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The dynamics of chemical reaction networks often takes place on widely differing time scales—
from the order of nanoseconds to the order of several days. This is particularly true for gene
regulatory networks, which are modeled by chemical kinetics. Multiple time scales in mathematical
models often lead to serious computational difficulties, such as numerical stiffness in the case of
differential equations or excessively redundant Monte Carlo simulations in the case of stochastic
processes. We present a model reduction method for study of stochastic chemical kinetic systems
that takes advantage of multiple time scales. The method applies to finite projections of the chemical
master equation and allows for effective time scale separation of the system dynamics. We
implement this method in a novel numerical algorithm that exploits the time scale separation to
achieve model order reductions while enabling error checking and control. We illustrate the
efficiency of our method in several examples motivated by recent developments in gene regulatory

networks. © 2006 American Institute of Physics. [DOI: 10.1063/1.2397685]

I. INTRODUCTION

Living organisms have evolved complex robust control
mechanisms with which they can regulate intracellular pro-
cesses and adapt to changing environments. Experiments
have shown that significant stochastic fluctuations are
present in these processes. The investigation of stochastic
properties in genetic systems involves the formulation of a
mathematical representation of molecular noise and devising
efficient computational algorithms for computing the rel-
evant statistics of the modeled processes. When devising
computational models for describing these cellular systems,
one must take into consideration that many of the cellular
processes take place far from equilibrium and on time scales
longer than the cell replication cycle. As a result, these pro-
cesses never reach the asymptotic state. Furthermore, char-
acteristic time scales in intracellular processes often differ by
several orders of magnitude. These considerations pose con-
siderable challenges to any computational approach for mod-
eling cellular networks.

The most significant progress has been made when mod-
eling intracellular processes as a series of stochastic chemical
reactions involving proteins, RNA and DNA molecules.
Mathematical formulation for such models is generally pro-
vided by the chemical master equation.1 However, the com-
plexity of gene regulatory networks poses serious computa-
tional difficulties and makes any quantitative prediction a
difficult task. Monte Carlo based approaches are typically
used in getting realizations of the stochastic processes whose
distributions evolve according to the chemical master equa-
tion. One Monte Carlo simulation technique that has gained
wide use is stochastic simulation algorithm.2 Here random
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numbers are generated for every individual reaction event in
order to determine (i) when the next reaction will occur and
(ii) which reaction it will be. However, for most systems,
huge numbers of individual reactions may occur, and the
stochastic simulation algorithm can be too computationally
expensive and does not provide guaranteed error bounds. To
address the speed issue, approximations have been devel-
oped that exploit time scale separation or that leap through
several reactions at a time. These are discussed in more de-
tail in the text. However, a different approach is presented by
the recently proposed finite state projection algorithm3 which
gets approximate solutions of the chemical master equation
direction with guaranteed error bounds and often improved
speed.

The finite state projection approach provides an analyti-
cal alternative that avoids many of the shortcomings of
Monte Carlo methods. Thus far the advantages of the finite
state projection have been demonstrated for a number of
problems.3_6 In this paper we show that the applicability of
the finite projection approach can be dramatically enhanced
by taking advantage of tools from the fields of modern con-
trol theory and dynamical systems. In particular, we present a
new approach that utilizes singular perturbation theory in
conjunction with the finite state projection approach to im-
prove the computation time and facilitate model reduction by
taking advantage of multiple time scales. Model reduction
approaches based on singular perturbation theory have been
used in various areas of engineering and science.” ' When
coupled with the finite state projection method, many of the
advantages of singular perturbation approach find an appli-
cation in the field of stochastic chemical kinetics. The finite
state projection method retains an important subset of the
state space and projects the remaining part (which can be
infinite) onto a single state, while keeping the approximation
error strictly within prespecified accuracy. The resulting fi-
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nite model is given in an analytical form and allows us to
implement reduction techniques based on singular perturba-
tions. When multiple time scales are present, our proposed
singular perturbation approach attains dramatic speedups
without compromising the accuracy of the computation,
which is known a priori and which can be adjusted before
the bulk of calculations is carried out.

