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Abstract

The road back from CME to SSA. Explicitly reveal the approximations made when SSA and
tau-leaping are used to sample the distribution produced by CME.

1 Introduction

Biological systems are frequently modeled as networks of interacting chemical kinetics. In
systems formed by living cells, these reactions evolve stochastically and the stochastic effects
typically become important when there are a small number of molecules of one or more species
involved in a reaction [9]. The stochastic approach treats the time-evolution as a kind of
randomness that is inherent to all biochemical systems.

Gillespie proposed the stochastic simulation algorithm (SSA) that is the stochastic pro-
cess defined by the CME by using a Monte Carlo method [5]. Despite representing exact
realizations of the CME, the amount of computational time of the SSA cause by executing
every reaction is always an issue in real systems. This drawback motivates attempts to
improve the computational efficiency with approximate algorithms.

One such approximate acceleration procedure is the “tau-leaping method” [6], in which
some chosen time τ that encompasses more than one reactions. Therefore, many reactions
can be simulated at each step with a pre-selected time τ . The tau-leaping method requires
that the selected τ must be small enough to satisfy the “leap condition”: The expected
state change induced by the leap must be sufficiently small that propensity functions remain
nearly constant during the time step τ . The number of times that each reaction fires in time
τ can be approximated by a Poisson random variable.

While the tau-leaping method represents the efficiency for the one time scale systems,
it gives unstable results with the larger stepsize solution especially for the stiff systems.
Stiffness generally manifests when there are well-separated “fast” and “slow” time scales
present, and the “fast modes” are stable. The implicit tau-leaping method improves the
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numerical stability of the explicit tau-leaping method in the stiff systems [10]. With the
improved step size selection strategies [6, 8], there exist several other tau-leaping attempts
to accelerate the efficiency of the exact SSA through approximations [3, 2, 8, 11]. Algorithmic
improvements to Gillespie’s SSA were proposed by Gibson and Bruck [4].

The paper is organized as follows. Section 2 describes the SSA with existing approxima-
tion algorithms.

2 Simulation of Stochastic Chemical Kinetics

Consider a chemical system in a constant volume container. The system is well-stirred and in
thermal equilibrium at some constant temperature. There are N different chemical species
S1, . . . , SN . Let X i(t) denote the number of molecules of species Si at time t. The state
vector x(t) = [X1(t), . . . , XN(t)] defines the numbers of molecules of each species present
at time t.

The chemical network consists of M reaction channels R1, . . . , RM . Each individual reac-
tion destroys a number of molecules of reactant species, and produces anumber of molecules
of the products. Let νij be the change in the number of Si molecules caused by a single
reaction Rj. The state change vector νj = [ν1j , . . . , ν

N
j ] describes the change in the entire

state following Rj.
A propensity function aj(x) is associated with each reaction channel Rj. The probability

that one Rj reaction will occur in the next infinitesimal time interval [t, t+dt) is aj(x(t)) ·dt.
The purpose of a stochastic chemical simulation is to trace the time evolution of the

system state x(t) given that at the initial time t the system is in the initial state x(t) = x.

2.1 Exact Stochastic Simulation Algorithm

The stochastic simulation algorithm (SSA) simulates every reaction event in succession . Let
X(t) = x. Gillespie [5] shows that the probability than no reaction fires within the time
interval [t, t+ τ) is

P(τ, φ|x, t) = e−a0(x)τ , where a0(x) ≡
M∑
j=1

aj(x) . (1a)

The probability that the next reaction in the system will occur in the infinitesimal time
interval [t+ τ, t+ τ + dτ), and will be an Rj reaction, is P(τ, Rj|x, t)dτ . The corresponding
reaction probability density function is

P(τ, Rj|x, t) = aj(x) e−a0(x)τ . (1b)

The SSA algorithm uses a Monte Carlo approach to generate τ and j. On each step of
the SSA, two random numbers r1 and r2 are drawn from the uniform U(0, 1) distribution.
The next reaction occurs at time t+ τ , where

τ =
1

a0(x)
ln

(
1

r1

)
.
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The index of the next reaction Rj is given by the smallest integer j satisfying

j∑
`=1

a`(x) > r2 a0(x).

