For h > 0 and T > 0, let
0 ≤ tn = nh ≤ T . Further assume that the sequence of non-negative
numbers εn satisfies the inequality

εn ≤ ah
n−1∑

ν=1

t−ρn−νεν + b t−σn

for 0 ≤ ρ, σ < 1 and a, b ≥ 0. Then the estimate

εn ≤ Cb t−σn

holds, where the constant C depends on ρ, σ, a, and on T .

Convergence of the higher-order exponential Runge–Kutta methods

The convergence analysis of higher-order methods turns out to be much
more complicated than that for the exponential Euler scheme, due to the low
order of the internal stages. Moreover, it requires additional assumptions
on the nonlinearity g.

Assumption 2.16. We assume that (2.1) possesses a sufficiently smooth
solution u : [0, T ] → V with derivatives in V , and that g : [0, T ] × V → X
is sufficiently often Fréchet-differentiable in a strip along the exact solution.
All occurring derivatives are assumed to be uniformly bounded. ◦
Note that, under the above assumption, the composition

f : [0, T ] → X : t 7→ f(t) = g
(
t, u(t)

)

is a smooth mapping, too. This will be used frequently.
As usual for the analysis of stiff problems with smooth solutions, and as

we have seen for the exponential Euler method, we start by inserting the
exact solution into the numerical scheme. This yields

u(tn + cih) = e−cihAu(tn) + h
i−1∑

j=1

aij(−hA)f(tn + cjh) + ∆ni, (2.35a)

u(tn+1) = e−hAu(tn) + h
s∑

i=1

bi(−hA)f(tn + cih) + δn+1, (2.35b)

with defect δn+1 given in (2.16), and

∆ni =

qi∑

j=1

hjψj,i(−hA)f (j−1)(tn) + ∆
(qi)
ni , (2.36)

where

ψj,i(−hA) = ϕj(−cihA)cji −
i−1∑

k=1

aik(−hA)
cj−1k

(j − 1)!
(2.37)
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and

∆
(qi)
ni =

∫ cih

0
e−(cih−τ)A

∫ τ

0

(τ − σ)qi−1

(qi − 1)!
f (qi)(tn + σ) dσ dτ

− h
i−1∑

k=1

aik(−hA)
∫ ckh

0

(ckh− σ)qi−1

(qi − 1)!
f (qi)(tn + σ) dσ.

Note that ψ1,i = 0 due to the simplifying assumptions (2.23), but – as for
all explicit Runge–Kutta schemes – it is not possible to achieve ψ2,i = 0
for all i. This implies that the internal stages are of order one only, which
makes the construction of higher-order methods quite involved. We refer
to Hochbruck and Ostermann (2005a) for details, and only state the main
result here.

Theorem 2.17. Let the initial value problem (2.1) satisfy Assumptions 2.9
and 2.16 with V = X and consider for its numerical solution an explicit
exponential Runge–Kutta method (2.20) satisfying (2.22)–(2.24). For 2 ≤
p ≤ 4, assume that the order conditions of Table 2.2 hold up to order p− 1
and that ψp(0) = 0. Further assume that the remaining conditions of order
p hold in a weaker form with bi(0) instead of bi(−hA) for 2 ≤ i ≤ s. Then
the numerical solution un satisfies the error bound

‖un − u(tn)‖ ≤ C hp

uniformly in 0 ≤ nh ≤ T . The constant C depends on T , but it is indepen-
dent of n and h.

We now consider some particular examples. We start with second-order
methods.

Example 2.18. Second-order methods require two internal stages at least.
For two stages, the order conditions taken from Table 2.2 are

b1(−hA) + b2(−hA) = ϕ1(−hA), (2.38a)

b2(−hA)c2 = ϕ2(−hA), (2.38b)

a21(−hA) = c2ϕ1(−c2hA). (2.38c)

A straightforward elimination leads to the following one-parameter family
of exponential Runge–Kutta methods:

0
c2 c2 ϕ1,2

ϕ1 − 1
c2
ϕ2

1
c2
ϕ2

. (2.39)

Here and in the following Butcher tableaux, we use the short notation

ϕj,k = ϕj(−ckhA), ϕj = ϕj(−hA).
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Table 2.2. Stiff order conditions for explicit exponential Runge–Kutta
methods for α = 0. Here J and K denote arbitrary bounded operators
on X. The functions ψi and ψk,ℓ are defined in (2.17) and (2.37),
respectively.

Number Order Order condition

1 1 ψ1(−hA) = 0

2 2 ψ2(−hA) = 0

3 2 ψ1,i(−hA) = 0

4 3 ψ3(−hA) = 0

5 3
∑s

i=1
bi(−hA)Jψ2,i(−hA) = 0

6 4 ψ4(−hA) = 0

7 4
∑s

i=1
bi(−hA)Jψ3,i(−hA) = 0

8 4
∑s

i=1
bi(−hA)J

∑i−1

j=2
aij(−hA)Jψ2,j(−hA) = 0

9 4
∑s

i=1
bi(−hA)ciKψ2,i(−hA) = 0

It is also possible to omit the function ϕ2 by weakening condition (2.38b) to
b2(0)c2 = ϕ2(0) =

1
2 . This yields another one-parameter family of methods:

0
c2 c2 ϕ1,2(

1− 1
2c2

)
ϕ1

1
2c2
ϕ1

. (2.40)

The most attractive choice here is c2 =
1
2 , which yields b1 = 0.

Methods (2.39) and (2.40) have already been proposed by Strehmel and
Weiner (1992, Example 4.2.2) in the context of adaptive Runge–Kutta meth-
ods, where the functions ϕj are usually approximated by certain rational
functions. It is shown in Strehmel and Weiner (1992, Section 4.5.3) that
both methods are B-consistent of order one. ⋄
The construction of various families of third-order methods can be found

in Hochbruck and Ostermann (2005a). In addition, a discussion of the con-
vergence of some related three-stage methods which can be found in the
literature is presented there. Among these are the three-stage adaptive
Runge–Kutta method of Strehmel and Weiner (1992, Example 4.5.4), the
ETD3RK scheme by Cox and Matthews (2002) and the ETD2CF3 method,
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which is a variant of the commutator-free Lie group method CF3 of Celle-
doni, Marthinsen and Owren (2003).
We next discuss in more detail some four-stage methods that have recently

been discussed in the literature.

Example 2.19. Cox and Matthews (2002) proposed the following expo-
nential variant of the classical Runge–Kutta method:

0
1
2

1
2ϕ1,2

1
2 0 1

2ϕ1,3

1 1
2ϕ1,3(ϕ0,3 − 1) 0 ϕ1,3

ϕ1 − 3ϕ2 + 4ϕ3 2ϕ2 − 4ϕ3 2ϕ2 − 4ϕ3 4ϕ3 − ϕ2

.

(2.41)

This method satisfies conditions 1– 4 of Table 2.2, the weakened but suffi-
cient condition 6 (ψ4(0) = 0), but not conditions 5, 7, 8 and 9. However, it
satisfies a weakened form of conditions 5 and 9 (because ψ2,2(0)+ψ2,3(0) = 0
and ψ2,4(0) = 0), and a very weak form of conditions 7 and 8 (where all
arguments are evaluated for A = 0). In the worst case, this leads to an
order reduction to order two only.
The method by Krogstad (2005) is given by

0
1
2

1
2ϕ1,2

1
2

1
2ϕ1,3 − ϕ2,3 ϕ2,3

1 ϕ1,4 − 2ϕ2,4 0 2ϕ2,4

ϕ1 − 3ϕ2 + 4ϕ3 2ϕ2 − 4ϕ3 2ϕ2 − 4ϕ3 −ϕ2 + 4ϕ3

.

(2.42)

This method satisfies conditions 1– 5 and 9 of Table 2.2, the weakened but
sufficient condition 6 (ψ4(0) = 0), but not conditions 7 and 8, which are
only satisfied in a very weak form (where all arguments are evaluated for
A = 0). In the worst case, this leads to an order reduction to order three.
Strehmel and Weiner (1992, Example 4.5.5) suggested the scheme

0
1
2

1
2ϕ1,2

1
2

1
2ϕ1,3 − 1

2ϕ2,3
1
2ϕ2,3

1 ϕ1,4 − 2ϕ2,4 −2ϕ2,4 4ϕ2,4

ϕ1 − 3ϕ2 + 4ϕ3 0 4ϕ2 − 8ϕ3 −ϕ2 + 4ϕ3

.

(2.43)

This method satisfies the conditions of Table 2.2 in exactly the same way
as Krogstad’s method. It thus converges in our situation, with order three
in the worst case. Strehmel and Weiner (1992) proved that the method is
B-consistent of order two. ⋄
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The question whether it is possible to modify the coefficients of the above
four-stage methods in such a way that they have order four for semilinear
parabolic problems was answered in the negative by Hochbruck and Oster-
mann (2005a). There, the following five-stage method was constructed:

0
1
2

1
2ϕ1,2

1
2

1
2ϕ1,3 − ϕ2,3 ϕ2,3

1 ϕ1,4 − 2ϕ2,4 ϕ2,4 ϕ2,4
1
2

1
2ϕ1,5 − 2a5,2 − a5,4 a5,2 a5,2

1
4ϕ2,5 − a5,2

ϕ1 − 3ϕ2 + 4ϕ3 0 0 −ϕ2 + 4ϕ3 4ϕ2 − 8ϕ3

with

a5,2 =
1

2
ϕ2,5 − ϕ3,4 +

1

4
ϕ2,4 −

1

2
ϕ3,5.

Under the assumptions of Theorem 2.17, this method has order four.

2.4. Exponential Rosenbrock methods

We now turn to the time discretization of (possibly abstract) differential
equations in autonomous form,

u′(t) = F
(
u(t)

)
, u(t0) = u0. (2.44)

The numerical schemes considered are based on a continuous linearization
of (2.44) along the numerical solution. For a given point un in the state
space, this linearization is

u′(t) = Jnu(t) + gn
(
u(t)

)
, (2.45a)

Jn = DF (un) =
∂F

∂u
(un), gn

(
u(t)

)
= F

(
u(t)

)
− Jnu(t), (2.45b)

with Jn denoting the Jacobian of F and gn the nonlinear remainder eval-
uated at un, respectively. The numerical schemes will make explicit use of
these quantities.
Let un denote the numerical approximation to the solution of (2.44) at

time tn. Its value at t0 is given by the initial condition. Applying an explicit
exponential Runge–Kutta scheme (2.35) to (2.45), we obtain the following
class of exponential Rosenbrock methods:

Uni = ecihnJnun + hn

i−1∑

j=1

aij(hnJn)gn(Unj), 1 ≤ i ≤ s, (2.46a)

un+1 = ehnJnun + hn

s∑

i=1

bi(hnJn)gn(Uni). (2.46b)
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Methods of this form were proposed by Hochbruck and Ostermann (2006).
Without further mention, we will assume that the methods fulfil the sim-

plifying assumptions (2.23). Therefore, c1 = 0 and consequently Un1 = un.
Methods that satisfy the simplifying assumptions possess several interesting
features. In particular, they preserve equilibria of (2.44), they have small
defects, which in turn leads to simple order conditions for stiff problems (see
Table 2.3 below), they allow a reformulation for efficient implementation,
and they can easily be extended to non-autonomous problems.

Example 2.20. The well-known exponential Rosenbrock–Euler method
is given by

un+1 = ehnJnun + hnϕ1(hnJn)gn(un)

= un + hnϕ1(hnJn)F (un).
(2.47)

It is computationally attractive since it requires only one matrix function
per step. ⋄
The first exponential integrator based on the local linearization (2.45)

was proposed by Pope (1963). Tokman (2006) pursued the same approach
leading to her EPI time integration. In her paper, multistep methods were
also constructed.
Related approaches include the local linearization schemes by Ramos

and Garćıa-López (1997) and De la Cruz, Biscay, Carbonell, Ozaki and
Jimenez (2007). Implicit methods combined with fixed-point iteration and
Krylov subspace approximations have been proposed by Friesner, Tucker-
man, Dornblaser and Russo (1989).
For the implementation of an exponential Rosenbrock method it is crucial

to approximate the application of matrix functions to vectors efficiently. We
therefore suggest expressing the vectors gn(Unj) as

gn(Unj) = gn(un) +Dnj , 2 ≤ j ≤ s.

A similar idea was used in Tokman (2006). Due to the simplifying assump-
tions (2.23), the method (2.46) takes the equivalent form

Uni = un + cihnϕ1(cihnJn)F (un) + hn

i−1∑

j=2

aij(hnJn)Dnj , (2.48a)

un+1 = un + hnϕ1(hnJn)F (un) + hn

s∑

i=2

bi(hnJn)Dni. (2.48b)

Hence, each stage of the method consists of a perturbed exponential Rosen-
brock–Euler step (2.47).
The main motivation for this reformulation is that the vectors Dni are

expected to be small in norm. When computing the application of matrix
functions to these vectors with some Krylov subspace method, this should
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be possible in a low-dimensional subspace. Consequently, only one com-
putationally expensive Krylov approximation will be required in each time
step, namely that involving F (un). A similar idea has also been used in
Hochbruck, Lubich and Selhofer (1998) to make the code exp4 efficient.
The proposed method can easily be extended to non-autonomous prob-

lems,

u′ = F (t, u), u(t0) = u0, (2.49)

by rewriting the problem in autonomous form,

U ′ = F(U), U =

[
t
u

]
, F(U) =

[
1

F (t, u)

]
, (2.50a)

with Jacobian

Jn =

[
0 0
vn Jn

]
, vn =

∂F

∂t
(tn, un), Jn =

∂F

∂u
(tn, un). (2.50b)

This transformation is standard for Rosenbrock methods as well (see Hairer
and Wanner (1996)), but it changes a linear non-autonomous problem into
a nonlinear one.
In order to apply our method to the autonomous system (2.50), we have

to compute matrix functions of Jn. Using Cauchy’s integral formula and
exploiting the special structure of Jn, we get

ϕk(hnJn) =

[
ϕk(0) 0

hnϕk+1(hnJn)vn ϕk(hnJn)

]
.

In our formulation, we will again work with the smaller quantities

Dnj = gn(tn + cjhn, Unj)− gn(tn, un), (2.51)

where

gn(t, u) = F (t, u)− Jnu− vnt.