We illustrate our method using two examples arising
from recent experiments with Escherichia coli bacteria: we
analyze the PAP gene regulatory network and cellular heat
shock response. Our method is not limited to biological sys-
tems, and can be applied to any chemical kinetics problem
that is described by a master equation.

This paper is organized as follows: in Sec. II we give a
brief overview of some computational methods that have
been used to study stochastic gene network models. In Sec.
IIT we describe the mathematical details of our method. In
Sec. IV A we demonstrate how to use time scale separation
together with the finite state projection method, and in Sec.
IV B we provide an example of how our method can be
applied to a realistic gene network problem. In Sec. V we
discuss the advantages of our approach over presently used
methods and, finally, in Sec. VI, we summarize our results
and outline prospects for further research.

Il. BACKGROUND

For a system of n chemical species, the state of the sys-
tem inside the cell is specified by copy numbers of each
relevant molecule X=(X;,X,,...,X,). Often, these numbers
are relatively small and reactions take place far from the
thermodynamic limit, so that mesoscopic effects, most nota-
bly fluctuations, have to be taken into account. The state
space of the system is not continuous, but a discrete lattice,
where each node corresponds to a different X. The size of the
lattice is limited by the maximum possible populations of the
n chemical species in the finite volume cell.

At the mesoscopic scale one describes the dynamics of
the system in terms of the probability of finding the system
in a given state X, rather than in terms of trajectories in the
state space. The dynamics of the system can be modeled by
the master equation for a Markov process on a lattice' or
jump Markov process. Although respectable attempts have
been made to introduce deterministic mesoscopic models for
chemical reactions," presently stochastic methods are used
almost exclusively in the study of intracellular processes at
the mesoscopic level.

The master equation describes the time evolution of the
probability of finding the system in a particular state X. With
an enumeration X — i, which maps each possible state to a
single index, the master equation can be written in a familiar
gain-loss form'

dpi(?)
== [wypi() =w;p(D)], (1)
d
J#i

where p; is the probability of finding the system in the ith
state, while w;; are propensities. The latter define probabili-
ties w;;dr that the system will transition from the jth to the ith
state during an infinitesimal time interval df. The propensi-
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ties may be obtained from the chemical reaction rates, which
often can be measured experimentally. Propensities w;; are
either constant or may depend on time if the system is in an
external time-dependent field. For simplicity in our presen-
tation we consider only constant propensities, nevertheless
the same formalism applies in the time-dependent case. The
first term on the right hand side of the master equation de-
scribes an increase in the probability p; due to transitions to
the ith state from all other states j, while the second term
describes a decrease in p; due to transitions form the ith state
to other states j. If the system is initially found in a state &,
the initial condition for the chemical master equation can be
written as p;(0)= &y, where & is the Kronecker delta.

The solution for this problem is the probability p;(z) that
the system initially found in state £ will be in state i at the
later time ¢. If we define A;;=w;;—6;Zwy;, the chemical
master equation can be written in a more compact form

pilt) = 2 Ayp,(1). 2)
J

Therefore, the chemical master equation on a discrete state
space can be written as a system of countably many ordinary
differential equations. Note that such system is linear even
when the chemical kinetics is governed by nonlinear
processes.l’12

The solution to the chemical master equation generally
can be expressed in terms of evolution operator p(z)
=A(r,0)p(0), which in case of a finite A can be written as

p(1) = exp(An)p(0). 3)

Solving the master equation at first seems to be a rather
simple problem, as there are many efficient methods for
solving systems of linear ordinary differential equations.
However, if we consider, for example, a process involving
three proteins, where each protein comes in, say, 1000 copies
per cell, that gives us up to a billion of different states and a
myriad of possible transitions between them. Carrying out
calculations for a such system without any insight about its
biological structure would be impractical at least.

This problem may be ameliorated by using a Monte
Carlo type of c:omputation.13 The idea behind this approach
is to start from some initial probability distribution p;(0)
=0y, then using some probabilistic rule we choose which
reaction will take place next, and compute the new state j
where the system will be found at some later time 7. The
probabilities of picking a particular reaction are given by
propensities w;;. The hope is that after sufficiently many cal-
culations like this the histogram containing all outcomes will
approximate well the solution of the chemical master equa-
tion p(z). The advantage of this approach is that we do not
need to calculate the whole matrix A. Instead, we calculate
on the fly only those matrix elements that are required for the
computation at hand. Furthermore, this method is broadly
applicable as it requires little knowledge about the details of
the system under consideration. It has been demonstrated”
that in the limit case of infinitely many runs the Monte Carlo
solution approaches the exact solution to the chemical master
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equation. Therefore the accuracy of the computation can be
increased by simply generating more Monte Carlo simula-
tions.