After τ and j are obtained, the system states are updated by X(t + τ) := x + νj, and the
time is updated by t := t + τ . This simulation iteration proceeds until the time t reaches
the final time.

It is clear from the stochastic nature of the system that a different simulation of the same
cell over the same interval (using a different seed for the pseudo-random number generator)
will involve a different number of reactions, and therefore will require a different compute
time.

2.2 Tau-Leaping Method

The SSA is an exact stochastic method for chemical reactions, however, it is very slow for
many real systems because the SSA simulates one reaction at a time. One approximate
simulation approach is the tau-leaping method [6]. The basic idea is to simulate all reactions
that occur during the time interval [t, t+ τ). The interval length τ is pre-selected, and must
be small enough to satisfy the leap condition. The leap condition states that the expected
state change induced by the leap is sufficiently small that the propensity functions remain
nearly constant during the interval [t, t+ τ).

Let X(t) = x, and let Kj(τ ;x, t) be the number of times the reaction channel Rj fires in
the time interval [t, t+ τ). After the leap the state is updated by

X(t+ τ) = x+
M∑
j=1

νjKj(τ ;x, t). (2)

It has been shown [6] that if the leap condition is satisfied the channels j = 1, . . . ,M fire
independently of one another. The number of reactions in each channel is a Poisson random
variable with mean and variance aj(x)τ

Kj(τ ;x, t) ∈ Poisson
(
aj(x)τ

)
, j = 1, . . . ,M .

A Poisson random variable counts the number of events that will occur during a time interval
of length τ , given that the probability of an event occurring in any future infinitesimal time
dt has a constant value aj(x) dt. The probability of having exactly k firings of the reaction
channel Rj during the interval [t, t+ τ) is

P
(
Kj(τ ;x, t) = k

)
= e−aj(x)τ

(aj(x)τ)k

k!
. (3)

2.3 The Chemical Master Equation

Consider now the state space of the chemical system X(t) ∈ NN , and denote by P(x, t) =
P (X(t) = x) the probability that the system state is x at time t. The Chemical Master
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Equation (CME) [1, 7] describes the time evolution equation of the probability function of
the system’s state

∂P(x, t)

∂t
=

M∑
r=1

ar (x− νr) P (x− νr, t)− a0(x)P(x, t) (4)

The solution of (4) gives complete information about the possible evolution of the system.
However a complete solution is difficult to obtain due to the large dimension of the state
space.

A less ambitious goal is to find the evolution probabilities around a given state. Consider
that our system is in state x at t, i.e.,

P
(
x, t
)

=

{
1 if x = x ,
0 otherwise .

We are interested to find the evolution of probabilities over small evolution interval [t, t +
τ ]. For a small leap length τ the support of the probability function will remain near x,
P
(
x, t
)
6= 0 only for x ≈ x. The propensities for all states x of nonzero probability are

not much different than the propensity values at x. This observation justifies the following
approximation of the CME (4)

∂P(x, t)

∂t
=

M∑
r=1

ar (x) P (x− νr, t)− a0 (x) P(x, t) (5)

where the arguments of all propensity functions have been changed from x or x − νj to x.
Note that the approximate CME (5) maintains the sum of probabilities equal to one for any
x. This can be seen immediately by summing after x.

3 SSA as a Markov Process

Next, we assume that the probabilities change only slightly during the short time interval
[t, t + τ ] under consideration. We further approximate the equation (5) by holding the
probabilities P (x− νr, t) at their t value P

(
x− νr, t

)
. The resulting approximate CME

reads:
∂P(x, t)

∂t
=

M∑
r=1

ar (x) P
(
x− νr, t

)
− a0 (x) P(x, t) . (6)

Rearranging the terms in (6)

∂

∂t

(
ea0(x) tP(x, t)

)
= ea0(x) t

M∑
r=1

ar (x) P
(
x− νr, t

)
,

integrating analytically on [t, t+ τ ]

ea0(x) (t+τ)P(x, t+ τ) = ea0(x) tP(x, t)

+
ea0(x) (t+τ) − ea0(x) t

a0 (x)

M∑
r=1

ar (x) P
(
x− νr, t

)
,
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and multiplying with exp(−a0 (x) (t+ τ)) leads to the following solution:

P(x, t+ τ) = e−a0(x) τ P(x, t) +
1− e−a0(x) τ

a0 (x)

M∑
r=1

ar (x) P
(
x− νr, t

)
. (7)

We now assess the transition probabilities during the interval [t, t + τ ] as described by
the approximate CME solution (7).