Applying method (2.48) to the autonomous formulation (2.50), we get

Uni = un + hnciϕ1(cihnJn)F (tn, un)

+ h2nc
2
iϕ2(cihnJn)vn + hn

i−1∑

j=2

aij(hnJn)Dnj , (2.52a)

un+1 = un + hnϕ1(hnJn)F (tn, un)

+ h2nϕ2(hnJn)vn + hn

s∑

i=2

bi(hnJn)Dni. (2.52b)

This is the format of an exponential Rosenbrock method for non-autono-
mous problems (2.49).
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Example 2.21. The exponential Rosenbrock–Euler method for non-auto-
nomous problems is given by

un+1 = un + hnϕ1(hnJn)F (un) + h2nϕ2(hnJn)vn, (2.53)

with Jn and vn defined in (2.50b). This scheme was proposed by Pope
(1963). ⋄
In the subsequent analysis, we restrict our attention to autonomous semi-

linear problems,

u′(t) = F
(
u(t)

)
, F (u) = −Au+ g(u), u(t0) = u0. (2.54)

This implies that (2.45b) takes the form

Jn = −A+
∂g

∂u
(un), gn

(
u(t)

)
= g

(
u(t)

)
− ∂g

∂u
(un)u(t). (2.55)

We suppose that A satisfies Assumption 2.2. Our main hypothesis on the
nonlinearity g is Assumption 2.16 with V = X. The latter assumption
implies that the Jacobian

J = J(u) = DF (u) =
∂F

∂u
(u)

satisfies the Lipschitz condition

‖J(u)− J(v)‖X←X ≤ C‖u− v‖ (2.56)

in a neighbourhood of the exact solution.

Convergence of higher-order exponential Rosenbrock methods

Theorem 2.22. Suppose the initial value problem (2.54) satisfies Assump-
tions 2.2 and 2.16 with V = X. Consider for its numerical solution an ex-
plicit exponential Rosenbrock method (2.46) that fulfils the order conditions
of Table 2.3 up to order p for some 2 ≤ p ≤ 4. Further, let the step size
sequence hj satisfy the condition

n−1∑

k=1

k−1∑

j=0

hp+1
j ≤ CH (2.57)

with a constant CH that is uniform in t0 ≤ tn ≤ T . Then, for CH sufficiently
small, the numerical method converges with order p. In particular, the
numerical solution satisfies the error bound

‖un − u(tn)‖ ≤ C
n−1∑

j=0

hp+1
j (2.58)

uniformly on t0 ≤ tn ≤ T . The constant C is independent of the chosen
step size sequence satisfying (2.57).
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Table 2.3. Stiff order conditions for exponential
Rosenbrock methods applied to autonomous problems.

Number Order condition Order

1
∑s

i=1
bi(z) = ϕ1(z) 1

2
∑i−1

j=1
aij(z) = ciϕ1(ciz), 2 ≤ i ≤ s 2

3
∑s

i=2
bi(z)c

2

i = 2ϕ3(z) 3

4
∑s

i=2
bi(z)c

3

i = 6ϕ4(z) 4

Proof. We present the proof for the exponential Rosenbrock–Euler method
only. The proof for higher-order methods can be found in Hochbruck, Os-
termann and Schweitzer (2009c).
To simplify the notation, we write fn(t) = gn

(
u(t)

)
. Inserting the exact

solution into the numerical scheme yields

u(tn+1) = ehnJnu(tn) + hnϕ1(hnJn)fn(tn) + δn+1 (2.59)

with defect δn+1. Next, by using the variation-of-constants formula (2.8),
we obtain

u(tn+1) = ehnJnu(tn) +

∫ hn

0
e(hn−τ)Jnfn(tn + τ) dτ.

Taylor expansion of f within the integral yields

fn(tn + τ) = fn(tn) + τf ′n(tn) +

∫ τ

0
(τ − ξ)f ′′n(tn + ξ) dξ,

where, by definition of gn,

f ′n(tn) =

(
∂g

∂u

(
u(tn)

)
− ∂g

∂u

(
un

))
u′(tn). (2.60)

We thus have

δn+1 = h2nϕ2(hnJn)f
′
n(tn) +

∫ hn

0
e(hn−τ)Jn

∫ τ

0
(τ − ξ)f ′′n(tn + ξ) dξ dτ,

and this gives the bound

‖δn+1‖ ≤ C
(
h2n‖en‖+ h3n

)
. (2.61)

Subtracting (2.59) from the numerical solution leads to the error recursion

en+1 = ehnJnen + hn̺n − δn+1, e0 = 0, (2.62)

with

̺n = ϕ1(hnJn)
(
gn(un)− fn(tn)

)
.



234 M. Hochbruck and A. Ostermann

Using the Lipschitz condition (2.56) in

gn(un)− fn(tn) =

∫ 1

0

(
∂gn
∂u

(
u(tn) + θen

)
− ∂gn

∂u
(un)

)
en dθ,

we obtain
‖gn(un)− fn(tn)‖ ≤ C‖en‖2. (2.63)

Solving the error recursion (2.62) and using e0 = 0, we obtain

en =
n−1∑

j=0

hj e
hn−1Jn−1 · · · ehj+1Jj+1(̺j − h−1j δj+1). (2.64)

Employing (2.61) and (2.63), we obtain the bound

‖̺j‖+ h−1j ‖δj+1‖ ≤ C
(
hj‖ej‖+ ‖ej‖2 + h2j

)
. (2.65)

Inserting this into (2.64) and using the stability estimate of Hochbruck et al.

(2009c, Theorem 3.7), we have

‖en‖ ≤ C

n−1∑

j=0

hj
(
‖ej‖2 + hj‖ej‖+ h2j

)
. (2.66)

The constant in this estimate is uniform as long as

n−1∑

j=1

‖ej‖ ≤ CA (2.67)

holds uniformly on t0 ≤ tn ≤ T . The application of a version of the Discrete
Gronwall Lemma (Lemma 2.15) for variable step sizes (see, e.g., Emmrich
(2005)) to (2.66) then shows the desired bound (2.58).
It still remains to verify that condition (2.67) holds with a uniform bound

CA. This now follows recursively from (2.58) and our assumption on the step
size sequence (2.57) with CH sufficiently small.

The well-known exponential Rosenbrock–Euler method (2.47) obviously
satisfies condition 1 of Table 2.3, while condition 2 is void. Therefore, it
is second-order convergent for problems satisfying our analytic framework.
A possible error estimator for (2.47) is described in Caliari and Ostermann
(2009).
From the order conditions of Table 2.3, we constructed pairs of embedded

methods of order three and four in Hochbruck et al. (2009c). For our variable
step size implementation, we consider (2.46b) together with an embedded
approximation

ûn+1 = ehnJnun + hn

s∑

i=1

b̂i(hnJn) gn(Uni), (2.68)

which relies on the same stages Uni.
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Example 2.23. The scheme exprb32 consists of a third-order exponential
Rosenbrock method with a second-order error estimator (the exponential
Rosenbrock–Euler method). Its coefficients are

0
1 ϕ1

ϕ1 − 2ϕ3 2ϕ3

ϕ1

.

The additional bottom line in the Butcher tableau contains the weight b̂1
of the embedded method (2.68). ⋄
Example 2.24. The scheme exprb43 is a fourth-order method with a
third-order error estimator. Its coefficients are

0
1
2

1
2ϕ1

(
1
2 ·

)

1 0 ϕ1

ϕ1 − 14ϕ3 + 36ϕ4 16ϕ3 − 48ϕ4 −2ϕ3 + 12ϕ4

ϕ1 − 14ϕ3 16ϕ3 −2ϕ3

. ⋄

Note that the internal stages of the above methods are just exponential
Rosenbrock–Euler steps. This leads to simple methods that can be imple-
mented cheaply.
Evidently, the order conditions of Table 2.3 imply that the weights of any

third-order method have to depend on ϕ3, whereas those of any fourth-order
method depend on ϕ3 and ϕ4 (in addition to ϕ1).

Example 2.25. Hochbruck et al. (1998) proposed the following class of
exponential integrators, which uses the ϕ1-function only:

ki = ϕ1(γhJn)

(
Jnun + gn(Uni) + hJn

i−1∑

j=1

βijkj

)
, i = 1, . . . , s,

Uni = un + h
i−1∑

j=1

αijkj ,

un+1 = un + h
s∑

i=1

biki.

Here, γ, αij , βij , bi, are scalar coefficients that determine the method. This
method is of the form (2.20), with χi, i = 1, . . . , s being linear combinations
of exponential functions and with χ(z) = ez. The method exp4 proposed
by Hochbruck et al. (1998) can be interpreted as a three-stage exponential
Rosenbrock-type method, which is of classical order four. However, for
an efficient implementation, it should be written as a seven-stage method,
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which uses only three function evaluations. Although our theory does not
fully cover this class of methods, it is obvious from the order conditions that
methods using the ϕ1-function only cannot have order larger than two. ⋄
2.5. Exponential multistep methods

After the discussion of exponential one-step methods, we now turn to expo-
nential multistep methods, which were first introduced by Certaine (1960)
and in a more systematic way by Nørsett (1969). The idea of Nørsett was
to generalize explicit Adams methods such that they become A-stable and
thus suited to stiff problems. Given approximations uj ≈ u(tj), we replace
the nonlinearity in (2.1) by its interpolation polynomial at the points

(
tn−k+1, g(tn−k+1, un−k+1)

)
, . . . ,

(
tn, g(tn, un)

)
,

that is,

g
(
tn + θh, u(tn + θh)

)
≈

k−1∑

j=0

(−1)j
(−θ
j

)
∇jGn, Gj = g(tj , uj).

Here, ∇jGn denotes the jth backward difference defined recursively by

∇0Gn = Gn, ∇j+1Gn = ∇jGn −∇jGn−1, j = 1, 2, . . . .

By inserting this interpolation polynomial into the variation-of-constants
formula (2.19), we obtain an explicit exponential Adams method,

un+1 = e−hAun + h
k−1∑

j=0

γj(−hA)∇jGn, (2.69a)

with weights

γj(z) = (−1)j
∫ 1

0
e(1−θ)z

(−θ
j

)
dθ. (2.69b)

The weights satisfy the recurrence relation

γ0(z) = ϕ1(z),

zγk(z) + 1 =
k−1∑

j=0

1

k − j
γj(z);

see Nørsett (1969, (2.9), (2.10)). For A = 0, these exponential Adams
methods reduce to the well-known explicit Adams methods; see, e.g., Hairer,
Nørsett and Wanner (1993, Chapter III).
For an efficient implementation, (2.69) should be reformulated as a cor-

rected exponential Euler step, that is,

un+1 = un + hϕ1(−hA)(Gn −Aun) + h
k−1∑

j=1

γj(−hA)∇jGn. (2.70)
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Our error analysis below shows that ‖∇jGn‖=O(hj) for sufficiently smooth
solutions, so it can be expected that Krylov approximations become cheaper
with increasing j; see also Tokman (2006).

Example 2.26. For k = 1 we obtain the exponential Euler method (2.29),
while for k = 2 we have

un+1 = un + hϕ1(−hA)(Gn −Aun) + hϕ2(−hA)(Gn −Gn−1), (2.71)

which will be seen to be second-order convergent. ⋄
Cox and Matthews (2002) consider the same class of methods, while Calvo

and Palencia (2006) constructed and analysed k-step methods, where the
variation-of-constants formula is taken over an interval of length kh instead
of h. In contrast to Adams methods, their methods have all parasitic roots
on the unit circle. A variety of explicit and implicit schemes is given in
Beylkin, Keiser and Vozovoi (1998). Related methods using rational ap-
proximation of the arising matrix functions are presented in Lambert and
Sigurdsson (1972) and Verwer (1976).

Theorem 2.27. Let the initial value problem (2.1) satisfy Assumptions 2.9
and 2.10, and consider for its numerical solution the k-step exponential
Adams method (2.69). For f(t) = g

(
t, u(t)

)
assume that f ∈ Ck([0, T ], X).

Then, if

‖uj − u(tj)‖V ≤ c0h
k, j = 1, . . . , k − 1,

the error bound

‖un − u(tn)‖V ≤ C · hk sup
0≤t≤tn

‖f (k)(t)‖

holds uniformly in 0 ≤ nh ≤ T . The constant C depends on T , but it is
independent of n and h.

Proof. We will present the proof for the method (2.71), i.e., for k = 2 only.
The proof for k > 2 is analogous.
Inserting the exact solution into the numerical scheme yields

u(tn+1) = e−hAu(tn) + h
((
ϕ1(−hA) + ϕ2(−hA)

)
f(tn)− ϕ2(−hA)f(tn−1)

)

+ δn+1

with defect δn+1. The interpolation error is given by

f(tn + θh) = Gn + θ∇Gn +
1

2
h2θ(θ + 1)f ′′(ζ(θ))

for certain intermediate times ζ(θ) ∈ [tn−1, tn+1]. Hence, by the variation-
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of-constants formula (2.8), the defect satisfies

δn+1 =
1

2
h3

∫ 1

0
e−h(1−θ)Aθ(θ + 1)f ′′(ζ(θ)) dθ

and is bounded by

‖δn+1‖ ≤ Ch3M, ‖δn+1‖V ≤ Ch2−αM, M = sup
0≤t≤tn+1

‖f ′′(t)‖.

This yields the error recursion

en+1 = e−hAen + h
((
ϕ1(−hA) + ϕ2(−hA)

)(
Gn − f(tn)

)

− ϕ2(−hA)
(
Gn−1 − f(tn−1)

))
− δn+1.

From (2.27) we obtain the estimate

‖en+1‖V ≤ C‖e1‖V + Ch
n∑

j=0

1

((n+ 1− j)h)α
(
‖ej‖V + h2M

)

≤ C
(
‖e1‖V + h2M

)
,

where the last inequality follows from Gronwall’s Lemma 2.15.

2.6. Linearized exponential multistep methods

In the same way as for the derivation of exponential Rosenbrock methods
in Section 2.4, one can also apply exponential multistep methods (2.69) to
the locally linearized equation (2.45). This results in linearized exponential

multistep methods.

Example 2.28. A particular two-step method of this type has been pro-
posed in Tokman (2006, (39)):

un+1 = un + hϕ1(hJn)F (un)− h2
3
ϕ2(hJn)

(
gn(un)− gn(un−1)

)
.

It can be interpreted as a perturbed exponential Rosenbrock–Euler step. ⋄
Motivated by this example, we consider the variant

un+1 = un + hϕ1(hJn)F (un)− 2hϕ3(hJn)
(
gn(un)− gn(un−1)

)
. (2.72)

For Jn = 0, both methods coincide. The variant (2.72), however, has better
convergence properties.
In the subsequent error analysis, we restrict our attention again to au-

tonomous semilinear problems of the form (2.1). This implies that (2.45b)
takes the form

Jn = −A+
∂g

∂u
(un), gn

(
u(t)

)
= g

(
u(t)

)
− ∂g

∂u
(un)u(t). (2.73)
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Theorem 2.29. Let the initial value problem (2.1) satisfy Assumptions 2.9,
2.10, and 2.16 and consider for its numerical solution the linearized ex-
ponential two-step method (2.72). For f(t) = g

(
u(t)

)
assume that f ∈

C3([0, T ], X). Then, if

‖u1 − u(t1)‖V ≤ c0h
3,

the error bound

‖un − u(tn)‖V ≤ C · h3 sup
0≤t≤tn

‖f (3)(t)‖

holds uniformly in 0 ≤ nh ≤ T . The constant C depends on T , but it is
independent of n and h.