On the downside Monte Carlo methods are notorious for
their slow convergence,13 and the amount of computation
necessary to get an accurate result may be too large to be
completed in a reasonable amount of time. Also, computers
cannot produce truly random numbers, so one has to gener-
ate something that is as close as possible. Programs called
random number generators14 create periodic sequences of
numbers with a large period, which imitate series of random
numbers. If the period is too short, periodic patterns will
create numerical artifacts in the calculation. On the other
hand, high quality random number generators, such as
RANLUX, " take significantly more computer processing time
to execute.

Despite their shortcomings Monte Carlo methods remain
an important tool for the study of intracellular processes.
Over the years a variety of specialized Monte Carlo
implementationslé_22 that address the above mentioned is-
sues has been developed.

An alternative approach known as the finite state
projection3 “4® has been proposed recently by Munsky and
Khammash. The method is based on a simple observation
that some states are more likely to be reached in a finite time
than are others. One can then aggregate all improbable states
in (2) into a single sink, and consider all transitions to those
states as an irreversible loss. This method automatically pro-
vides a guaranteed error bound that may be made as small as
desired.” With some intuition about the system’s dynamics,
such as knowing the macroscopic steady state, one can de-
velop an efficient system reduction scheme. It has been dem-
onstrated for a number of biological problems3 4 that in this
way the system (2) can be reduced to a surprisingly small
number of linear ordinary differential equations, thereby dra-
matically reducing the computation time. The reduced sys-
tem can be treated analytically, and the method does not
require computationally expensive random number genera-
tion.

By discarding unlikely states in a systematic way, the
finite state projection method provides for a bulk system re-
duction, but the original finite state projection stops far short
from what can be achieved. For example, the method does
not consider how transitions between the remaining states
take place. Transition rates between different states typically
vary over several orders of magnitude, and by treating them
equally one may waste considerable time performing com-
putations to obtain a precision that far outstrips the models
accuracy.

Low probability transitions occur infrequently, so the
processes involving them take place over long time scales,
while high probability transitions correspond to fast intracel-
lular processes. Different time scales can pose computational
problems, as the system of ordinary differential equations (2)
becomes stiff. On the other hand, depending on the length of
the observation time, the system can be further simplified.
For short times, slow processes may be neglected; for long
times, the effects of fast processes can be averaged.

In what follows we introduce a computational method
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that addresses these shortcomings by taking advantage of
multiple time scales in the master equation to simplify the
system of equations and reduce the computation time. This
method is in a sense complementary to the finite state pro-
jection. It can be used independently, but significant benefits
may be achieved when the two methods are combined.

lll. TIME SCALE SEPARATION

In order to define a proper chemical master equation,
matrix A has to satisfy some general properties. Since by
definition propensity functions w;;=0, all off-diagonal ele-
ments of A are non-negative. For the same reason, all diag-
onal elements of A are nonpositive.

In a closed system the probability has to be conserved,
so that X;p;(rf)=const for all times. That means

G2 P0=0=Z S a0 @

and hence

> (2 A,-,)p,a) =0, (5)

J

for any probability distribution p(¢)=(p,(¢), ...,pn(7)). Here
with N we denote the number of all possible states where the
system can be found.*

Therefore it must hold that E,»A,-j:O, i.e., the sum of the
elements in each column of A must be zero. In other words

vector 1=(1,1,...,1) is a left eigenvector of A with associ-
ated eigenvalue zero,
17A=0. (6)

This further means that for the matrix A there exists at least
one right eigenvector v with the zero eigenvalue,

Av=0. (7)

The eigenvector v represents the steady state probability dis-
tribution for the system, and is the nontrivial solution to (2).
Furthermore it can be shown' that other eigenvalues of A
have negative real parts if the matrix A is irreducible, i.e., it
cannot be written in a block diagonal form.