1. If x = x then P(x, t) = 1, P(x− νr, t) = 0 for r = 1, . . . ,M , and

P(x, t+ τ) = e−a0(x) τ . (8a)

2. If x = x + νr for some r then P(x, t) = 0, P(x − νr, t) = 1, and P(x − ν`, t) = 0 for
` 6= r. We have that

P(x+ νr, t+ τ) =
1− e−a0(x) τ

a0(x)
ar (x) , r = 1, . . . ,M . (8b)

3. For all other values of x it holds that P(x, t) = P(x− νr, t) = 0 and therefore

P(x, t+ τ) = 0 . (8c)

The probabilities (8) account for a single reaction in the interval [t, t+ τ ], and therefore
they correspond to the SSA scenario.

The probability (8a) that the system remains in the state x is equal to the SSA probability
(1a) that no reaction occurs during the interval [t, t+ τ).

Equation (8b) gives the probability of the transition x → x + νr during the interval
[t, t+ τ). Integrating the SSA reaction probability density function (1b) over [t, t+ τ) gives
the probability that one reaction Rr happens during this interval∫ t+τ

t

P(t, r|x, t) dt = ar(x)

∫ t+τ

t

e−a0(x)(t−t) dt =
1− e−a0(x) τ

a0(x)
ar (x) ,

and is exactly the transition probability (8b).

Comment. The inverse route of determining the SSA transition probabilities from the
CME does not explicitly account for the time τ to the next reaction. The CME allows
for the possibility that the next reaction happens after [t, t + τ) by including a nonzero
probability (8a) of the state not changing.

Comment. It is tempting to conclude that, since the exact SSA algorithm samples (5),
it provides an order one numerical approximation of the CME (4). However this cannot be
claimed since one cannot take the limit τ → 0 (the individual reactions happen at discrete
times).
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Comment. An alternative reasoning to derive a continuous counterpart of the exact sim-
ulation algorithm (1) is as follows. Consider a time interval [t, t+ τ ] short enough such that
at most one reaction can take place. The probability that exactly one reaction Rr happens
during [t, t+ τ ] is the product of probabilities of the following independent events:

• no reaction happens during [t, t),

• reaction Rr fires during the infinitesimal interval [t, t+ dt), and

• no reaction fires during [t+ dt, t+ τ ].

Recalling the transition probabilities (8), the probability that exactly one Rr fires during
[t, t+ τ ] is

P(x+ νr, t+ τ) =

∫ t+τ

t

e−a0(x) (t−t) ar(x) e−a0(x+νr) (t+τ−t) dt

= ar(x)

∫ τ

0

e−a0(x) θ e−a0(x+νr) (τ−θ) dθ

= ar(x) e−a0(x) τ
∫ τ

0

e(a0(x)−a0(x+νr)) (τ−θ) dθ

= ar(x) e−a0(x) τ
∫ τ

0

e(a0(x)−a0(x+νr)) ζ dζ

= ar(x) e−a0(x) τ
1− e(a0(x)−a0(x+νr)) τ

a0(x+ νr)− a0(x)

= ar(x)
e−a0(x) τ − e−a0(x+νr) τ

a0(x+ νr)− a0(x)
.

Comment. The same probabilities (8a)–(8b) are obtained if the approximations ar (x− νr) ≈
ar(x) for all r are not used in (5), i.e., if one starts with the following CME approximation:

∂P(x, t)

∂t
=

M∑
r=1

ar (x− νr) P (x− νr, t)− a0 (x) P(x, t) . (9)

Comment. If the approximation a0(x) ≈ a0(x) is not used in (5) the resulting transition
probabilities are:

P
(
x, t+ τ

)
= e−a0(x) τ , P

(
x+ νr, t+ τ

)
=

1− e−a0(x+νr) τ

a0(x+ νr)
ar (x) .