Proof. Let fn(t) = gn
(
u(t)

)
. The exact solution has the expansion

u(tn+1) = u(tn) + hϕ1(hJn)F
(
u(tn)

)
+ h2ϕ2(hJn)f

′
n(tn)

+ h3ϕ3(hJn)f
′′
n(tn) + h4̺3,

with a remainder ̺3 as in (2.13) for p = 3. This remainder satisfies

‖̺3‖ ≤ C, ‖̺3‖V ≤ Ch−α. (2.74)

Inserting the exact solution into the numerical scheme yields

u(tn+1) = u(tn) + hϕ1(hJn)F
(
u(tn)

)

− 2hϕ3(hJn)
(
fn(tn)− fn(tn−1)

)
+ δn+1,

with defect

δn+1 = h2
(
ϕ2(hJn) + 2ϕ3(hJn)

)
f ′n(tn) + h4 ˜̺3

and a remainder ˜̺3 again satisfying (2.74). Due to (2.60), the defects are
thus bounded by

‖δn+1‖ ≤ C
(
h2‖en‖V + h4

)
, ‖δn+1‖V ≤ C

(
h2−α‖en‖V + h4−α

)
,

where en = un − u(tn) denotes the error. This error satisfies the recursion

en+1 = ehJnen + h
(
ϕ1(hJn)− 2ϕ3(hJn)

)(
gn(un)− fn(tn)

)

+ 2hϕ3(hJn)
(
gn(un−1)− fn(tn−1)

)
− δn+1,

so that, by (2.27) (for −Jn instead of A) and by the stability result of
Hochbruck et al. (2009c, Appendix A),

‖en‖V ≤ C‖e1‖V + Ch
n−1∑

j=0

1

tαn−j

(
‖ej‖V + h3

)
.

The stated error bound then follows from a variant of the Discrete Gronwall
Lemma (Lemma 2.15).
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Remark 2.30. Higher-order linearized exponential multistep methods can
be constructed systematically following this approach. We will discuss de-
tails elsewhere.

2.7. Exponential general linear methods

In this section we study explicit exponential general linear methods for the
autonomous semilinear problem (2.1). For given starting values u0, u1, . . . ,
uk−1, the numerical approximation un+1 at time tn+1, n ≥ k − 1, is given
by the recurrence formula

un+1 = e−hA un + h

s∑

i=1

bi(−hA) g(tn + cih, Uni)

+ h
k−1∑

ℓ=1

vℓ(−hA) g(tn−ℓ, un−ℓ).
(2.75a)

The internal stages Uni, 1 ≤ i ≤ s, are defined by

Uni = e−cihA un + h
i−1∑

j=1

aij(−hA) g(tn + cjh, Unj)

+ h
k−1∑

ℓ=1

wiℓ(−hA) g(tn−ℓ, un−ℓ).
(2.75b)

The coefficient functions aij(−hA), wiℓ(−hA), bi(−hA) and vℓ(−hA) are
linear combinations of the exponential and related ϕ-functions.
The preservation of equilibria of (2.1) is guaranteed under the conditions

s∑

i=1

bi(−hA) +
k−1∑

ℓ=1

vℓ(−hA) = ϕ1(−hA),

i−1∑

j=1

aij(−hA) +
k−1∑

ℓ=1

wiℓ(−hA) = ci ϕ1(−cihA), 1 ≤ i ≤ s.

(2.76)

Moreover, these conditions ensure the equivalence of our numerical methods
for autonomous and non-autonomous problems. We tacitly assume (2.76)
to be satisfied and further suppose w1ℓ = 0, which implies c1 = 0 and thus
Un1 = un.
The explicit exponential Runge–Kutta methods considered in Section 2.3

are contained in the method class (2.75) when setting k = 1. The exponen-
tial Adams methods of Section 2.5 result from (2.75) for the special case of
a single stage s = 1.
For the analysis of exponential general linear methods, one proceeds

as usual, by inserting the exact solution into the numerical scheme and
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Table 2.4. The exponential general linear method (2.75) in tableau form.

c1
c2 a21(−hA) w21(−hA) . . . w2,k−1(−hA)
...

...
. . .

...
...

cs as1(−hA) . . . as,s−1(−hA) ws1(−hA) . . . ws,k−1(−hA)

b1(−hA) . . . bs−1(−hA) bs(−hA) v1(−hA) . . . vk−1(−hA)

providing bounds for the defects by Taylor expansion within the variation-
of-constants formula. If we denote the defects for the internal stages Uni

by ∆ni and the defect of the new approximation un+1 by δn+1, then the
numerical scheme (2.75) is said to be of stage order q if ∆ni = O(hq+1) for
1 ≤ i ≤ s and of quadrature order p if δn+1 = O(hp+1). To achieve stage
order q,

cmi ϕm(ciz) =
i−1∑

j=1

cm−1j

(m− 1)!
aij(z)

+
k−1∑

ℓ=1

(−ℓ)m−1
(m− 1)!

wiℓ(z), 1 ≤ i ≤ s,

(2.77a)

has to be satisfied for 1 ≤ m ≤ q, and to achieve quadrature order p,

ϕm(z) =
s∑

i=1

cm−1i

(m− 1)!
bi(z) +

k−1∑

ℓ=1

(−ℓ)m−1
(m− 1)!

vℓ(z) (2.77b)

must hold for 1 ≤ m ≤ p.
The following result from Ostermann, Thalhammer and Wright (2006)

shows that for parabolic problems it suffices to satisfy, instead of (2.77b)
for m = p, the weakened quadrature order conditions

1

p
=

s∑

i=1

cp−1i bi(0) +
k−1∑

ℓ=1

(−ℓ)p−1 vℓ(0), (2.78)

to obtain the full convergence order p, that is, the condition where m =
p is fulfilled for z = 0 only. A similar weakened condition appeared in
Theorem 2.17 for exponential Runge–Kutta methods.

Theorem 2.31. Let Assumptions 2.9 and 2.16 be satisfied. Furthermore,
suppose that the order conditions (2.77) are valid for m = 1, . . . , p − 1
and that (2.78) holds. Moreover, let f be p-times differentiable with f (p) ∈
L∞(0, T ;X) and Aβf (p−1)(t) ∈ X for some 0 ≤ β ≤ α and for all 0 ≤ t ≤ T .
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Then, we have the bound

‖u(tn)− un‖V ≤ C
k−1∑

m=0

‖u(tm)− um‖V + Chp−α+β sup
0≤t≤tn

‖Aβf (p−1)(t)‖

+ Chp sup
0≤t≤tn

‖f (p)(t)‖, tk ≤ tn ≤ T,

uniformly on 0 ≤ nh ≤ T , with a constant C > 0 that is independent of n
and h.

Lawson and generalized Lawson methods

A different approach to constructing higher-order exponential methods for
semilinear problems (2.1) was proposed by Lawson (1967) and generalized
later by Krogstad (2005). Krogstad called the methods (generalized) in-

tegrated factor methods. The idea is to use an appropriate transformation
of variables, which is motivated by the Adams method (2.69) with a step
size τ :

u(tn + τ) = e−τAv(τ) + τ
k−1∑

j=0

γj(−τA)∇jGn, (2.79)

with weights (2.69b). Let

p(τ) =
k−1∑

j=0

(−1)j
(−τ/h

j

)
∇jGn (2.80)

denote the interpolation polynomial through (tn−k+1, Gn−k+1), . . . , (tn, Gn),
evaluated at tn + τ . Then, by definition of γj , we have

τ
k−1∑

j=0

γj(−τA)∇jGn =

∫ τ

0
e−(τ−σ)Ap(σ) dσ. (2.81)

Differentiating (2.79) with respect to τ by using (2.81), and inserting the
result into (2.1), gives the following differential equation for v:

v′(τ) = eτA
(
g(tn + τ, u(tn + τ))− p(τ)

)
, (2.82)

which is discretized with an explicit Runge–Kutta method or an explicit
multistep method, and the result is transformed back to the original vari-
ables via (2.79). In the case of Runge–Kutta methods, the resulting methods
will be exponential general linear methods. For their analysis see Section 2.7
and Ostermann et al. (2006).
At first glance, this looks strange due to the appearance of eτA, which is

not defined for semigroups. However, this is only a formal transformation
and the factor eτA will eventually disappear. For Runge–Kutta methods,
this requires the nodes ci ∈ [0, 1].
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Example 2.32. The method of Lawson (1967) consists of taking k = 0
(so the sum in (2.79) is empty) and solving (2.82) with Runge’s method.
This yields the exponential Runge–Kutta method

0
1
2

1
2e
−h/2A

0 e−h/2A
,

which is first-order accurate by Theorem 2.17. Ehle and Lawson (1975)
also considered k = 0, but used higher-order Runge–Kutta methods imple-
mented via rational approximations of the matrix functions. ⋄
Example 2.33. Taking k = 1 and Runge’s method gives

0
1
2

1
2ϕ1,2

ϕ1 − e−h/2A e−h/2A
,

which is a second-order exponential Runge–Kutta method by Theorem 2.17.
For k = 2 and Runge’s method we obtain

0
1
2

1
2(ϕ1,2 + ϕ2,2) −1

2ϕ2,2

ϕ1 + ϕ2 − 3
2e
−h/2A e−h/2A −ϕ2 +

1
2e
−h/2A

,

which is of second order, by Theorem 2.31. ⋄
Example 2.34. The following scheme, with k = 2 and the classical fourth-
order Runge–Kutta method, was proposed by Krogstad (2005):

0
1
2

1
2ϕ1,2 +

1
4ϕ2,2 −1

4ϕ2,2

1
2

1
2ϕ1,3 +

1
4ϕ2,3 − 3

4I
1
2I −1

4ϕ2,3 +
1
4I

1 ϕ1,4 + ϕ2,4 − 3
2ϕ0,2 0 ϕ0,2 −ϕ2,4 +

1
2ϕ0,2

ϕ1 + ϕ2 − ϕ0,2 − 1
3I

1
3ϕ0,2

1
3ϕ0,2

1
6I −ϕ2 +

1
3ϕ0,2 +

1
6I

.

This scheme satisfies (2.77) for m = 1, 2 and (2.78) for p = 3. According to
Theorem 2.31, it is of order three. ⋄
2.8. Magnus integrators

A simple exponential integrator for the non-autonomous linear problem

u′(t) = A(t)u(t) + b(t), 0 < t ≤ T, u(0) = u0 (2.83)

can be obtained by freezing A and b at tn+1/2. This yields the numerical
scheme

un+1 = ehAn+1/2un + hϕ1(hAn+1/2)bn+1/2, n ≥ 0, (2.84)
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with

An+1/2 = A

(
tn +

h

2

)
, bn+1/2 = b

(
tn +

h

2

)
.

The method belongs to the class of Magnus integrators. For b = 0 it was
studied for time-dependent Schrödinger equations in Hochbruck and Lubich
(2003); see Section 3.1 below.
For the analysis of scheme (2.84), stability bounds of the form

∥∥∥∥
n∏

i=m

ehAi+1/2

∥∥∥∥
X←X

≤ C (2.85)

are essential. We omit the details and refer to González, Ostermann and
Thalhammer (2006), where the Magnus integrator (2.84) is shown to be
second-order convergent under appropriate regularity assumptions. An ex-
tension of this theory to quasi-linear parabolic problems can be found in
González and Thalhammer (2007). Higher-order methods for the special
case b = 0 are analysed in Thalhammer (2006).

3. Highly oscillatory problems

In this section, we discuss numerical methods for problems having solutions
that are highly oscillatory in time. Obviously, the techniques of the pre-
vious section, which always used Taylor expansion of the exact solution,
are no longer applicable since higher-order time derivatives will now have
large norms. In order to obtain error estimates that are useful for practi-
cal applications, it is crucial to base the analysis on assumptions related to
the particular problem, for instance the assumption that the energy of a
physical problem remains bounded.
We will treat first- and second-order differential equations such as Schrö-

dinger equations with time-dependent Hamiltonian, Newtonian equations
of motion, and semilinear wave equations. In order to keep this review to
a reasonable length, among the many important properties of numerical
methods for highly oscillatory problems, we will only address their finite-
time error analysis. In particular, we will show that such problems can be
solved numerically so that the error of the numerical solution is bounded in-
dependently of the highest frequencies arising in the problem. An overview
of various principles for the construction of such integrators is given by Co-
hen, Jahnke, Lorenz and Lubich (2006). We refer to Hairer et al. (2006) and
references therein for a detailed study of further properties of the discrete
flow, such as long-time behaviour and energy conservation.
The numerical integration of highly oscillatory functions is a strongly re-

lated problem. We refer to Iserles and Nørsett (2004) for these quadrature
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methods. Related numerical integrators for highly oscillatory ordinary dif-
ferential equations are discussed in Iserles (2002a, 2002b); an application to
electronic engineering is given in Condon, Deaño and Iserles (2009).

3.1. Magnus integrators

This subsection is devoted to the construction of numerical integrators for
linear differential equations of the form

ψ′(t) = A(t)ψ(t), ψ(0) = ψ0, (3.1)

with a time-dependent, skew-Hermitian matrix A(t) = −A(t)∗. We follow
an approach due to Magnus (1954). In the context of geometric integra-
tion, such integrators were studied in Budd and Iserles (1999) and Iserles
and Nørsett (1999). An extensive review with many references on Magnus
methods is given by Blanes, Casas, Oteo and Ros (2009).
Without loss of generality, we scale the initial state ψ(0) = ψ0 such that

‖ψ0‖ = 1.

The assumption that A is skew-Hermitian implies ‖ψ(t)‖ = 1 for all t.
Moreover, we will use the following short notation:

ψn(τ) = ψ(tn + τ), An(τ) = A(tn + τ).

The idea of Magnus consists in writing the solution of (3.1) as

ψn(τ) = exp(Ωn(τ))ψn(0), n = 0, 1, . . . , (3.2)

for suitable matrices Ωn(τ), which are determined by differentiating (3.2),

ψ′n(τ) = dexpΩn(τ)(Ω
′
n(τ))ψn(0).

Here, the dexp operator can be expressed by

dexpΩ(B) = ϕ1(adΩ)(B) =
∑

k≥0

1

(k + 1)!
adkΩ(B), (3.3)

where adkΩ is defined recursively by

adΩ(B) = [Ω, B] = ΩB −BΩ,

adk+1
Ω (B) = adΩ(ad

k
Ω(B)), k = 1, 2, . . . .

Hence, ψ defined in (3.2) solves (3.1) if

An(τ) = dexpΩn(τ)(Ω
′
n(τ)), Ωn(0) = 0. (3.4)

In order to obtain an explicit differential equation for Ωn, we have to invert
the dexpΩn(τ) operator. Unfortunately, this operator cannot be guaranteed
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to be invertible unless ‖Ωn(τ)‖ < π. In this case, with βk denoting the kth
Bernoulli number, the series

dexp−1Ωn(τ)
(An(τ)) =

∑

k≥0

βk
k!

adkΩn(τ)
(An(τ)) (3.5)

converges. Taking the first terms of (3.5) yields

Ω′n(τ) = An(τ)−
1

2
[Ωn(τ), An(τ)] +

1

12

[
Ωn(τ), [Ωn(τ), An(τ)]

]
+ · · · .