Note that we are interested here in the nontrivial solution
to (2), which exists since det A=0. There also exists a trivial
solution p=0, but we can discard it as nonphysical since it
does not satisfy the normalization condition |p|=1.

In gene networks we can often identify clusters of states
within which transitions occur quite frequently, while transi-
tions between the clusters are relatively rare. The chemical
master equation that corresponds to such a situation has a
nearly block diagonal structure, so the matrix A in (2) can be
written in the form

A=H+ €V, (8)

where H is a block diagonal matrix describing transitions
within the clusters, matrix V describes transitions from one
cluster to another, and €>0 is a small parameter.

In the limit case, e— 0, the system remains in one cluster
of states for an infinitely long time, and the probability for
the system to be found in one of the states within the original
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cluster is one. Therefore, same as the matrix A, each block of
H should define a proper master equation. Each block of H
has one zero eigenvalue with associated eigenvector v;,
which describes the steady state probability distribution in
the ith cluster, while all other eigenvalues of the block have
negative real parts.

It is relatively inexpensive to compute the full eigensys-
tems for the smaller blocks of H. From the eigenvectors for
each block, one can then easily construct a matrix S that
diagonalizes H,

STTHS=A, A=diag(\, ... . \y). 9)

Matrix S has the same block diagonal structure as H. This
procedure is further simplified if some blocks of H are iden-
tical, as is often the case. We label eigenvectors and eigen-
values of H so that Re{\,} =Re{\,}--- =Re{\,}. The first m
eigenvalues are then equal to zero (\;,,=0) and the rest
have negative real parts.

In order to keep our presentation streamlined, we shall
assume that for all negative eigenvalues |Re{\;~,}|> €. This
is always satisfied if it is possible to make a clear distinction
between fast and slow reactions. This assumption can be
relaxed and similar results obtained, as we shall demonstrate
later.

By applying now S~! to both sides of (2) we obtain

x=(A+eV)x, (10)

where x=S5"'p, and V=S"'VS. The equation above can be
written in the component form as

N
)é,-=7\,~x,-+ EZ ‘7le] (11)
j=1

From singular perturbation theory (see Appendix) there ex-
ists a near identity transformation

x=(I+ €G)y, (12)

which removes all O(e) terms, which depend on x;~.,,, from
the first m equations (i <<m). In other words, Eq. (11) where
N;=0 can be decoupled from the rest of the system by a
coordinate transformation (12) through the order O(e). In the
new coordinates the first m equations become

)}i=62 ‘7ij)’j+0(€2)~ (13)
j=1

By truncating O(€?) terms in (13) we reduce our system of
equations to an m-dimensional problem. The reduced system
still approximates well the dynamics of the full system, but it
is computationally less expensive to solve. Because (11) has
a stable fixed point solution, if initially |[x(0)-y(0)|=0(e),
then for all times >0 it holds |x(1)—y(#)|=0(e).

Note that if \; is smaller or of the same order as ¢, the
near-identity transformation (12) and its inverse introduce
corrections to the ith equation that is only of order O(€?).
Therefore we do not need to find the exact form of the near-
identity transformation, we can simply truncate all terms
containing x;~,, from the system (11).
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The first m equations can be solved now independently
of the rest of the system, and their solution can be written as

yi(t) = > [eXp(EV,t)]ij)’j(o)’ (14)
j=1

where V' is mXm principal submatrix of V, with elements
Vi,jém' In many cases of interest, solving (13) is a manage-
able problem, unlike getting general solution for the chemi-
cal master equation (2). Since in the long time limit
lim x;..,,,(1) = O(e), (15)
t—
as we show in the Appendix, we claim that from the solution
to the truncated system (14), we can easily construct an ap-
proximation to the full solution of the chemical master equa-

tion (3). To do so, we first define an evolution operator V(z)
such that 17,«j(t):[exp(e\~/’t)]ij for i,j<m, and ﬁij(t):O oth-
erwise. In a block matrix form this is

9(t)=(exp(g‘7’t) 0). (16)