The sum of probabilities in this case is not preserved exactly:

e−a0(x) τ +
M∑
r=1

1− e−a0(x+νr) τ

a0(x+ νr)
ar (x) = 1 +O(τ) .
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4 Tau-Leaping as a Markov Process

Assume the system at time t is in the state x. In the tau-leap method the number of times
a reaction Rr fires in [t, t + τ ] is a random variable Kr which is Poisson distributed (3)
with parameter ar (x) τ . The probability that one reaction Rj fires exactly kj times, i.e.,
P(Kj = kj), is given by equation (3).

Assuming that each reaction channel fires independently, the probability that each reac-
tion Rr fires exactly kr times, r = 1, . . . ,M , is the product of M Poisson probabilities:

P (K1 = k1, · · · , KM = kM) =
M∏
r=1

e−ar(x)τ ·
(
ar(x)τ

)kr
kr!

= e−a0(x)τ ·
M∏
r=1

(
ar(x)τ

)kr
kr!

. (10)

The effect of (k1, · · · , kM) reactions is the following change in the state vector:

X(t+ τ) = x+
M∑
r=1

kr νr . (11)

Consider the set of all possible firing sequences k = (k1, · · · , kM) that produce the same
state change

K(∆x) =

{
(k1, · · · , kM) ∈ RM : k1 ≥ 0 , . . . , kM ≥ 0 ,

M∑
r=1

krνr = ∆x

}
.

The probability to transition from the state x at t to a state x at t + τ , P(X(t + τ) = x),
is the sum of the probabilities of all possible firing sequences that, through (11), lead to the
state change ∆x = x− x . Using (10) we have that

P
(
x, t+ τ

)
= e−a0(x)τ ·

∑
k∈K(x−x)

M∏
r=1

(
ar(x)τ

)kr
kr!

.

Let Qi be the total possible number of molecules of species i, i = 1, · · · , N . The number
of molecules of species i, xi, can take values between zero and the total number, 0 ≤ xi ≤ Qi.
The total number of all possible states in which the chemical system can be found is

Q =
N∏
i=1

(
Qi + 1

)
.

Consider an ordering of the Q possible states in a one-dimensional vector. Denote by I(x)
the one-dimensional index of the state x. A reaction Rr changes the state vector; the
corresponding change in the state index is:

I(x)− I(x− νr) = dr , r = 1, · · · ,M .

Note that dr depends on νr and on the total number of molecules of each species but it does
not depend on x. For example consider the case of a column-wise ordering (first increase the
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numbers of molecules of species one, then increase the molecules of species two, and so on).
Then:

I ([x]) = (QN−1 + 1) · · · (Q1 + 1) · xN + . . .

+(Q2 + 1)(Q1 + 1) · x3 + (Q1 + 1) · x2 + x1 + 1 ,

I ([x− νr]) = (QN−1 + 1) · · · (Q1 + 1) · (xN − νNr ) + . . .

+(Q2 + 1)(Q1 + 1) · (x3 − ν3r ) + (Q1 + 1) ·
(
x2 − ν2r

)
+ x1 − ν1r + 1 ,

and therefore the shifts corresponding to each reaction are

dr = (QN−1 + 1) · · · (Q1 + 1) · νNr + . . .+ (Q2 + 1)(Q1 + 1) · ν3r + (Q1 + 1) · ν2r + ν1r . (12)

Note also that dr can be positive or negative.
Following this ordering the probabilities of all possible system states can be arranged

similarly in a one-dimensional vector

PI(x)(t) = P (x, t) , 1 ≤ I(x) ≤ T .

Consider the diagonal matrix A0 ∈ RQ×Q:

(A0)i,j =

{
−a0 (x) if i = j

0 if i 6= j
,

and the diagonal Toeplitz matrices A1, · · · , AM ∈ RQ×Q:

(Ar)i,j =

{
ar(x) if i− j = dr

0 if i− j 6= dr
, r = 1, · · · ,M .

The approximate CME equation (5) can be written in matrix-vector notation as follows:

P ′ =
R∑
r=0

Ar · P , t ≤ t ≤ t+ τ ; P (t) = δI(x) , (13)

where δj ∈ RQ is a vector whose jth entry equals one, and all the other entries are equal to
zero. The solution of the linear ODE (13) is given by the matrix exponential, and can be
approximated as follows:

P
(
t+ τ

)
= exp

(
τ

R∑
r=0

Ar

)
· P (t) .