Picard iteration yields the Magnus expansion:

Ωn(h) =

∫ h

0
An(τ) dτ −

1

2

∫ h

0

[∫ τ

0
An(σ) dσ,An(τ)

]
dτ

+
1

4

∫ h

0

[∫ τ

0

[∫ σ

0
An(µ) dµ,An(σ)

]
dσ,An(τ)

]
dτ (3.6)

+
1

12

∫ h

0

[∫ τ

0
An(σ) dσ,

[∫ τ

0
An(µ) dµ,An(τ)

]]
dτ + · · · .

Numerical methods are obtained by truncating this series and approximat-
ing the integrals by quadrature rules. If, for instance, A(t) is locally replaced
by an interpolation polynomial, then the integrals in the Magnus expansion
can be computed analytically. Denoting the result by Ωn, we obtain

ψn+1 = exp(Ωn)ψn, Ωn ≈ Ωn(h) (3.7)

as a numerical approximation to ψ(tn+1) at tn+1 = tn + h.

Example 3.1. The simplest method is obtained by truncating the series
after the first term and using the midpoint rule for approximating the inte-
gral. This yields the exponential midpoint rule

ψn+1 = ehA(tn+h/2)ψn, n = 0, 1, 2, . . . , (3.8)

which corresponds to the choice

Ωn = hAn(h/2) = hA(tn + h/2) (3.9)

in (3.7). ⋄
Example 3.2. Using two terms of the series and the two-point Gauss
quadrature rule with nodes c1,2 = 1/2∓

√
3/6 yields the fourth-order scheme

with

Ωn =
h

2

(
An(c1h) +An(c2h)

)
+

√
3h2

12
[An(c2h), An(c1h)]. (3.10)

This method requires two evaluations of A and one commutator in each
time step. ⋄
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High-order interpolatory Magnus integrators require the computation of
many commutators per step. Blanes, Casas and Ros (2002) constructed
(non-interpolatory) Magnus integrators for which the number of commuta-
tors could be reduced significantly.
While the Magnus series approach nicely motivates the numerical schemes,

it is not at all useful for studying the convergence of Magnus integrators in
the case of large ‖hA(t)‖. The reason is – as mentioned before – that dexpΩn

need not be invertible and the Magnus expansion need not converge; see
Moan and Niesen (2008) for a discussion of the convergence properties of the
Magnus expansion. Nevertheless, in important practical applications, Mag-
nus integrators work extremely well even with step sizes for which ‖hA(t)‖
is large.
For the analysis of the exponential midpoint rule (3.8), we use the follow-

ing assumption.

Assumption 3.3. We assume that A(t) is skew-Hermitian and that the
mth derivative satisfies

‖A(m)(t)‖ ≤Mm, m = 1, 2, . . . , p

for an appropriate integer p ≥ 1. ◦
The following theorem was given by Hochbruck and Lubich (1999b).

Theorem 3.4.

(i) If Assumption 3.3 is satisfied with p = 1, then the error of the method
(3.8) is bounded by

‖ψn − ψ(tn)‖ ≤ C h

for 0 ≤ tn ≤ T . Here, C depends only on M1 and T .

(ii) Let Assumption 3.3 hold with p = 2 and let the Hermitian matrix

H(t) = − iA(t)

be positive definite. Further assume that there exists 0 < α ≤ 1 such
that

‖H(t)αψ(t)‖ ≤ Cα, (3.11)

‖H(t)αA′(t)ψ(t)‖ ≤ Cα (3.12)

for 0 ≤ t ≤ T . Then the error of the method (3.8) is bounded by

‖ψn − ψ(tn)‖ ≤ C h1+α

for 0 ≤ tn ≤ T . Here, C only depends on Cα, M1, M2, and T .

The assumption of a positive definite H(t) is not essential. If the eigen-
values of H(t) are bounded from below by −κ, then the result still holds
when H(t) is replaced by H(t) + (κ+ 1)I in (3.11) and (3.12).
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Proof of Theorem 3.4. (i) We insert the exact solution into the numerical
scheme and obtain

ψ(tn+1) = ehAn(h/2)ψ(tn) + δn+1 (3.13)

with defect δn+1. By writing (3.1) as

ψ′(t) = A(t)ψ(t) = An(h/2)ψ(t) +
(
A(t)−An(h/2)

)
ψ(t)

and applying the variation-of-constants formula (2.8), we find

δn+1 =

∫ h

0
e(h−τ)An(h/2)

(
An(τ)−An(h/2)

)
ψ(tn + τ) dτ. (3.14)

By assumption, we have ‖δn+1‖ ≤ CM1h
2. Denote the error as usual by

en = ψn−ψ(tn). Subtracting (3.13) from the numerical scheme (3.8) yields
the error recursion

en+1 = ehAn(h/2)en − δn+1.

Solving this recursion and using e0 = 0 gives

‖en‖ ≤
n∑

j=1

‖δj‖ ≤ CM1Th.

(ii) Using once more the variation-of-constants formula for ψ(tn + τ) in
(3.14) yields

δn+1 =

∫ h

0
e(h−τ)An(h/2)(τ − h/2)A′n(h/2)e

τAn(h/2)ψ(tn) dτ +O(h3),

where the constant hidden in the O(h3) term depends only on M2.
In the defect δn+1, we write ψ(tn) = H−αn+1/2H

α
n+1/2ψ(tn), whereHn+1/2 =

H(tn + h/2). From H(t) = − iA(t) we obtain the bound

‖(esAn(h/2) − I)H−αn ‖ ≤ max
x>0

|(e− isx − 1)/xα| ≤ C |s|α.

By condition (3.11) we have

∫ h

0
e(h−τ)An(h/2)(τ − h/2)A′n(h/2)(e

τAn(h/2) − I)H−αn+1/2H
α
n+1/2ψ(tn) dτ

= O(h2+α),

and therefore the defect can be written as

δn+1 =

∫ h

0
e(h−τ)An(h/2)(τ − h/2) dτ A′n(h/2)ψ(tn) +O(h2+α).

Using condition (3.12) and, once more, the same argument to eliminate the
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factor e(h−τ)An(h/2), we obtain

δn+1 =

∫ h

0
(τ − h/2) dτ A′n(h/2)ψ(tn) +O(h2+α) = O(h2+α)

because the integral vanishes. This proves the desired estimate.

Remark 3.5. Under certain non-resonance conditions and conditions on
the smoothness of the eigen-decompositions of A(t), second-order error
bounds can be proved: see Hochbruck and Lubich (1999b, Theorem 2.1)
for details.

The convergence behaviour of higher-order Magnus integrators was ex-
plained in Hochbruck and Lubich (2003). Our presentation closely follows
this paper.

Assumption 3.6. We assume that there exist constants Mq > 0 and a
symmetric, positive definite matrix D such that

A(t) = − i(D2 + V (t)) (3.15)

with ‖V (q)(t)‖ ≤ Mq for q = 0, 1, 2, . . . . Moreover, we assume that there
exists a constant K > 0 such that, for all vectors v and for all step sizes
h > 0, the commutator bound

‖[A(τ), A(σ)]v‖ ≤ Kh ‖Dv‖ for |τ − σ| ≤ h (3.16)

holds. ◦
Without loss of generality, we further assume

‖v‖ ≤ ‖Dv‖ for all v. (3.17)

This can be achieved by shifting D by the identity matrix.

Example 3.7. We consider the linear Schrödinger equation on a d-dimen-
sional torus T with time-dependent potential,

iψ′ = H(t)ψ = −∆ψ + V (t)ψ.

Here ∆ denotes the Laplacian and V (t) is a bounded and smooth multipli-
cation operator. By setting D2 = −∆+ I, we obtain

‖Dv‖2 =
∫

T

|∇v|2 dx+

∫

T

v2 dx,

so that ‖Dv‖ is the familiar H1 Sobolev norm of v. In the spatially dis-
cretized case, ‖Dv‖ can be viewed as a discrete Sobolev norm. For a space
discretization with minimal grid spacing ∆x, we note that ‖D2‖ ∼ ∆x−2

and ‖D‖ ∼ ∆x−1.
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In the continuous case, the commutator bound (3.16) is valid since [D2, V ]
is a first-order differential operator. For a spectral discretization the com-
mutator bound is proved, uniformly in the discretization parameter, in
Jahnke and Lubich (2000, Lemma 3.1). ⋄
The idea of Hochbruck and Lubich (2003) was to interpret the numerical

approximation as the exact solution of a modified problem. Truncation of
the Magnus expansion (3.6) amounts to using a modified Ω̃n instead of Ωn

in (3.2), i.e.,

ψ̃n(τ) = exp(Ω̃n(τ))ψ(tn). (3.18)

For the exponential midpoint rule we truncate the series after the first term
and obtain

Ω̃n(τ) =

∫ τ

0
An(σ) dσ, 0 ≤ τ ≤ h. (3.19)

By differentiating (3.18), we obtain the approximate solution ψ̃n as the
solution of the modified differential equation

ψ̃′n(τ) = Ãn(τ)ψ̃n(τ), ψ̃n(0) = ψn(0) = ψ(tn), (3.20)

with

Ãn(τ) = dexp
Ω̃n(τ)

(Ω̃′n(τ)).

Note that the truncated Magnus series Ω̃n(τ) and the modified operator

Ãn(τ) are skew-Hermitian if A(t) is skew-Hermitian. As the following lemma

shows, a bound on Ãn(τ) − An(τ) then immediately leads to a local error
bound.

Lemma 3.8. Let ψ be a solution of (3.1) with skew-Hermitian A(t), and

ψ̃ a solution of (3.20). Then their difference is bounded by

‖ψ̃n(τ)− ψn(τ)‖ ≤ Ch3 max
0≤σ≤h

‖Dψn(σ)‖, 0 ≤ τ ≤ h.

Proof. For En(τ) = Ãn(τ)−An(τ), we write (3.1) as

ψ′n(τ) = An(τ)ψn(τ) = Ãn(τ)ψn(τ)− En(τ)ψn(τ)

and subtract it from (3.20). This shows that the error ẽn(τ) = ψ̃n(τ)−ψn(τ)
satisfies

ẽ ′n(τ) = Ãn(τ)ẽn(τ) + En(τ)ψn(τ), ẽn(0) = 0. (3.21)

Taking the inner product with ẽn on both sides of (3.21) and noting that

Ãn is skew-Hermitian, we have

Re 〈ẽ ′n, ẽn〉 = Re 〈En ψn, ẽn〉 ≤ ‖En ψn‖ ‖ẽn‖.
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On the other hand, we have

Re 〈ẽ ′n, ẽn〉 =
1

2

d

dτ
‖ẽn‖2 = ‖ẽn‖

d

dτ
‖ẽn‖ ≤ ‖En ψn‖ ‖ẽn‖.

Integrating the inequality proves the bound

‖ψ̃n(τ)− ψn(τ)‖ ≤
∫ τ

0
‖
(
Ãn(σ)−An(σ)

)
ψn(σ)‖ dσ.

For Ω̃n = Ω̃n(h), we next use the expansion

Ãn = dexp
Ω̃n

(Ω̃′n) = Ω̃′n + ϕ2(adΩ̃n
)(ad

Ω̃n
(Ω̃′n))

and An = Ω̃′n by (3.19). It was shown in Hochbruck and Lubich (2003,
Lemma 5.1) that the remainder can be bounded by

‖ϕ2(adΩ̃n
)(ad

Ω̃n
(Ω̃′n))ψn(σ)‖ ≤ Ch2 ‖Dψn(σ)‖, 0 ≤ τ ≤ h. (3.22)

This finally proves the desired result.

Theorem 3.9. Let Assumption 3.6 hold. If A(t) satisfies the commuta-
tor bound (3.16), then the error of the exponential midpoint rule (3.8) is
bounded by

‖ψn − ψ(tn)‖ ≤ Ch2 tn max
0≤t≤tn

‖Dψ(t)‖.

The constant C depends only on Mm for m ≤ 2 and on K. In particular,
C is independent of n, h, and ‖D‖.
Proof. Inserting the exact solution ψ of (3.1) into the numerical scheme
yields

ψ(tn+1) = exp(Ωn)ψ(tn) + δn+1, (3.23)

with defect

δn+1 = ψ(tn+1)− exp(Ω̃n)ψ(tn) + exp(Ω̃n)ψ(tn)− exp(Ωn)ψ(tn).

Since the midpoint rule is of order two and due to ‖A′′(t)‖ ≤ M2, the
quadrature error is bounded by

‖Ω̃n − Ωn‖ =

∥∥∥∥
∫ h

0

(
An(τ)−An(h/2)

)
dτ

∥∥∥∥ ≤ 1

24
M2h

3,

and this leads immediately to

‖eΩ̃n − eΩn‖ =

∥∥∥∥
∫ 1

0
e(1−s)Ωn(Ω̃n − Ωn)e

sΩ̃n ds

∥∥∥∥ ≤ 1

24
M2h

3. (3.24)

By Lemma 3.8, estimates (3.22) and (3.24), and assumption (3.17), we
obtain

‖δn+1‖ ≤ Ch3 max
tn≤t≤tn+1

‖Dψ(t)‖.



252 M. Hochbruck and A. Ostermann

Subtracting (3.23) from (3.7) leads to the error recursion

en+1 = exp(Ωn)en − δn+1

for en = ψn − ψ(tn), and thus

‖en‖ ≤
n∑

j=1

‖δj‖. (3.25)

This proves the stated error estimate.

The following error bound of Hochbruck and Lubich (2003, Theorem 3.2)
holds for pth-order interpolatory Magnus integrators, i.e., those based on a
pth-order truncation of the Magnus series and polynomial interpolation of
A(t) at the nodes of a pth-order quadrature formula.

Theorem 3.10. Let Assumption 3.6 hold and assume that for a method
of classical order p, which contains commutator products of A(tn+cjh) with
r factors, the commutator bounds

∥∥∥∥
[
A(τk),

[
. . . ,

[
A(τ1),

dm

dtm
V (τ0)

]]
. . .

]
v

∥∥∥∥ ≤ K ‖Dkv‖ (3.26)

hold for arbitrary times τj for 0 ≤ m ≤ p and k+1 ≤ rp. Then the pth-order
interpolatory Magnus integrators satisfy the error bound

‖ψn − ψ(tn)‖ ≤ Chp tn max
0≤t≤tn

‖Dp−1ψ(t)‖,

for time steps h satisfying h‖D‖ ≤ c. The constant C depends only on Mm

for m ≤ p, on K, c, and on p. In particular, C is independent of n, h, and
‖D‖ as long as h‖D‖ ≤ c.

In Example 3.2, we have r = 2 for order p = 4. For all Magnus methods
proposed in the literature, r ≤ p− 1 holds.