The price we pay for simplicity here is that V(0) is not an
identity matrix, so the initial condition y,~,,(0) also gets trun-
cated. That results in an additional transient error that is gen-

erally larger than O(e). Also, note that neither V nor V' are

generators for the evolution operator V, so their eigenvectors
cannot be used directly to compute the steady state probabil-
ity distribution for p(z). Finally, by performing the inverse S

transformation on V(z), we obtain
V(1) = SV(1)S™!, (17)

which leads to the O(e) approximation to the asymptotic
solution of the chemical master equation (2), that is
lim[p(r) = V(1)p(0)| = O(e). (18)
t—0
We can extend this result to finite times (see Appendix) since
we are guaranteed that there exists a finite time 7(€) after
which the transient truncation error becomes smaller than
O(e). That time can be estimated from the leading nonzero
eigenvalue as

T(€) ~ In e/Re{\,,,1}. (19)

If the time scale separation in (8) is done accurately, this
transient is negligible for all practical purposes. However,
time scale separation in a large system is not always obvious,
and may be error prone. We discuss this further as we for-
mulate our algorithm.

A. Computational algorithm

Due to the truncation of ‘7, only contributions of the first
m columns of S and m rows of S~! affect the approximate
solution. As a result the computation can be greatly
simplified—instead of calculating full eigensystems for each
block H;, it suffices to find only the eigenvectors v; associ-
ated with the zero eigenvalues. Instead of S we use the N
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X m matrix S®, whose columns are made up of the right
eigenvectors of H, while instead of S~! we use the m XN
matrix S, whose rows are made up of the left eigenvectors
of H. Note that the left eigenvectors are always liT, provided
all |v;|=1, so the matrix S is obtained at no computational
cost. The accuracy of the calculation is known a priori to be
O(e) for all t>T(e).

To improve the reliability and robustness of our calcula-
tion, we can optionally add a transient time check to our
algorithm. To do so we first need to find eigenvalues for all
blocks H;. This comes at a relatively small computational
cost, and can be performed before all the other calculations.
The transient time needed to obtain the desired accuracy is
estimated from the leading negative eigenvalue \,,,; accord-
ing to (19). If the transient is too long, that can be remedied
by expanding matrices S¥ and S’ to include the right and left
eigenvectors corresponding to \,,.;, respectively. The tran-
sient time is then governed by next negative eigenvalue \,,,,,.
This procedure can be repeated until the desired accuracy is
achieved, thereby sacrificing computational time for preci-
sion. Note that in this case the right eigenvectors correspond-
ing to nonzero eigenvalues cannot be obtained trivially.

By performing this test, we also ensure that condition
[N;=u|> € is satisfied. Eigenvalues of H that are O(€) or
smaller will result in long transient times. By expanding
transformation S to include eigenvectors corresponding to
these eigenvalues, we essentially treat them as if they were

part of V. This procedure adds robustness to the method with
respect to separating fast and slow reactions in (8). We can
summarize the proposed algorithm in following six steps.

(1) Specify problem parameters. If necessary apply a finite
projection to the full state space. Use propensity func-
tions and/or physical intuition to separate H and V.

(2) Find the eigenvalues of the uncoupled system, and
identify “slow” ones with respect to a preset transient
time T(e).

(3) Find the right and left eigenvectors corresponding to
the slow eigenvalues and construct rectangular matrices
SR and S*.

(4) Calculate k X k matrix V' =SEVSR, where k is the num-
ber of slow eigenvalues.

(5) Compute kX k matrix exp(e\7’t).

(6) Perform the inverse transformation S®exp(eV'r)St
=V(r) in order to obtain the approximation to exp(A¢)
for all times r>T(e).

Solving the chemical master equation, written in a form
of a system of linear ordinary differential equations (2), is
essentially a matrix eigenvalue problem. Therefore, the com-
putational cost for our method will be almost entirely deter-
mined by the efficiency of the eigenvalue algorithm we use.
Typically, for these algorithms the computational cost scales
as a cube of the dimension of the matrix (see, e.g., Ref. 23
and references therein). We now estimate how the efficiency
is improved by performing time scale separation. For sim-
plicity we assume that all blocks of matrix H have the same
size N/m. The computational cost of finding the eigensystem
of each block is then (N/ m)3. There are m such blocks, so a
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conservative estimate of reducing the system using our algo-
rithm would be N°/m?. The total cost is the sum of the cost
of the model reduction and the cost of solving the reduced
system, that is, N°/m?+m?>. It is easy to show that this is
always smaller than N?, the cost of solving the full system, as
long as 1 <m <N. Therefore the computational cost may be
reduced by a factor of

N3

N3im? + m?

when using the time scale separation. Of course, this is only
a rough estimate of how the computational cost scales, but it
gives a good idea of what improvements can be expected.