The exponential of the sum can be approximated, to first order in τ , by the product of
individual matrix exponentials. This leads to the approximate solution

P
(
t+ τ

)
≈ exp (τA0) · exp (τA1) · · · exp (τAR) · P (t) .

The exponentials of diagonal Toeplitz matrices can be evaluated analytically. We have that:(
eτA0

)
i,j

=

{
e−a0(x) τ if i = j

0 if i 6= j
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and

(
eτAr

)
i,j

=


(
ar(x) τ

)k
k!

if i− j = k · dr for k = 0, 1, · · · , θr(i) ,
0 otherwise ,

r = 1, · · · ,M .

This matrix has multiple diagonals, spaced dr positions apart from each other. The diagonal
index is kdr with k ≥ 0. The diagonals intersected by the row i are characterized by

k ≥ 0 & 1 ≤ j = i− k · dr ≤ Q ⇔ i−Q ≤ k · dr ≤ i− 1

i.e.,

0 ≤ k ≤ θr(i) , θr(i) =


⌊
i−1
dr

⌋
for dr > 0 ,⌊

Q−i
|dr|

⌋
for dr < 0 .

The action of the matrix exponential on a vector is computed as follows:

wi = (exp (τAr) · v)i =

θr(i)∑
kr=0

(
ar(x) τ

)kr
kr!

· vi−kr·dr ,

and

(exp (τAp) · w)i =

θp(i)∑
kp=0

(
ap(x) τ

)kp
kp!

· wi−kp·dp

=

θp(i)∑
kp=0

(
ap(x) τ

)kp
kp!

θr(i−kp·dp)∑
kr=0

(
ar(x) τ

)kr
kr!

· vi−kp·dp−kr·dr .

Generalizing this equation leads to

(exp (τA1) · · · exp (τAM) · v)i =

θ1(i)∑
k1=0

(
a1(x) τ

)k1
k1!

θ2(i−k1·d1)∑
k2=0

(
a2(x) τ

)k2
k2!

· · ·

· · ·
θM (i−

∑M−1
r=1 kr·dr)∑

kM=0

(
aM(x) τ

)kM
kM !

· vi−∑M
r=1 kr·dr

Starting with a delta initial condition at j = I(x), the probability of a state x with
i = I(x) is

(exp (τA1) · · · exp (τAM) · v)i=j+∑M
r=1 kr·dr

=

θ1(j+
∑M

r=1 kr·dr)∑
k1=0

(
a1(x) τ

)k1
k1!

θ2(j+
∑M

r=2 kr·dr)∑
k2=0

(
a2(x) τ

)k2
k2!

· · ·

· · ·
θM (j+kM ·dM )∑

kM=0

(
aM(x) τ

)kM
kM !

· δj
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Using the index notation, the probability given by the tau leaping method is

K(i− j) =

{
(k1, · · · , kM) ∈ RM : k1 ≥ 0 , . . . , kM ≥ 0 ,

M∑
r=1

kr dr = i− j

}
.

Pi
(
t+ τ

)
= e−a0(x)τ ·

∑
∑M

r=1 kr dr=i−j

M∏
r=1

(
ar(x)τ

)kr
kr!

.

5 Example

Consider the following system of extended Lotka reactions [5]

Y + S1 c1−→ 2S1 (14a)

S1 + S2 c2−→ 2S2 (14b)

S2 c3−→ Z (14c)

S1 c4−→ Z (14d)

with N = 2 and M = 4. The propensity functions are

a1(x) = c1 Y x
1 (15a)

a2(x) = c2 x
1 x2 (15b)

a3(x) = c3 x
2 (15c)

a4(x) = c4 x
1 (15d)

and the stoichiometric array is

ν =
(
νij
)
1≤i≤2 , 1≤j≤4 =

[
1 −1 0 −1
0 1 −1 0

]
.

With Y = const and c4 = c1 Y we have that x1(t)+x2(t)+Z(t) = const (since the sum of the
corresponding time derivatives is zero). The system starts with no Z molecules, Z(t) = 0.
Consequently the maximum numbers of molecules for the species of interest are

0 ≤ x1(t), x2(t) ≤ x1(t) + x2(t) + Z(t) = x1(t) + x2(t) = Q1 = Q2 .