Adiabatic integrators for time-dependent Schrödinger equations

Next we consider the related singularly perturbed problem

ψ′(t) =
1

ε
A(t)ψ(t), 0 < ε≪ 1. (3.27)

We still impose Assumption 3.3. For background information about the
adiabatic theory in quantum dynamics we refer to Teufel (2003).
Solving this problem by the exponential midpoint rule would require time

steps of size h = O(ε) to achieve reasonable accuracy. Moreover, the con-
vergence bounds of Section 3.1 are not practical here, due to the large factor
1/ε multiplying the derivatives of A(t).
A different approach to the solution of such problems is based on adiabatic

transformations: see Jahnke and Lubich (2003), Jahnke (2004), Hairer et al.
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(2006, Chapter XIV) and references therein. The main idea is to represent
the solution in a rotating frame of eigenvectors of A. Let

− iA(t) = H(t) = Q(t)Λ(t)Q(t)∗, Λ(t) = diag(λk(t)) (3.28)

be the eigen-decomposition of the real symmetric matrix H(t). Here, λk(t)
are the eigenvalues and Q(t) is the orthogonal matrix of eigenvectors of H(t)
depending smoothly on t (unless, possibly, crossings of eigenvalues occur).
Then the adiabatic transformation is defined by

η(t) = e−
i

ε
Φ(t)Q(t)∗ψ(t), (3.29a)

where

Φ(t) = diag(φj(t)) =

∫ t

0
Λ(s) ds. (3.29b)

Differentiation with respect to t leads to the differential equation

η′(t) = e−
i

ε
Φ(t)W (t)e

i

ε
Φ(t)η(t), W (t) = Q′(t)∗Q(t). (3.30)

The orthogonality of Q ensures thatW is a skew-symmetric matrix for all t.
Note that the assumption on the smoothness of the eigenvectors guarantees
that ‖η′(t)‖ is bounded. The quantum-adiabatic theorem of Born and Fock
(1928) yields that the solution of (3.30) satisfies

η(t) = η(0) +O(ε) (3.31)

uniformly on bounded time intervals if the eigenvalues are separated from
each other by a constant δ, which is independent of ε, i.e., if

|λj(t)− λk(t)| ≥ δ, (3.32)

and if ‖Λ′(t)‖ ≤ C, ‖Q′(t)‖ ≤ C for some constant C for 0 ≤ t ≤ T .
Quantities satisfying (3.31) are called adiabatic invariants.
We consider (3.30) with the bounded matrix

B(t) = e−
i

ε
Φ(t)W (t)e

i

ε
Φ(t).

Since B is highly oscillatory, the exponential midpoint rule should not be
applied directly. Instead, an averaging process should first be applied. We
will explain the basic idea presented by Jahnke and Lubich (2003) and
Jahnke (2004) for the construction of such methods. For the simplest scheme
– which, however, is not of practical interest – the phase is approximated by

Φ(tn + τ) ≈ Φ(tn + h/2) + (h/2− τ)Λ(tn + h/2) =: Φ̃n+1/2(τ),

with an error of size O(h2) for 0 ≤ τ ≤ h. This approximation is inserted
into B(t), the slow variableW is approximated by its value at the midpoint,
and the time average is taken over a time step. This results in the following
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approximation:

B(tn+h/2) ≈ B̃n+1/2 =
1

h

∫ h

0
e−

i

ε
Φ̃n+1/2(τ)W (tn+h/2)e

i

ε
Φ̃n+1/2(τ) dτ. (3.33)

The integration can be done exactly, leading to

B̃n+1/2 = E(Φ(tn+1/2)) • I(Λ(tn+1/2)) •W (tn+1/2),

where • denotes the entrywise product of matrices. The matrices E and I
are defined by

E(Φ)jk = e−
i

ε
(φj−φk),

I(Λ)jk =

∫ h/2

−h/2
e−

i

ε
τ(λj−λk) dτ = sinc

(
h

2ε
(λj − λk)

)
.

The averaged adiabatic exponential midpoint rule finally reads

ηn+1 = ehB̃n+1/2ηn, n = 0, 1, 2, . . . . (3.34)

Unfortunately, the error of this scheme is O(min{ε, h}) only, which is not
satisfactory because η is an adiabatic invariant.
Practically relevant schemes use better approximations of the phase and

of the factor W (s), and are combined with recursive usage of the variation-
of-constants formula or higher-order Magnus integrators. Such methods are
presented and analysed in Jahnke and Lubich (2003) and Jahnke (2003,
2004).

3.2. Second-order differential equations

We now consider the second-order differential equation

q′′(t) = f(q(t)), q(0) = q0, q
′(0) = p0, (3.35a)

where we assume that the force f can be decomposed into fast and slow
forces:

f = ffast + fslow. (3.35b)

In practice, the fast forces are often cheap to evaluate while slow forces are
expensive to compute. Therefore, we are interested in constructing methods
that use only one evaluation of the slow force per time step.
We start with the semilinear problem where ffast is a linear force and

where, for simplicity, the slow force is denoted by g:

q′′(t) = −Ω2q(t) + g(q(t)), q(0) = q0, q
′(0) = p0. (3.36)

Ω is assumed to be a symmetric positive definite matrix. We are interested
in the case where high frequencies occur, i.e., ‖Ω‖ ≫ 1.
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The variation-of-constants formula (2.19) applied to the equivalent first-
order system

[
q(t)
p(t)

]′
=

[
0 I

−Ω2 0

] [
q(t)
p(t)

]
+

[
0

g(q(t))

]
(3.37)

yields
[
q(t)
p(t)

]
= R(tΩ)

[
q(0)
p(0)

]
+

∫ t

0

[
Ω−1 sin((t− s)Ω)
cos((t− s)Ω)

]
g(q(s)) ds, (3.38)

with

R(tΩ) = exp

(
t

[
0 I

−Ω2 0

])
=

[
cos(tΩ) Ω−1 sin(tΩ)

−Ωsin(tΩ) cos(tΩ)

]
. (3.39)

Numerical methods can be constructed by approximating the integral ap-
propriately, either by using a standard quadrature rule or by approximating
the function g and integrating exactly. We consider explicit schemes only.

Example 3.11. Gautschi (1961) developed a number of trigonometric
multistep methods that use the above variation-of-constants formula (3.38).
A symmetric two-step scheme is obtained by replacing g(q(s)) by g(qn) to
approximate q(tn ± h). Adding and subtracting yield

qn+1 − 2 cos(hΩ)qn + qn−1 = h2 sinc2
(
h
2Ω

)
g(qn),

where sinc ξ = sin ξ/ξ. Approximations to the momenta can be obtained via

pn+1 − pn−1 = 2h sinc(hΩ)(−Ω2qn + g(qn)).

The same approximation of g within the integral (3.38) leads to the one-step
scheme [

qn+1

pn+1

]
= R(hΩ)

[
qn
pn

]
+
h

2

[
h sinc2

(
h
2Ω

)

2 sinc(hΩ)

]
g(qn).

However, we would like to stress that the two schemes are not equivalent. ⋄
Example 3.12. Deuflhard (1979) refined Gautschi’s method by using the
trapezoidal rule to approximate the integrals. He suggested the two-step
scheme

qn+1 − 2 cos(hΩ)qn + qn−1 = h2 sinc(hΩ) g(qn)

and its one-step formulation
[
qn+1

pn+1

]
= R(hΩ)

[
qn
pn

]
+
h

2

[
h sinc(hΩ)g(qn)

cos(hΩ)g(qn) + g(qn+1)

]
.

In contrast to Gautschi’s method, this scheme is symmetric as a one- and a
two-step method. ⋄
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If ‖Ω‖ ≫ 1, the solution of (3.36) will have highly oscillatory components.
The pointwise evaluation of the right-hand side g in combination with large
time steps is not advisable. Much better behaviour can be expected if g
is evaluated at an averaged value of q. Clearly, there is a lot of freedom
in choosing such averages. Garćıa-Archilla, Sanz-Serna and Skeel (1998)
propose solving an auxiliary problem,

y′′ = −Ω2y, y(0) = q, y′(0) = 0,

and computing the averaged solutions over a time step of length h,

a(q) =
1

h

∫ h

0
y(τ) dτ = sinc(hΩ)q. (3.40)

The examples above and the averaging approach suggest the following
class of two-step methods for the solution of (3.36):

qn+1 − 2 cos(hΩ)qn + qn−1 = h2ψ(hΩ) g(φ(hΩ)qn). (3.41)

The schemes are symmetric if the filter functions ψ and φ are even, which
we will assume henceforth.
We also consider the corresponding class of one-step schemes given by

[
qn+1

pn+1

]
= R(hΩ)

[
qn
pn

]
+
h

2

[
hΨg(Φqn)

Ψ0g(Φqn) + Ψ1g(Φqn+1)

]
, (3.42)

where

Φ = φ(hΩ), Ψ = ψ(hΩ), Ψ0 = ψ0(hΩ), Ψ1 = ψ1(hΩ)

with suitable functions φ, ψ, ψ0 and ψ1; see Hairer et al. (2006, Chap-
ter XIII). The one-step method (3.42) is symmetric if and only if

ψ(ξ) = ψ1(ξ) sinc ξ, ψ0(ξ) = ψ1(ξ) cos ξ. (3.43)

A symmetric one-step scheme is equivalent to its corresponding two-step
scheme for appropriate initial values.

Finite-time error analysis

We now study the error of methods of the class (3.42) over a finite time
interval [0, T ] for problems whose solutions satisfy a finite-energy condition.
Our presentation is based on Grimm and Hochbruck (2006).

Assumption 3.13. We assume that there exists a constant K > 0 such
that the solution of (3.37) satisfies the finite-energy condition

1

2
‖p(t)‖2 + 1

2
‖Ωq(t)‖2 ≤ K2 (3.44)

uniformly for 0 ≤ t ≤ T . ◦
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The even analytic functions defining the integrator (3.42) are assumed to
be bounded on the non-negative real axis, i.e.,

max
ξ≥0

∣∣χ(ξ)
∣∣ ≤M1, χ = φ, ψ, ψ0, ψ1, (3.45)

for some constantM1. Moreover, we assume φ(0) = 1 and thus the existence
of a constant M2 such that

max
ξ≥0

∣∣∣∣
φ(ξ)− 1

ξ

∣∣∣∣ ≤M2. (3.46)

In addition, we assume

max
ξ≥0

∣∣∣∣
1

sin ξ
2

(
sinc2

ξ

2
− ψ(ξ)

)∣∣∣∣ ≤M3 (3.47)

and

max
ξ≥0

∣∣∣∣
1

ξ sin ξ
2

(sinc ξ − χ(ξ))

∣∣∣∣ ≤M4, χ = φ, ψ0, ψ1. (3.48)

The assumptions made so far are necessary to prove second-order error
bounds for the positions qn ≈ q(tn). In order to verify first-order error
bounds for the momenta p, we assume that

max
ξ≥0

∣∣ξ ψ(ξ)
∣∣ ≤M5, max

ξ≥0

∣∣∣∣
ξ

sin ξ
2

(
sinc2

ξ

2
− ψ(ξ)

)∣∣∣∣ ≤M6. (3.49)

Clearly, the constants M1 to M6 only depend on the choice of the analytic
functions. It is easy to find analytic functions for which

M := max
i=1,...,6

Mi

is a small constant.

Example 3.14. The method of Gautschi (1961) described in Example 3.11
uses the filters

φ(ξ) = 1, ψ(ξ) = sinc2(12ξ), ψ0(ξ) = 2 sinc ξ, ψ1(ξ) = 0.

Hence, condition (3.48) is not satisfied for ψ0 and ψ1. For the method of
Deuflhard (1979), we have

φ(ξ) = 1, ψ(ξ) = sinc ξ, ψ0(ξ) = cos ξ, ψ1(ξ) = 1.

These methods do not use an inner filter φ, and thus suffer from resonances.
Filter functions that fulfil (3.45)–(3.49) have been proposed in the litera-

ture. Garćıa-Archilla et al. (1998) suggested the choice

φ(ξ) = sinc ξ, ψ(ξ) = sinc2 ξ, (3.50)

and Grimm and Hochbruck (2006) suggested

φ(ξ) = sinc ξ, ψ(ξ) = sinc3 ξ. ⋄
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The following theorem of Grimm and Hochbruck (2006) states that suit-
ably chosen filter functions lead to second-order errors in the positions q
and first-order error bounds in the momenta p.

Theorem 3.15. In (3.36), let Ω be an arbitrary symmetric positive semi-
definite matrix and let the solution satisfy Assumption 3.13. Moreover,
suppose that g and the derivatives gq and gqq are bounded in the Euclidean
norm or the norms induced by the Euclidean norm, respectively. If the even
analytic functions of the scheme (3.42) satisfy (3.45)–(3.48), then

‖q(tn)− qn‖ ≤ h2C, 0 ≤ tn = nh ≤ T.

The constant C only depends on T,K, M1, . . . ,M4, ‖g‖, ‖gq‖, and ‖gqq‖.
If, in addition, (3.49) holds, then

‖p(tn)− pn‖ ≤ h C̃, 0 ≤ tn = nh ≤ T.

The constant C̃ only depends on T , K, M , ‖g‖, ‖gq‖, and ‖gqq‖.
Proof. Substitution of the exact solution into the integration scheme (3.42)
gives

[
q(tn+1)
p(tn+1)

]
= R(hΩ)

[
q(tn)
p(tn)

]

+

[
1
2h

2Ψg(Φq(tn))
h
2

(
Ψ0g(Φq(tn)) + Ψ1g(Φq(tn+1))

)
]
+

[
δn+1

δ′n+1

]
,

with the defects δn+1 and δ′n+1. Subtraction of equation (3.42) and summa-
tion leads to
[
en+1

e′n+1

]
= R(hΩ)n+1

[
e0
e′0

]
+

n∑

j=0

R(hΩ)n−j
[

1
2h

2ΨFjej
1
2hΨ0Fjej +

1
2hΨ1Fj+1ej+1

]

+

[
∆n+1

∆′n+1

]
, (3.51)

where en := q(tn)− qn and e′n := p(tn)− pn,

Fn :=

∫ 1

0
gq
(
Φ(qn + θen)

)
dθΦ, ‖Fn‖ ≤M1‖gq‖,

and [
∆n

∆′n

]
=

n∑

j=1

R
(
(n− j)hΩ

) [δj
δ′j

]
.

Unfortunately, the defects δj are of size O(h2) and the defects δ′j are of size
O(h) only. Bounding the sums in a standard way would yield first-order
error bounds for the positions and nothing for the velocities. The key point
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of the proof is now to write

δn+1 = h2 · (highly oscillatory function) · g(Φqn) +O(h3),

and to use a similar but more complicated form for hδ′n+1. Such expressions
are derived in Grimm and Hochbruck (2006, Lemmas 1 and 2). Using
summation by parts, the sums of highly oscillatory functions are bounded
independently of n as long as no resonances occur, while the differences of
the g-function yield an additional factor of h due to the smoothness of g.
In general, resonant frequencies will deteriorate the convergence and this
is exactly the place where the filter functions come into play. They are
constructed in such a way that possible resonances disappear. The analysis
is detailed in Grimm and Hochbruck (2006, Lemmas 3–6). We then have

‖∆n‖ ≤ Ch2 and ‖∆′n‖ ≤ Ch,

with a constant C independent of n as long as 0 ≤ nh ≤ T . Due to
e0 = e′0 = 0, the recursion (3.51) reads

en = h
n−1∑

j=1

Ljej +∆n,

where

Lj :=
1

2

(
h cos

(
(n− j)hΩ

)
Ψ+ (n− j)h sinc

(
(n− j)hΩ

)
Ψ0

+ (n+ 1− j)h sinc
(
(n+ 1− j)hΩ

)
Ψ1

)
Fj .