B. Example

Let us illustrate this technique with a simple example.
We assume two weakly interacting systems that can be found
in three different states each. We choose matrices H and V in
an arbitrary way, with the only constraint that they define a
master equation. In our example

_(H, 0
H_(o H2> (20)

is a block diagonal matrix with blocks

-4 2 4 -6 3 2
H=|1 -2 0| andH,=| 2 -3 0
30 -4 4 0 -2

21)

We find that blocks H; and H, have one zero eigenvalue
each, with corresponding right eigenvectors v,=(4,2,3) and
v,=(3,2,6). From these eigenvectors, we assemble the ma-
trix S&,

4/9 0
29 0
3/9 0
SE = . (22)
0 3/11
0 2/11

0 o/11

The matrix composed of left eigenvectors of H, and H, is
similarly used to form SE,

1000
) (23)

SL(]]
“\000 111

In our example the coupling matrix is

Downloaded 29 Nov 2006 to 128.111.70.62. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



204104-6 Pele$, Munsky, and Khammash J. Chem. Phys. 125, 204104 (2006)
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‘ --- Approximate Solution --- Approximate Solution
oslh - Exact Solution i 0.8k - Exact Solution . o
: \‘ ------- Fixed Point {(Asymptotic Solution) . - Fixed Point (Asymptotic Solution)
H
0.6 —\\ - 0.6 1
P, } P
i ] " _ﬁ\\\m\ )
L \M
_______ / —
0.2F e - 02 Z B
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00 2 4 ¢ 6 8 10 00 2 4 ; 6 8 10

FIG. 1. Comparison of the approximate and the exact solution to the master equation in Sec. III B. The initial probability distribution is p;(0)=&,;. The
transient time is estimated to be T(€)=In e/A\;=1.96 for €=0.01, and is denoted by the vertical line on the graph.

-8 0 0 5 3 2
0 -5 0 2 3 1
0 0 -12 6 2

V= (24)
4 2 11 0 0
1 2 0o -12 0
301 0 0 -5

To get the equations for the slowly changing variables (13),
we calculate

Next, we calculate the evolution operator for the truncated

-87/11
29/3

78/11

25
—-26/3 @5)

V' = SLtysk = (

system, exp(e‘7’ t), and perform the inverse S transformation
to obtain

V(1) = SR exp(eV'1)ST. (26)
Finally, we obtain the approximate solution as
p(1) =V()p(0). (27)

As an illustration, in Fig. 1 we show components p,(f) and
po(t) of the solution above for the initial condition p;(0)
=0,;, and €=0.01. We can see that after the transient time
(19) has elapsed we obtain a good agreement between the
exact and the approximate solution to this example problem.

To further support our results, we randomly generate a
large number of master equations with similar near block
diagonal structure and compare their exact solutions to the
approximate solutions obtained using our approach. The nu-
merical results presented in Fig. 2 show that the approxima-
tion error is controlled by the small parameter e.

IV. APPLICATIONS
A. Three-species fast-slow reaction

In the previous section we demonstrated the efficiency of
the singular perturbation theory when applied to chemical

master equation (2). One can immediately see, however, that
this method becomes less feasible to implement as the size of
the system under consideration increases. The finite state
projection method® provides for a preliminary reduction of
the system (2) that allows for much broader implementation
of our method.

Consider a three-species reaction system described by

L'l (,‘3
S|=8, —— S3.