According to (16) the shifts corresponding to each reaction are

d1 = (Q1 + 1)× ν21 + ν11 = 1

d2 = (Q1 + 1)× ν22 + ν12 = Q1

d3 = (Q1 + 1)× ν23 + ν13 = −1−Q1

d4 = (Q1 + 1)× ν24 + ν14 = −1
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A =



a
(1)
0 a

(2)
4 0 0 a

(5)
3 0 0 0 0 0 0 0 0 0 0 0

a
(1)
1 a

(2)
0 a

(3)
4 0 0 a

(6)
3 0 0 0 0 0 0 0 0 0 0

0 a
(2)
1 a

(3)
0 a

(4)
4 0 0 a

(7)
3 0 0 0 0 0 0 0 0 0

a
(1)
2 0 a

(3)
1 a

(4)
0 a

(5)
4 0 0 a

(8)
3 0 0 0 0 0 0 0 0

0 a
(2)
2 0 a

(4)
1 a

(5)
0 a

(6)
4 0 0 a

(9)
3 0 0 0 0 0 0 0

0 0 a
(3)
2 0 a

(5)
1 a

(6)
0 a

(7)
4 0 0 a

(10)
3 0 0 0 0 0 0

0 0 0 a
(4)
2 0 a

(6)
1 a

(7)
0 a

(8)
4 0 0 a

(11)
3 0 0 0 0 0

0 0 0 0 a
(5)
2 0 a

(7)
1 a

(8)
0 a

(9)
4 0 0 a

(12)
3 0 0 0 0

0 0 0 0 0 a
(6)
2 0 a

(8)
1 a

(9)
0 a

(10)
4 0 0 a

(13)
3 0 0 0

0 0 0 0 0 0 a
(7)
2 0 a

(9)
1 a

(10)
0 a

(11)
4 0 0 a

(14)
3 0 0

0 0 0 0 0 0 0 a
(8)
2 0 a

(10)
1 a

(11)
0 a

(12)
4 0 0 a

(15)
3 0

0 0 0 0 0 0 0 0 a
(9)
2 0 a

(11)
1 a

(12)
0 a

(13)
4 0 0 a

(16)
3

0 0 0 0 0 0 0 0 0 a
(10)
2 0 a

(12)
1 a

(13)
0 a

(14)
4 0 0

0 0 0 0 0 0 0 0 0 0 a
(11)
2 0 a

(13)
1 a

(14)
0 a

(15)
4 0

0 0 0 0 0 0 0 0 0 0 0 a
(12)
2 0 a

(14)
1 a

(15)
0 a

(16)
4

0 0 0 0 0 0 0 0 0 0 0 0 a
(13)
2 0 a

(15)
1 a

(16)
0



6 Exponential ROW

Let W ≈ A.
An EXP-ROW method reads

ki = φ(γhW )

(
f(ui) + hW

i−1∑
j=1

γi,jkj

)

= φ(γhW )

(
Aui + hW

i−1∑
j=1

γi,jkj

)

= h−1γ−1 (exp(γhW )− I)

(
W−1Aui + h

i−1∑
j=1

γi,jkj

)

ui = y0 + h

i−1∑
j=1

αi,jkj

y1 = y0 + h
s∑
i=1

biki .
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Conditions up to order 2 are. ∑
i

bi = 1∑
j

bj
∑
k

αj,k = 1/2∑
j

bj
∑
k

γj,k = −γ/2 .

A method of order 4 is:

k1 = φ(
1

3
hW )f(y0);

k2 = φ(
2

3
hW )f(y0);

k3 = φ(hW )f(y0);

w4 = −7/300k1 + 97/150k2 − 37/300k3;

u4 = y0 + hw4;

d4 = f(u4)− f(y0)− hWw4;

k4 = φ(
1

3
hW )d4;

k5 = φ(
2

3
hW )d4;

k6 = φ(hW )d4;

w7 = 59/300k1 − 7/75k2 + 269/300k3 +
2

3
(k4 + k5 + k6);

u7 = y0 + hw7;

d7 = f(u7)− f(y0)− hWw7;

k7 = φ(
1

3
hW )d7;

y1 = y0 + h(k3 + k4 − 4/3k5 + k6 + 1/6k7)

7 Conclusions

In this paper we explain the approximations made by SSA and tau-leaping when used to
sample the distribution from the CME.
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