This yields

‖Lj‖ ≤ 3

2
TM2

1 ‖gq‖,

so that ‖en‖ ≤ Ch2 follows from Gronwall’s Lemma 2.15. Assumption
(3.49) and the recursion for e′n finally show ‖e′n‖ ≤ Ch.

Example 3.16. A similar result for two-step methods (3.41) was proved
in Hochbruck and Lubich (1999c). There, it was shown that the choice

ψ(ξ) = sinc2
ξ

2
, φ(ξ) =

(
1 +

1

3
sinc2

ξ

2

)
sinc ξ

yields a method with a small error constant. The conjecture that the error
constant is uniform in the number of time steps and the dimension of the
problem was proved elegantly in Grimm (2005a). ⋄
In Grimm (2002, 2005b) the error analysis is extended to more general

problems, where Ω = Ω(t, q) varies smoothly, i.e., the first and the second
partial derivatives of Ω(t, q) are bounded.
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Impulse and mollified impulse method

Writing (3.35) as a first-order differential equation, and using Strang split-
ting applied to [

q′

p′

]
=

[
p

ffast(q)

]
+

[
0

fslow(q)

]
,

yields the impulse method , by Grubmüller, Heller, Windemuth and Schul-
ten (1991) and Tuckerman, Berne and Martyna (1992). Following Garćıa-
Archilla et al. (1998), we state it in the following form:

kick p+n = pn +
h

2
fslow(qn),

oscillate solve q′′ = ffast(q) with initial values (qn, p
+
n ) over

a time step of length h to obtain (qn+1, p
−
n+1),

kick pn+1 = p−n+1 +
h

2
fslow(qn+1).

For linear fast forces (3.36), the ‘oscillate’ step can be computed exactly,
leading to [

qn+1

p−n+1

]
= R(hΩ)

[
qn
p+n

]
.

The method is then precisely the scheme of Deuflhard (1979), described in
Example 3.12 above. For more general forces f , the ‘oscillate’ step can be
done numerically using smaller time steps. This is affordable since the fast
forces are usually cheap to evaluate.
It was observed in Biesiadecki and Skeel (1993) that the impulse method

also suffers from resonances, which may occur if eigenvalues of hΩ are integer
multiples of π. They can be circumvented by suitable averaging. When the
slow force has a potential U , fslow = −∇U , Garćıa-Archilla et al. (1998)
suggest replacing U(q) by an averaged potential U(q) = U(a(q)). This
leads to a mollified force:

f slow(q) = a′(q)T fslow(a(q)). (3.52)

The same technique can then be used in the general case where f does not
have a potential. The mollified impulse method of Garćıa-Archilla et al.

(1998) consists of using the averaged slow force f slow instead of fslow in the
impulse method.
To compute the mollifier, we solve the auxiliary problem

y′′ = ffast(y), y(0) = q, y′(0) = 0,

together with the variational equation

Y ′′ = f ′fast(y(t))Y, Y (0) = I, Y ′(0) = 0,
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and compute the averaged solutions over a time step of length h,

a(q) =
1

h

∫ h

0
y(τ) dτ, a′(q) =

1

h

∫ h

0
Y (τ) dτ.

Example 3.17. For linear forces as in (3.36), we obtain the averaging
function (3.40) and thus a′(q) = sinc(hΩ). The mollified impulse method
then reads:

kick p+n = pn +
h

2
sinc(hΩ)g

(
sinc(hΩ)qn

)
,

oscillate

[
qn+1

p−n+1

]
= R(hΩ)

[
qn
p+n

]
,

kick pn+1 = p−n+1 +
h

2
sinc(hΩ)g

(
sinc(hΩ)qn+1

)
,

and this is equivalent to (3.42) with filter (3.50). Thus the convergence
is covered by Theorem 3.15. Different proofs have been given by Garćıa-
Archilla et al. (1998) and by Hochbruck and Lubich (1999c). ⋄

Multiple time-stepping

Yet another way to treat different scales in the general case (3.35) is moti-
vated by the following relation satisfied by the exact solution:

q(t+ h)− 2q(t) + q(t− h) = h2
∫ 1

−1
(1− |θ|)f(q(t+ θh)) dθ;

see Hairer et al. (2006, Chapter VIII.4). The force is approximated by

f(q(tn + θh)) ≈ ffast(y(θh)) + fslow(qn),

where y(τ) is a solution of the auxiliary problem

y′′(τ) = ffast(y(τ)) + fslow(qn), y(0) = qn, y
′(0) = pn. (3.53)

This yields
∫ 1

−1
(1− |θ|)f(qn + y(θh)) dθ =

1

h2
(
y(h)− 2y(0) + y(−h)

)
. (3.54)

For the velocities we proceed analogously, starting from

y′(t+ h)− y′(t− h) = h

∫ 1

−1
f(q(t+ θh)) dθ.

The auxiliary problem (3.53) can either be solved exactly or by a standard
method such as the Störmer–Verlet scheme with a smaller step size on the
time interval [−h, h]. Denoting the approximations by yn±1 ≈ y(±h), this
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yields the following symmetric two-step method of Hochbruck and Lubich
(1999c):

qn+1 − 2qn + qn−1 = yn+1 − 2yn + yn−1,

pn+1 − pn−1 = y′n+1 − y′n−1.

To obtain a one-step scheme, we solve

y′′(τ) = ffast(y(τ)) + fslow(qn), y(0) = qn, y
′(0) = 0. (3.55)

Note that, for linear fast forces, the averaged force (3.54) is independent of
y′(0), as can be seen from (3.38). Moreover, the solution of (3.55) is even,
y(−τ) = y(τ), which means that the integration has to be done for τ ∈ [0, h]
only. Hence the averaged force (3.54) can be computed from the solution of
(3.55) via

f̃n =
2

h2
(y(h)− qn).

This leads to the scheme

pn+1/2 = pn +
h

2
f̃n,

qn+1 = qn + hpn+1/2,

pn+1 = pn+1/2 +
h

2
f̃n+1;

see Hairer et al. (2006, Chapter VIII.4). The variables pn can be interpreted
as averaged velocities

pn =
qn+1 − qn−1

2h
≈ q(tn+1)− q(tn−1)

2h
=

1

2

∫ 1

−1
q′(tn + θh) dθ.

Methods using averaged forces have been used for applications in quan-
tum-classical molecular dynamics. We refer to the review by Cohen et al.

(2006) for details and further references.

Remark 3.18. The geometric properties of the methods considered above
have recently been intensively studied. It is straightforward to verify that
symmetric one-step methods (3.42) are symplectic if and only if

ψ(ξ) = sinc(ξ)φ(ξ).

In Hairer and Lubich (2000), however, long-time near-energy conservation
for linear problems has been proved under the condition

ψ(ξ) = sinc2(ξ)φ(ξ),

which cannot be satisfied by a symplectic method. For an overview of
geometric properties and, in particular, the techniques of modulated Fourier
expansions, we refer to Hairer et al. (2006) and Hairer and Lubich (2009).
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Adiabatic integrators

Finally, we consider the singularly perturbed second-order differential equa-
tion

q′′(t) +
1

ε2
Ω(t)2q(t) =

1

ε2
f(t), (3.56)

with real symmetric positive definite matrix Ω(t). We start with the homo-
geneous problem and use the notation

ψ(t) =

[
q(t)
p(t)

]
.

Rewriting (3.56) as a first-order system reads

ψ′(t) =
1

ε
A(t)ψ(t) +G(t)ψ(t),

with

A(t) =

[
0 Ω(t)

−Ω(t) 0

]
, G(t) =

[
0 0
0 −Ω(t)−1Ω′(t)

]
.

Except for a perturbation which is bounded independently of ε, this per-
turbed first-order problem is of the form (3.27). Next we diagonalize A to
obtain (3.28). Note that the eigenvalues of H occur in pairs of ±ωj , where
ωj > 0 are the eigenvalues of Ω. Using the adiabatic transformation (3.29)
leads to

η′(t) = e−
i

ε
Φ(t)W (t)e

i

ε
Φ(t)η(t) + e−

i

ε
Φ(t)G̃(t)e

i

ε
Φ(t)η(t), (3.57)

with
W (t) = Q′(t)∗Q(t) and G̃(t) = Q(t)∗G(t)Q(t).

If, in addition to (3.32), we assume that the frequencies are bounded away
from zero,

|λj | ≥
δ

2
,

and that Q depends smoothly on t, (3.57) is a linear differential equation
with bounded operator. This allows us to apply a Magnus-type integrator,
for instance a variant of the exponential midpoint rule (3.34). For details,
we refer to Lorenz, Jahnke and Lubich (2005).
The inhomogeneity f in (3.56) can be handled by yet another transfor-

mation:

w(t) = q(t)− Ω(t)−2f(t) + ε2Ω(t)−2
d2

dt2
(Ω(t)−2f(t)).

Differentiating twice shows that w satisfies

w′′(t) +
1

ε2
Ω(t)2w(t) = ε2

d2

dt2

(
Ω(t)−2

d2

dt2
(Ω(t)−2f(t))

)
.
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The term on the right-hand side leads to an error of size O(ε4) in the
solution, and hence can be omitted if an approximation with error O(h2)
is required for step sizes h > ε. Then the equation for w is again of the
type (3.56).
Adiabatic integrators for mechanical systems with time-dependent fre-

quencies are studied in more detail in Hairer et al. (2006, Chapter XIV.2).
In particular, an error analysis for the mollified impulse method for solving
singularly perturbed second-order problems is presented there.

4. Implementation issues

The implementation of exponential integrators requires the approximation
of products of matrix functions with vectors, that is,

φ(A)v, A ∈ R
d×d, v ∈ R

d.

Clearly, the efficiency of these integrators strongly depends on the numerical
linear algebra used to compute these approximations. Standard methods
such as diagonalization or Padé approximation will only be useful if the
dimension of the matrix is not too large; see Moler and Van Loan (2003)
and Higham (2008). We refer to the review by Higham and Al-Mohy (2010)
in this volume and concentrate here on large-scale problems.
For simplicity, we always scale v to have unit norm.

4.1. Chebyshev methods

If the matrix A is Hermitian or skew-Hermitian for which a priori informa-
tion about an enclosure of spectrum is available, then a very efficient way
of approximating φ(A)v for some vector v is to use a truncated Chebyshev
series. For simplicity, we only consider the exponential function here.
It is well known that a smooth function φ : [−1, 1] → C can be expanded

in a Chebyshev series:

φ(ξ) = c0 + 2

∞∑

k=1

ckTk(ξ).

Here, Tk denotes the kth Chebyshev polynomial, which is defined by

Tk(ξ) = cos(k arccos ξ), ξ ∈ [−1, 1]

and

ck =
1

π

∫ 1

−1
Tk(ξ)φ(ξ)

1√
1− ξ2

dξ =
1

π

∫ π

0
cos(kθ)φ(cos θ) dθ. (4.1)

Chebyshev polynomials satisfy the recursion

Tk+1(ξ) = 2ξTk(ξ)− Tk−1(ξ), k = 1, 2, . . .

initialized by T0(ξ) = 1 and T1(ξ) = ξ.
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An approximation of φ can be obtained by truncating the Chebyshev
series of φ after m terms,

Smφ(ξ) = c0 + 2
m−1∑

k=1

ckTk(ξ).

Note that Sm is a polynomial of degree m− 1.
For real ω and φ(ξ) = e−ωξ, we have by (4.1)

ck = ikJk(iω) = Ik(−ω),
where Jk denotes the kth Bessel function and Ik the kth modified Bessel
function, while for φ(ξ) = eiωξ we get

ck = ikJk(ω).

If A is Hermitian with eigenvalues in [a, b] ⊂ R, then a linear transformation
to the interval [−1, 1] yields the approximation

Sme−hA = e−h(a+b)/2

(
c0 + 2

m−1∑

k=1

ckTk

(
2

b− a

(
A− a+ b

2
I

)))
,

with

ck = Ik

(
−hb− a

2

)
.

On the other hand, if A is skew-Hermitian with eigenvalues contained in
the interval i[a, b] on the imaginary axis, then

SmehA = e ih(a+b)/2

(
c0 + 2

m−1∑

k=1

ckTk

( −2

b− a

(
iA+

a+ b

2
I

)))
,

with

ck = ikJk

(
h
b− a

2

)
.

The approximation Sme±hAv can be computed efficiently with the Clenshaw
algorithm.
For the approximation error in the case of Hermitian A, the following

result was given by Stewart and Leyk (1996, Section 4); see also Bergamaschi
and Vianello (2000).

Theorem 4.1. Let A be a Hermitian positive semi-definite matrix with
eigenvalues in the interval [0, ρ]. Then the error of the mth Chebyshev
approximation of e−hA, i.e., εm := ‖e−hA − Sme−hA‖, is bounded by

εm ≤ 2 exp

(
−βm

2

hρ

)(
1 +

√
hρπ

4β

)
+

2δhρ

1− δ
, 0 < m ≤ hρ,

where β = 2/(1 +
√
5) ≈ 0.618 and δ = eβ/(2 +

√
5) ≈ 0.438.
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Remark 4.2. The bounds given in this theorem are not optimal. One can
obtain sharper bounds (similar to Theorem 4.4) by combining Bernstein’s
theorem (see Lubich (2008, Theorem III.2.1)) with the techniques used in
the proof of Hochbruck and Lubich (1997, Theorem 2). We do not elaborate
on this here.

For skew-Hermitian matrices, the subsequent convergence result is given
in Lubich (2008, Theorem III.2.4).

Theorem 4.3. Let A be a skew-Hermitian matrix with eigenvalues in the
interval i[a, b]. Then the error of the mth Chebyshev approximation of ehA,
i.e., εm := ‖ehA − SmehA‖, is bounded by

εm ≤ 4

(
exp

(
1−

(
ω

2m

)2) ω

2m

)m

, ω = h
b− a

2
≤ m.

For general matrices, one has to use truncated Faber series instead of
Chebyshev series. This technique has been employed by Knizhnerman
(1991) and Moret and Novati (2001) for the exponential function.
As mentioned at the start of this subsection, Chebyshev methods require

a priori information on the spectrum. In contrast, Krylov subspace meth-
ods, which we consider next, work without any a priori information on
the field of values of the matrix. Moreover, they exploit clustering of the
spectrum and take advantage of particular properties of the vector b.