3

(28)

Such reactions are common in gene regulatory networks. For
example, they arise in modeling of cellular heat shock
response,24 where s, 55, and s3 correspond to the 03,-DnaK
complex, the o3, heat shock regulator, and the o03,-RNAP
complex, respectively. At normal physiological temperatures
03, protein is found almost exclusively in a complex
03-DnaK. As the temperature increases this complex be-
comes less stable and there is a non-negligible probability of

0 i T T
2k
= oA
=]
=
2 o
2
on
2 3 slope=1.03
~10 q
| I 1 1

6 4 2
log, &

FIG. 2. 1-norm error in probability distribution for the truncated solution vs
€. For each value of € we have randomly generated 50 matrices H and V, so
that every H+ €V defines a proper master equation. Each matrix H has be-
tween 2 and 6 blocks and each block has size between 2 and 21. The
elements of H and V are randomly generated from a uniform distribution
between 0 and 1. The probability distributions were calculated after time ¢
=2T(€)=21n €/\,,,,.
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S3

S1
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S1

FIG. 3. (a) Two-dimensional lattice representing possible states and transitions in the heat shock model. Here s; and s3 are populations of o3,-DnaK and
03,-RNAP compounds, respectively, while s, is the population of free o3, molecules. Reactions s, = s, are represented by bidirectional horizontal arrows and
reactions s, — s are represented with vertical arrows. The total number of ¢, is constant (in this example s;+s5,+s3=5), so the chemical state of the system
is uniquely defined by s, and s; alone. (b) The same lattice after applying the finite state projection. Unlikely states have been aggregated into a single sink

state.

finding free o, inside the cell. The free o3, then can com-
bine with RNA polymerase through what can be considered
an irreversible reaction to form a 03,-RNAP complex. In
turn, 03,-RNAP initiates transcription of genes encoding heat
shock proteins. This reaction has been analyzed before using
various computational methods including Monte Carlo
implementations. 17.25

In the biological system, the relative rates of the reac-
tions are such that the reaction from s, to s; is by far the
fastest, and o3, molecules infrequently escape from DnaK
long enough to form the o3,-RNAP complex. The purpose of
this mechanism is to strike a balance between fixing the
damage produced by heat and saving the cell’s resources, as
a significant portion of cell energy is consumed when pro-
ducing heat shock proteins. The optimal response to the heat
shock is not massive, but measured production of heat shock
proteins, which leaves sufficient resources for other cellular
functions. We use the following set of parameters values for
the reaction rates.'”*

c1=10, ¢,=4 X104 ¢;=2. (29)

For simplicity, in our model we assume that the total number
of o3, protein—free or in compounds—is constant, so that
s1+8,+s3=const. With this constraint the reachable states of
this three-species problem can be represented on a two-
dimensional lattice.

For illustrative purposes, Fig. 3(a) shows one such lattice
for an initial condition of s;=5 and s,=s53=0. Here, the total
population is fixed at five, and there is a total of 21 reachable
states.

We first apply the finite state projection. We estimate that
all states where s,>2 or s;>2 are unlikely to be reached in
a short time, so we aggregate them into a sink node as shown
in Fig. 3(b) thereby reducing this to a ten state problem.
From the transitions to the aggregated state, we find a strict
upper bound on the error introduced by such an approxima-
tion. For our set of parameters the 1-norm approximation
error is guaranteed to be below 0.08 for any time 7= 500.

Next, we further reduce this system by applying time
scale separation. Elements of the matrix Aggp, which defines
the master equation for the system obtained after the finite
state projection, can be read off of Fig. 3(b). A smart book-
keeping practice would be to write Apgp=H+ €V, and record
all reversible reactions s; =, in the matrix H and all other
reactions, including s, — s3 and transitions to the aggregated
state, in the matrix V. By doing so we ensure that all fast
reactions are contained in H. Note that there is no unique
way to separate fast and slow reactions and we chose this
one for its simplicity. Matrix H has a block diagonal struc-
ture

H;
H,
H= , (30)
H,
0
where each block
- (k+2)C1 C2 0
Hk= (k+2)C] —(k+l)C]—C2 2C2 (31)
0 (k+1)c, -2c,

corresponds to a row of states in Fig. 3(b). The zero in the
last row of H is just a scalar, and it corresponds to the ag-
gregated state. Note that in this case it was the finite state
projection that generated this characteristic near block diag-
onal structure.