4.2. Krylov subspace methods

We assume that the reader is familiar with the basics of solving a linear
system with a Krylov subspace method; see, for instance, Saad (2003). The
mth Krylov subspace with respect to a vector b ∈ C

d and a matrix A ∈ C
d×d

will be denoted by

Km(A, b) = span {b, Ab, . . . , Am−1b}.
Without loss of generality we scale b such that ‖b‖ = 1.
There are several different ways to derive Krylov approximations to the

product of a matrix function with a vector. Here, we present an approach
motivated by the Cauchy integral formula:

φ(A)b =
1

2π i

∫

Γ
φ(λ)(λI −A)−1b dλ =

1

2π i

∫

Γ
φ(λ)x(λ) dλ. (4.2)

The curve Γ is a suitable contour surrounding the field of values F(A) of
the matrix A and φ is assumed to be analytic in a neighbourhood of F(A).
The integrand contains, for each λ ∈ Γ, the solution of a linear system of
equations:

(λI −A)x(λ) = b. (4.3)
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A Krylov subspace method for approximating the solution of (4.3) first
constructs a basis of the Krylov subspace Km(λI −A, b). Fortunately, since
Km(A, b) = Km(λI − A, b) for each λ ∈ C, the same Krylov subspace can
be used for all λ.
The Arnoldi method constructs an orthonormal basis Vm ∈ C

d×m of
Km(A, b) and an unreduced upper Hessenberg matrix Hm ∈ C

m×m sat-
isfying the standard Krylov recurrence formula

AVm = VmHm + hm+1,mvm+1e
T
m, V ∗mVm = Im.

Here em denotes the mth unit vector in C
d. For the shifted systems, we

thus have the relation

(λI −A)Vm = Vm(λI −Hm)− hm+1,mvm+1e
T
m.

A Galerkin approximation to the solution of (4.3) is defined by requiring
that the residual

rm(λ) = b− (λI −A)xm(λ)

is orthogonal to Km(A, b). The orthogonality of Vm leads to the approxi-
mation

xm(λ) = Vm(λI −Hm)−1e1. (4.4)

Note that the Galerkin approximation exists for eachm, since by assumption
Γ surrounds the field of values of A and thus also F(Hm) ⊂ F(A). An
approximation to φ(A)b is obtained by replacing x(λ) ≈ xm(λ) in (4.2).
This yields

φ(A)b ≈ 1

2π i

∫

Γ
φ(λ)xm(λ) dλ

=
1

2π i

∫

Γ
φ(λ)Vm(λI −Hm)−1e1 dλ (4.5)

= Vmφ(Hm)e1,

since Vm is independent of λ.
To summarize, the Krylov approximation of φ(A)b involves two steps.

The first is the computation of the basis, for instance using the Arnoldi
method, and the second is the computation of φ(Hm)e1, which can be
done by standard methods such as diagonalization or Padé approximation
(Higham 2008, Higham and Al-Mohy 2010), or methods based on contour
integrals (López-Fernández 2009).
The convergence of Krylov subspace approximations has been studied

extensively: see, for instance, Druskin and Knizhnerman (1991), Knizhner-
man (1991, 1992), Gallopoulos and Saad (1992), Druskin and Knizhnerman
(1994, 1995) and Saad (1992). A remarkable property is that the conver-
gence is always superlinear. However, the number of iterations to reach the
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regime of superlinear convergence depends on the geometry of the field of
values of the matrix.
The following convergence result for the Hermitian case was given by

Hochbruck and Lubich (1997, Theorem 2).

Theorem 4.4. Let A be a Hermitian positive semi-definite matrix with
eigenvalues in the interval [0, ρ]. Then the error in the Arnoldi approxima-
tion of e−hAv, i.e., εm := ‖e−hAv − Vme−hHme1‖, is bounded as follows:

εm ≤
(
3
ρh

m2
+ 4

√
ρh

m

)
e−βm

2/(ρh),
√
ρh ≤ m ≤ 1

2
ρh,

εm ≤
(
20

ρh
+

6
√
π√
ρh

)
e(ρh)

2/(16m)e−ρh/2
(
eρh

4m

)m

,
1

2
ρh ≤ m,

where β > 0.92.

For the skew-Hermitian case, the regime of superlinear convergence be-
haviour starts much later, namely with m ≥ ‖hA‖ instead of m ≥

√
‖hA‖

for Hermitian matrices. The result is taken from Hochbruck and Lubich
(1997, Theorem 4) in the refined version of Lubich (2008, Theorem III.2.10).

Theorem 4.5. Let A be a skew-Hermitian matrix with eigenvalues con-
tained in an interval i[a, b] of the imaginary axis. Then, for ρ = (b − a)/2,
the error in the Arnoldi approximation of ehAv is bounded by

εm ≤ 8 e−(ρh)
2/(4m)

(
eρh

2m

)m

, m ≥ ρh.

For ρh > 1 we have

εm ≤ 1

3

(
8

ρh
+

11
√
2√

ρh

)
e−(ρh)

2/(4m)

(
eρh

2m

)m

, m ≥ ρh.

Additional results for matrices with field of values contained in a disc or
a wedge-shaped set can be found in Hochbruck and Lubich (1997). Here we
only note that the onset of superlinear convergence behaviour starts with

m ≥ (h‖A‖)α, α =
π

2

1

π − θ
,

where θ denotes the angle between negative real axis and the boundary of
the wedge at the origin. The situation in Theorem 4.4 corresponds to θ = 0,
while Theorem 4.4 treats the case θ = π/2.
Variants of Krylov subspace methods for the evaluation of matrix func-

tions are an active field of research. Some recent advances such as restarted
Krylov subspace methods are given by Eiermann and Ernst (2006) and
Niehoff (2007).
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4.3. Leja interpolation

Yet a different approach for constructing polynomial approximations is to
use interpolation. Since interpolation is ill-conditioned, in general, it is
essential to choose the nodes carefully. Caliari, Vianello and Bergamaschi
(2004) proposed the use of Leja points for the approximation of the function
ϕ1 of a matrix whose field of values is contained in an ellipse with foci
(a, 0) and (b, 0) on the real axis. In the following, we summarize the basic
features of the method. For more details and further references, the reader
is referred to Caliari et al. (2004). An extension to ϕk for k > 1 is given in
Caliari (2007).
A sequence of Leja points {zi} is defined recursively, usually starting from

|z0| = max{|a|, |b|}, in such a way that the (m+ 1)st point zm satisfies

m−1∏

i=0

|zm − zi| = max
z∈[a,b]

m−1∏

i=0

|z − zi|.

In practice, Leja points can be extracted from a sufficiently dense set of
uniformly distributed points on [a, b]. From the definition, it is clear that,
in contrast to interpolation in Chebyshev nodes, it is possible to increase
the interpolation degree by simply adding new nodes of the same sequence.
Leja points guarantee maximal and superlinear convergence of the inter-

polant on every ellipse of the confocal family. Therefore, they also ensure
superlinear convergence of the corresponding matrix polynomials, provided
that the spectrum (or the field of values) of the matrix is contained in one
of the above ellipses.
As for Chebyshev approximation, interpolation in Leja points requires

a priori information about the field of values of A, e.g., by using Gersch-
gorin’s discs. For stability reasons, the method is applied to a scaled and
shifted function. Let c and γ be defined such that [a, b] = [c − 2γ, c + 2γ].
We interpolate ϕk(h(c+γξ)) at the Leja points {ξi}, ξ0 = 2, of the reference
interval [−2, 2]. The latter can be computed once and for all. The matrix
Newton polynomial pm(hA)v of degree m, which approximates ϕk(hA)v,
is then

pm(hA)v = pm−1(hA)v + dmqm,

qm =
(
(A− cI)/γ − ξm−1I

)
qm−1,

(4.6a)

where

p0(hA)v = d0q0, q0 = v, (4.6b)

and {di}mi=0 are the divided differences of the function ϕk(h(c+ γξ)) at the
points {ξi}. The accurate evaluation of divided differences is considered in
Caliari (2007). The method is computationally attractive because of the
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underlying two-term recurrence. When the expected degree m for conver-
gence is too large, an efficient sub-stepping procedure can be used: see
Caliari and Ostermann (2009).

4.4. Contour integrals

A major disadvantage of polynomial approximations is that the required
degree of the polynomials grows with the norm of A. If linear systems with
coefficient matrix zI+hA can be solved efficiently, rational approximations
constitute a good alternative. The most famous example is the approxima-
tion of the exponential function on the negative real line, which converges
geometrically with rate 1/9.28903 . . . ; see Schmelzer and Trefethen (2007)
for a near-best approximation based on the Carathéodory–Fejér procedure,
and references therein.
Among the many different approaches, we mention rational Krylov meth-

ods. Some recent references are Moret and Novati (2004), Hochbruck and
van den Eshof (2006), Frommer and Simoncini (2008) and Grimm and
Hochbruck (2008). Extended Krylov subspace methods are investigated
in Knizhnerman and Simoncini (2009). It is beyond the scope of this review
paper to give a complete list.
Other rational approaches are based on representing the matrix func-

tion as an appropriate contour integral: see, e.g., Schmelzer and Trefethen
(2007), Trefethen, Weideman and Schmelzer (2006), Schädle, López-Fer-
nández and Lubich (2006), to mention just a few recent articles. Here
we present the approach of López-Fernández, Palencia and Schädle (2006),
which is based on the inversion of the Laplace transform. Let

Σδ = {z ∈ C | |arg(−z)| ≤ δ} ∪ {0}, 0 < δ < π/2,

be a sector in the left complex half-plane, and let

Φ : C \ Σδ → X

be a holomorphic function satisfying

‖Φ(z)‖ ≤ M

|z| (4.7)

for some constant M > 0. It is well known that, in this case, Φ is the
Laplace transform of

ϕ(t) =
1

2π i

∫

Γ
etzΦ(z) dz, |arg t| ≤ π/2− δ. (4.8)

Our aim is to reconstruct ϕ from a few evaluations of Φ(z) on a certain
contour Γ.
For a given δ, we select parameters d > 0, α > 0 satisfying

0 < α− d < α+ d < π/2− δ. (4.9)
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To invert the Laplace transform (4.8), we use the contour formed by the left
branch of a hyperbola,

Γ = {λT (x) + γ | x ∈ R},
where λ > 0 and

T (x) = 1− sin(α+ ix).

Inserting this contour into (4.8), we obtain

ϕ(t) =

∫ ∞

−∞

G(t, x) dx, (4.10)

where the function

G(t, w) = −λT
′(w)

2π i
et(λT (w)+γ)Φ(λT (w) + γ)

is holomorphic on the horizontal strip {w ∈ C | |Imw| < d}.
For the numerical approximation ϕ(n, t) of (4.10), we consider the quadra-

ture rule

ϕ(n, t) = h

n∑

ℓ=−n

G(t, xℓ), (4.11)

with nodes xℓ = ℓh. This approximation can be rewritten in terms of Φ as

ϕ(n, t) = h
n∑

ℓ=−n

wℓe
tzℓΦ(zℓ),

with weights

wℓ =
hλ

2π i
T ′(xℓ)

and nodes zℓ = λT (xℓ).
For this approximation, López-Fernández et al. (2006) proved the follow-

ing error bound.

Theorem 4.6. Let Φ satisfy (4.7) and let α, d be chosen according to
(4.9). Then, for t0 > 0, Λ ≥ 1, 0 < θ < 1, n ≥ 1, and

a(θ) = arccosh

(
Λ

(1− θ) sinα

)
,

the choice

h =
a(θ)

n
, λ =

2πdn(1− θ)

t0Λa(θ)

yields the uniform estimate

‖ϕ(t)− ϕ(n, t)‖ ≤ 4M

π
ψ(α, d, λ, t0)

εn(θ)
θ

1− εn(θ)
,
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for t0 ≤ t ≤ Λt0, where

ψ(α, d, λ, t0) =

√
1 + sin(α+ d)

1− sin(α+ d)

(
1 +

∣∣log
(
1− e−λt0 sin(α−d)

)∣∣
)

and

εn(θ) = exp

(
−2πdn

a(θ)

)
.

López-Fernández (2009) suggests applying these techniques for evaluating
the ϕ-functions of generators of analytic semigroups. For this purpose, we
write

ϕk(−hA) =
∫ 1

0
e−h(1−θ)A

θk−1

(k − 1)!
dθ = L−1

(
L(χ(·, hA))L(̺k)

)
(1),

where L denotes the Laplace transform and

χ(θ, hA) = e−hθA, ρk(θ) =
θk−1

(k − 1)!
.

This shows at once that

Φk(z,−hA) =
1

zk
(zI + hA)−1.

If A is a matrix and v is a vector of appropriate dimension, the evaluation
of Φk(zℓ,−hA)v requires the solution of a linear system of equations.

4.5. Hints on mathematical software

Most of the mathematical software for exponential integrators is still in its
infancy. Although there exist many experimental codes, only a few of these
programs are sufficiently developed and documented for general use. The
following packages, however, are well established and much used.
The exponential integrator exp4,1 by Hochbruck et al. (1998), is a vari-

able step size implementation of an exponential Rosenbrock-type method,
described in Example 2.25. Implementations in both MATLAB and C are
available. The code has an option for dense matrices, where the required
matrix functions are computed exactly. For large sparse matrices, however,
Krylov subspace methods are employed. The software is well tested and has
been successfully used in various applications.
In contrast to the integrator exp4, the MATLAB package EXPINT,2

by Berland, Skaflestad and Wright (2007b), is more of a developing and
testing tool for exponential integrators. It is a constant step size imple-
mentation of various integrators from the literature, and it is supplemented

1 http://www.am.uni-duesseldorf.de/en/Research/04 Software.php
2 http://www.math.ntnu.no/num/expint/matlab.php
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by some numerical examples for the purpose of testing and comparison.
The ϕ-functions are evaluated by an extension of the well-known scal-
ing and squaring method for the matrix exponential function (Moler and
Van Loan 2003, Higham 2008).
The next two packages can be used to compute the product of the ma-

trix exponential and the matrix ϕ1-function with a vector, respectively. In
this capacity, they are useful building blocks for exponential integrators.
Moreover, they can be used for solving first-order linear systems

u′(t) +Au(t) = b.

One of these packages is Expokit,3 by Sidje (1998). It is available in
MATLAB and FORTRAN. The computation of the above-mentioned ma-
trix functions is based on Krylov subspace methods. The other package is
SPARSKIT,4 by Saad (1994). Designed as a basic toolkit for sparse matrix
computations, its routines EXPPRO and PHIPRO provide the product of
the matrix exponential and the matrix ϕ1-function with a vector, respec-
tively. The computations are again based on Krylov subspace methods.
Finally, we mention the recent MATLAB function phipm,5 by Niesen and

Wright (2009). It provides the action of matrix ϕ-functions, computed by
Krylov subspace methods.

5. Applications

In recent years, exponential integrators have been employed in various large-
scale computations. Here we will discuss some typical applications that
illustrate the computational benefits of exponential integrators. The given
list is by no means exhaustive, and is steadily growing.
Nonlinear partial differential equations with constant coefficients on rect-

angular domains can be spatially discretized by spectral methods. Integrat-
ing the resulting semidiscrete ordinary differential equations with constant
step sizes allows us to compute the arising matrix functions once and for
all at the beginning of the time integration. Such an approach has been
advocated by Kassam and Trefethen (2005), and was successfully used in
Klein (2008).