The matrix €V is made up of irreversible reactions [ver-
tical transitions in Fig. 3(b)] and therefore has a lower trian-
gular form,
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0
0 —c3
0 0 -3c;—2c;
0 ¢ 0
0 0 2¢3 0 —c;3

eV=

0 O 0 0 0 —-2¢;—2c3
0 0 0 0 ¢ 0 0
0 O 0 0 0 2c; 0 —c3
0 O 0 0 0 0 0 0
0 O 3¢y 0 O 2¢; 0 ¢

For the reaction rates above, the first four eigenvalues of H
are zero, and the rest have negative real parts, each with
magnitude of order 10* or larger, suggesting that the trunca-
tion in (16) is indeed valid for this problem. Therefore the
dynamics of nine-dimensional system obtained by the finite
state projection can be well approximated by a system of
only four linear ordinary differential equations. By applying
algorithm from Sec. III A we find that the time scale separa-
tion introduces error of order 1073, with respect to the solu-
tion obtained by finite state projection alone. The transient
time (19) is estimated to be 2 X 107#, and is negligible con-
sidering the time interval of interest.

In Fig. 4 we compare the results obtained by solving the
full system directly, using finite state projection alone and
using finite state projection and time scale separation com-
bined. The figure shows how probability of having no
03,-RNAP complex in the cell decreases with time. All three
results are in a good agreement as our calculations predicted.

The advantage of combining the finite state projection
and time scale separation becomes obvious if we consider a
more realistic and much larger problem with the same reac-
tions but with initial conditions s;=2000 and s,=s3=0. In
this case there are 2 001 000 reachable states, and the full
chemical master equation is too large to be tackled directly.
However, by applying the finite state projection we find that
truncating every state where s3 <350 and s, =< 11 introduces
1-norm error that is less than 10~ for times <300 s. The
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FIG. 4. Probability that no o3,-RNAP molecule has been synthesized in the
heat shock toy model.

J. Chem. Phys. 125, 204104 (2006)

—C1—2C3

C1+2C3 0

resulting matrix A is of size 3851 X 3851, and has near block
diagonal form (8) similar to the example in Fig. 3. Its block
diagonal part H contains 350 irreducible blocks each with 11
rows and columns. Same as in the previous example the
leading nonzero eigenvalue of H has a negative real part of
magnitude 10%, so the system can be reduced to a 351 state
model using the time scale separation algorithm. Should we
apply time scale separation directly to the full system, the
amount of the computation would be significantly larger. The
solution to this problem shows how the number of com-
pounds o03,-RNAP grows in time if the temperature is con-
stant and slightly above normal physiological level. This
number is proportional to the number of heat shock proteins
produced in the cell. With the finite state projection solution,
we have computed the probability distribution for s5 at three
times =100, 200, and 300 (Fig. 5, solid lines). We computed
the same distributions using time scale separation applied
atop of the finite state projection (Fig. 5, dots), and we found
that the difference between the two results is indistinguish-
able. Following the discussion from Sec. III A we estimate
that the computational cost is reduced by more than 1000-
fold when using time scale separation. Indeed, computational
times for the two sets of results in Fig. 5 differ by that order,
as shown in Tables I and II.

We further use this example to compare the efficiency of
our approach to Monte Carlo based methods. We find that
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FIG. 5. Probability distribution for s5 calculated at three different times. The
truncated solution (dots) approximates well the solution to the full system
(solid lines).
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TABLE I. A comparison of the computational cost and accuracy of the finite
state projection (FSP) and stochastic simulation algorithm (SSA) for the
solution of the chemical master equation, arising in the toy heat shock
model, at r=300.

Method No. samples Time (s) Error (1-norm)
FSP N/A® 1472 <2x107
SSA 10° >20 000 ~0.25

“The finite state projection runs only once with prespecified error of
2X107.

finite state projection outperforms by a wide margin the sto-
chastic simulation algorithm,2 both in terms of computational
time and accuracy (Table I). Neither method attempts to dis-
tinguish between fast and slow processes.

When comparing the finite state projection method com-
bined with singular perturbation against Monte Carlo meth-
ods designed to deal with systems with multiple time scales,
we again find significant advantages when using our ap-
proach. In Table II we provide head to head comparison be-
tween our method and recently proposed slow scale stochas-
tic simulation algorithm.17

All our simulations are coded in MATLAB version 7.2 and
run on 2.0 MHz PowerPC Dual G5. Whenever possible we
used built in MATLAB fu