5.1. Reaction–advection–diffusion equations

Time-dependent partial differential equations that couple reaction terms
with advection and diffusion terms form an important class of (semi)linear
parabolic equations. For a recent review on numerical methods for such
equations, we refer to the textbook by Hundsdorfer and Verwer (2007).

3 http://www.maths.uq.edu.au/expokit/
4 http://www-users.cs.umn.edu/˜saad/software/SPARSKIT/sparskit.html
5 http://www.amsta.leeds.ac.uk/˜jitse/software.html
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Exponential integrators for reaction–diffusion systems are used in Friesner
et al. (1989). For linear advection–diffusion problems, Bergamaschi, Caliari
and Vianello (2004) and Caliari et al. (2004) consider a finite element dis-
cretization with mass lumping. The arising linear differential equation is in-
tegrated exactly with an exponential integrator. The required ϕ1-function of
the non-symmetric stiffness matrix is approximated by interpolation at Leja
points. A comparison with the Crank–Nicolson method is given for prob-
lems in two and three space dimensions. Bergamaschi, Caliari, Mart́ınez
and Vianello (2005) and Mart́ınez, Bergamaschi, Caliari and Vianello (2009)
describe parallel implementations of the same approach. Numerical com-
parisons for a reaction–advection–diffusion equation in two dimensions are
given in Caliari and Ostermann (2009). Krylov and Leja approximations
for large-scale matrix exponentials are compared in Bergamaschi, Caliari,
Mart́ınez and Vianello (2006).

5.2. Mathematical finance

Option pricing in mathematical finance is yet another source of parabolic
(integro-)differential equations. Tangman, Gopaul and Bhuruth (2008) con-
sider European, barrier and butterfly spread options for the Black–Scholes
model and Merton’s jump diffusion model. In that paper, the performance
of exponential integrators is compared with the traditional Crank–Nicol-
son method. American options are considered by Rambeerich, Tangman,
Gopaul and Bhuruth (2009), and Gondal (2010).
Lee and Sheen (2009) consider a contour integral approach for the solu-

tion of the Black–Scholes equations. A hyperbolic contour is used for the
numerical inversion of the Laplace transform. In’t Hout and Weideman
(2009) extend this approach to the Heston model in two dimensions. They
consider a parabolic contour and compare the performance of the resulting
method with conventional ADI splitting methods.

5.3. Classical and quantum–classical molecular dynamics

Molecular dynamics is concerned with the simulation of long-range inter-
action of molecules. The different time scales involved, together with high
oscillations, make these simulations very time-consuming, even on super-
computers. The challenges arising in computational molecular biophysics
are well documented in the survey paper by Schlick, Skeel, Brunger, Kalé,
Board, Hermans and Schulten (1999).
The mollified impulse method (see Section 3.2) was an important step

towards more efficient integrators that allow longer time steps. More details
and some applications are given in Izaguirre, Reich and Skeel (1999), Ma,
Izaguirre and Skeel (2003) and Ma and Izaguirre (2003a, 2003b).
Exponential integrators have also been proposed for the time integration

of mixed quantum–classical models: see Nettesheim, Bornemann, Schmidt
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and Schütte (1996), Schütte and Bornemann (1999), Nettesheim and Schütte
(1999), and the collection by Deuflhard, Hermans, Leimkuhler, Mark, Reich
and Skeel (1999). These models describe a small but important part of the
system by quantum mechanics while the majority of atoms is described by
classical mechanics. The quantum–classical molecular dynamics (QCMD)
model is a famous example, where a singularly perturbed Schrödinger equa-
tion is coupled nonlinearly to classical Newtonian equations of motion. Due
to the different time scales in the classical and the quantum evolution, the
solutions are typically highly oscillatory. Hochbruck and Lubich (1999b)
propose and analyse a variety of methods in which the action of the exponen-
tial of the Hamiltonian to a wave function is approximated by the Lanczos
algorithm. Methods for more general problems, including the Car–Parinello
equations of ab initio molecular dynamics, are presented in Hochbruck and
Lubich (1999a). The methods allow the use of step sizes that are much
larger than the inverse of the largest frequency in the system.
Numerical integrators for quantum dynamics close to the adiabatic limit

are studied in Jahnke and Lubich (2003) and Jahnke (2004). The main
idea here is to apply a clever transformation of variables (cf. (3.29)). For
the reformulated problem, time-reversible numerical integrators have been
proposed, which can use much larger step sizes than standard schemes. A
generalization of these techniques to QCMD models can be found in Jahnke
(2003) and to linear second-order differential equations with time-varying
eigen-decompositions in Lorenz et al. (2005).

5.4. Schrödinger equations

Krylov subspace methods and Chebyshev approximations of the matrix ex-
ponential operator have a long tradition in computational chemistry and
physics: see, e.g., Nauts and Wyatt (1983), Tal-Ezer and Kosloff (1984),
Park and Light (1986), Tal-Ezer, Kosloff and Cerjan (1992), Kosloff (1994)
and Peskin, Kosloff and Moiseyev (1994).
Berland, Owren and Skaflestad (2006) compare the performance of Law-

son methods and exponential Runge–Kutta methods for nonlinear Schrödin-
ger equations, and Berland, Islas and Schober (2007a) use exponential inte-
grators for the cubic nonlinear Schrödinger equation with periodic boundary
conditions. Celledoni, Cohen and Owren (2008) derive and study symmet-
ric exponential integrators and present some results on the cubic nonlinear
Schrödinger equation.

5.5. Maxwell equations

Botchev, Harutyunyan and van der Vegt (2006) suggest using a Gautschi-
type method (see Section 3.2) combined with Krylov approximations for
the solution of a finite element discretization of linear three-dimensional
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Maxwell equations. The paper also includes an analysis of the Krylov ap-
proximation error and of the dispersion of the numerical solution. Moreover,
comparisons with a standard leap-frog method are reported. Later, Botchev,
Faragó and Horváth (2009) presented further comparisons of this method
with a variety of splitting methods, and in Verwer and Botchev (2009), the
exponential trapezoidal rule described in Example 2.6 is considered.
Tokman and Bellan (2002) present a three-dimensional magnetohydro-

dynamic (MHD) model for the description of the evolution of coronal mag-
netic arcades in response to photospheric flows, which is able to reproduce a
number of features characteristic of coronal mass ejection observations. For
the time integration, the scheme exp4 by Hochbruck et al. (1998), which is
a particular variant of the exponential Rosenbrock-type method discussed
in Example 2.25, is used.
Karle, Schweitzer, Hochbruck, Laedke and Spatschek (2006) and Karle,

Schweitzer, Hochbruck and Spatschek (2008) suggest using Gautschi-type
integrators for the simulation of nonlinear wave motion in dispersive media.
The model derived in these papers applies to laser propagation in a rela-
tivistic plasma. For the one-dimensional problem, the matrix functions are
evaluated by fast Fourier transformations, while for a two-dimensional prob-
lem this is no longer efficient if the laser pulse propagates within the plasma.
The authors propose the use of two-dimensional fast Fourier transformations
only in vacuum, where the integrator can take very large time steps. Within
the plasma, where smaller time steps are required, a physically motivated
spatial splitting is used for the implementation. Comparisons with a stan-
dard leap-frog integrator are reported and an implementation on parallel
computers is discussed.
Another application is the simulation of electromagnetic wave propaga-

tion in optical and photonic systems. Niegemann, Tkeshelashvili and Busch
(2007) suggest using an exponential quadrature rule (see Section 2.2) for the
solution of linear Maxwell’s equations that uses only matrix exponentials in-
stead of linear combinations of ϕ-functions as in (2.9). In contrast to the
standard finite difference time-domain (FDTD) method, their exponential
quadrature rule allows the handling of lossy and anisotropic materials, as
well as advanced boundary conditions, such as perfectly matched layers or
auxiliary differential equations. For the implementation, Krylov subspace
methods are used.
Since many complex optical and photonic systems lead to nonlinear prob-

lems, Pototschnig, Niegemann, Tkeshelashvili and Busch (2009) generalize
this approach to Maxwell’s equations with general nonlinear polarizations.
As concrete examples, they investigate instantaneous Kerr nonlinearities,
and give an overview of the treatment of coupled systems dynamics. They
discuss Lawson methods (see Section 2.7) and a particular case of exponen-
tial Rosenbrock methods from Hochbruck et al. (1998) (see Section 2.4).
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5.6. Regularization of ill-posed problems

Asymptotic regularization is a well-established tool for treating nonlinear
ill-posed problems. Tautenhahn (1994) analysed the convergence of this
approach for linear and nonlinear problems.
For its numerical realization, an appropriate numerical method for solv-

ing the Showalter differential equation is required. Applications of standard
integration schemes yield well-known regularization methods. For exam-
ple, the explicit Euler method and the linearly implicit Euler method are
equivalent to the Landweber method and the Levenberg–Marquardt regu-
larization, respectively. Hochbruck, Hönig and Ostermann (2009a, 2009b)
present a variable step size analysis for the exponential Euler method. Op-
timal convergence rates are achieved under suitable assumptions on the
initial error.

6. Historical remarks

We conclude this review with some comments on how the concept of ex-
ponential integrators has developed historically. However, it is not our in-
tention to provide a full account of the history of exponential integrators.
Relevant comments with appropriate references have already been given at
various locations in the main text. Additional historical details can be found
in Minchev and Wright (2005).
To the best of our knowledge, exponential integrators were first considered

by Hersch (1958). The starting point of his investigation was the observation
that standard difference schemes for the numerical solution of differential
equations do not give the exact solution, in general, even if the differen-
tial equation is simple and can be solved by elementary methods. He then
proposed new schemes that are exact for linear problems with constant co-
efficients. His main interest in this work was the study of improved schemes
for boundary value and eigenvalue problems with variable coefficients in one
or several spatial variables.
Certaine (1960) used the variation-of-constants formula to derive expo-

nential multistep methods for the numerical solution of semilinear initial
value problems (2.1). He suggested using the exponential Euler scheme
(2.29) as a predictor for implicit exponential one- and two-step methods.
Pope (1963) considered general nonlinear problems (2.44) and suggested
linearizing them in each time step. The simplest scheme making use of
this linearization is the exponential Rosenbrock–Euler method (2.53) for
non-autonomous problems.
Gautschi (1961) proposed the use of trigonometric polynomials for the

construction of time integration schemes for second-order problems. Prob-
ably the most famous example is the two-step method of Example 3.11.
Related methods were constructed by Deuflhard (1979), using a theoretical
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approach to extrapolation methods. Example 3.12 contains his two-step
method for semilinear second-order differential equations.
Nørsett (1969) used an idea similar to that of Certaine (1960) to construct

explicit exponential Adams methods for semilinear problems (2.1). These
methods are discussed in Section 2.5. A different idea due to Lawson (1967)
consists in using an appropriate transformation of variables. Here, the sim-
plest scheme is obtained by using the exponential function as a transfor-
mation: see Example 2.32. The hope is that the transformed equation will
be non-stiff and can be discretized efficiently with an explicit Runge–Kutta
or multistep method. The resulting approximations are then transformed
back to the original variables. The idea was further developed in Ehle and
Lawson (1975).
The first exponential Runge–Kutta methods (2.20) were constructed by

Lawson (1967) and Ehle and Lawson (1975), with coefficients being expo-
nential functions. Higher-order methods, however, require more ϕ-functions.
Such methods were first proposed by Friedli (1978).
The term ‘exponential integrators’ was coined in the seminal paper by

Hochbruck, Lubich and Selhofer (1998), which proposed an implementation
of the code exp4 (which belongs to the class of Rosenbrock-type methods;
see Section 2.4), including adaptive time-stepping combined with Krylov
subspace approximations of the ϕ1-functions. The class of methods had
already been introduced in Hochbruck and Lubich (1997), but it turned out
that a naive implementation of exponential integrators would not be efficient
in general. The integrator exp4 used a clever construction which minimizes
the numerical linear algebra costs. In this way, the first exponential integra-
tor was obtained that was competitive for certain time-dependent partial
differential equations.
The paper by Hochbruck et al. (1998) led to a revival of exponential

integrators and initiated various activities in different directions on the
construction, analysis, implementation, and application of such methods.
These activities can be divided into four different groups: integrators for
problems with temporally smooth solutions, integrators for problems with
highly oscillatory solutions, improvements of the numerical linear algebra,
and integrators designed for a specific application. In fact, these four topics
correspond to the four main chapters of this review paper.
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C. González, A. Ostermann and M. Thalhammer (2006), ‘A second-order Magnus-
type integrator for nonautonomous parabolic problems’, J. Comput. Appl.

Math. 189, 142–156.
V. Grimm (2002), Exponentielle Integratoren als Lange-Zeitschritt-Verfahren

für oszillatorische Differentialgleichungen zweiter Ordnung. Dissertation,
Heinrich-Heine Universität Düsseldorf.

V. Grimm (2005a), ‘A note on the Gautschi-type method for oscillatory second-
order differential equations’, Numer. Math. 102, 61–66.

V. Grimm (2005b), ‘On error bounds for the Gautschi-type exponential integra-
tor applied to oscillatory second-order differential equations’, Numer. Math.

100, 71–89.
V. Grimm and M. Hochbruck (2006), ‘Error analysis of exponential integrators for

oscillatory second-order differential equations’, J. Phys. A 39, 5495–5507.
V. Grimm and M. Hochbruck (2008), ‘Rational approximation to trigonometric

operators’, BIT 48, 215–229.
H. Grubmüller, H. Heller, A. Windemuth and K. Schulten (1991), ‘Generalized

Verlet algorithm for efficient molecular dynamics simulations with long-range
interactions’, Molecular Simulation 6, 121–142.

E. Hairer and C. Lubich (2000), ‘Long-time energy conservation of numerical meth-
ods for oscillatory differential equations’, SIAM J. Numer. Anal. 38, 414–441.

E. Hairer and C. Lubich (2009), Oscillations over long times in numerical Hamil-
tonian systems. In Highly Oscillatory Problems (E. H. B. Engquist, A. Fokas
and A. Iserles, eds), Vol. 366 of London Mathematical Society Lecture Notes,
Cambridge University Press, pp. 1–24.



282 M. Hochbruck and A. Ostermann

E. Hairer and G. Wanner (1996), Solving Ordinary Differential Equations II: Stiff

and Differential-Algebraic Problems, Vol. 14 of Springer Series in Computa-

tional Mathematics, 2nd edn, Springer.
E. Hairer, C. Lubich and G. Wanner (2006), Geometric Numerical Integration,

Structure-Preserving Algorithms for Ordinary Differential Equations, Vol. 31
of Springer Series in Computational Mathematics, Springer.

E. Hairer, S. P. Nørsett and G. Wanner (1993), Solving Ordinary Differential Equa-

tions I: Nonstiff Problems, Vol. 8 of Springer Series in Computational Math-

ematics, 2nd edn, Springer.
D. Henry (1981), Geometric Theory of Semilinear Parabolic Equations, Vol. 840 of

Lecture Notes in Mathematics, Springer.
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