
Multinomial Data

The multinomial distribution is a generaliza-

tion of the binomial for the situation in which

each trial results in one and only one of several

categories, as opposed to just two, as in the

case of the binomial experiment.

Let Y = (Y1, . . . , Yk), where Yi is the number

of n independent trials that result in category

i, i = 1, . . . , k. The likelihood function is such

that

f(y|θ) ∝
k∏

i=1

θ
yi
i ,

where θi is the probability that a given trial

results in category i, i = 1, . . . , k.

The parameter space is

Θ = {θ : θi ≥ 0, i = 1, . . . , k;
k∑

j=1

θj = 1}.
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Of course, the vector of observations satisfies

y1 + · · ·+ yk = n.

Conjugate prior for multinomial data

The so-called Dirichlet distribution is the con-

jugate family of priors for the multinomial dis-

tribution. The Dirichlet distribution is such

that

π(θ;α) =
Γ(

∑k
i=1 αi)∏k

i=1 Γ(αi)

k∏

i=1

θ
αi−1
i IΘ(θ),

where αi > 0, i = 1, . . . , k.

Using this prior in the multinomial experiment

yields a Dirichlet posterior with parameters yi+

αi, i = 1, . . . , k.
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The parameters of the Dirichlet prior have the

same sort of interpretation as those of a beta

prior, which of course is a special case of the

Dirichlet.

The information in a prior with parameters α1,

. . . , αk is equivalent to that in a multinomial

experiment with α1+ · · ·+αk trials and αi out-

comes in category i, i = 1, . . . , k.

A natural noninformative prior is to take αi =

1, i = 1, . . . , k, which is uniform over Θ.

What is the Jeffreys prior?

log f(y|θ) = Cy +
k∑

i=1

yi log θi.
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∂

∂θj
log f(y|θ) =

yj

θj

∂2

∂θi∂θj
log f(y|θ) =

{
−yi/θ2

i , i = j,

0, i 6= j.

The information matrix is thus diagonal with

diagonal entries equal to

1

θ2
i

E(Yi) =
n

θi
, i = 1, . . . , k.

So, the Jeffreys prior is Dirichlet with αi = 1/2,

i = 1, . . . , k, which is a proper prior.

One can verify that the marginal distributions

of a Dirichlet are also Dirichlet.
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Multivariate Normal Distribution

Suppose we have a random sample of size n

from the d-variate normal distribution. Here

the data Y are an n by d matrix. The ith row

of this matrix is Y T
i , where

Y T
i = (Yi1, . . . , Yid), i = 1, . . . , n.

The parameters of the d-variate normal are the

mean vector µ and the covariance matrix Σ.

These are defined by

µ = (µ1, . . . , µd)
T = E(Y T

i )

and

Σij = Cov(Yri, Yrj), i = 1, . . . , d,

j = 1, . . . , d.
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The likelihood function is

f(y|µ,Σ) ∝ |Σ|−n/2

× exp
(
−1

2
∑n

i=1(yi − µ)TΣ−1(yi − µ)
)

.

In the (unlikely) event that Σ is known, we only

need a prior for µ. It can be verified that the

multivariate normal is a conjugate prior for µ

in this case.

Suppose that a priori µ ∼ N(η,Λ). Proceeding

analogously to the univariate case, it can be

shown that the posterior distribution is normal

with mean vector µn and covariance matrix Λn,

where

µn = (Λ−1 + nΣ−1)−1(Λ−1η + nΣ−1ȳ)

and

Λ−1
n = Λ−1 + nΣ−1.
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Let µ1 and µ2 contain the first k and the last

d − k elements of µ, respectively. Similarly,

define µn1 and µn2 in terms of the elements of

µn.

Partition Λn as

Λn =

[
Λ11

n Λ12
n

Λ21
n Λ22

n

]
,

where Λ11
n is k× k and Λ22

n is (d− k)× (d− k).

It follows that the conditional distribution of

µ1 given µ2 is normal with mean vector

µn1 + Λ12
n (Λ22

n )−1(µ2 − µn2)

and covariance matrix

Λ11
n −Λ12

n (Λ22
n )−1Λ21

n .

Of course, the marginal of, for example, µ1 is

normal with mean vector µn1 and covariance

matrix Λ11
n .
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By letting |Λ−1| → 0, we can obtain a nonin-

formative prior in the limit. The resulting prior

is uniform over all the d-dimensional reals, and

of course is improper.

If n ≥ d, the posterior corresponding to the

uniform prior for µ is N(ȳ,Σ/n).

Inadmissibility of a Bayes estimator: James-

Stein theory

Suppose we observe Y that has a d-variate nor-

mal distribution with unknown mean vector µ

and known covariance matrix Id, the d×d iden-

tity.

This problem is equivalent to one where we

simultaneously estimate means from indepen-

dent experiments.
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If we use the noninformative, uniform prior for

µ, and the squared error loss

L(µ, a) =
d∑

i=1

(µi − ai)
2,

then the Bayes estimator of µ is, not surpris-

ingly, Y .

The surprising thing is that this “natural” es-

timator is inadmissible for d ≥ 3. (It is admis-

sible for d = 1 or 2.) This result is proven by

Stein (1955), Proceedings of the Third Berke-

ley Symposium.

James and Stein (1960), Proceedings of the

Fourth Berkeley Symposium, produced an es-

timator that has uniformly smaller risk than Y .

The estimator is

δJS(Y ) =

(
1− d− 2

∑d
i=1 Y 2

i

)
Y .
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It turns out that the ratio R(µ, δJS)/R(µ, Y )
is very close to 1 over most of the parameter
space. Only near µT = (0, . . . ,0) is the ratio
of risks substantially smaller than 1.

One way of seeing why is to first prove the
following fact:

For a set of µi’s that are all bounded in
absolute value by the same constant, and
when d is large, the statistic

Td =
d∑

i=1

Y 2
i /(d− 2)

is very close to θd = 1 +
∑d

i=1 µ2
i /d.

Proof

We have, for each i,

E(Y 2
i ) = 1 + µ2

i

and

Var(Y 2
i ) = 2(1 + 2µ2

i ).
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For an arbitrarily small, positive ε, Markov’s

inequality says that

P (|Td − θd| < ε) ≥ 1− E(Td − θd)
2/ε2.

Now,

E(Td − θd)
2 = Var(Td) + [E(Td)− θd]

2

= Var(Td) +
4θ2

d

(d− 2)2
.

Since the Yis are independent,

Var(Td) =
2

(d− 2)2

d∑

i=1

(1 + 2µ2
i ).

Using the fact that |µ1|, . . . , |µd| are all less than

or equal to the same constant, we have

E(Td − θd)
2 ≤ C

d

for some positive constant C. It follows that

when d is sufficiently big, P (|Td − θd| < ε) is ar-

bitrarily close to 1.

Q.E.D.
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To get a better understanding of the James-

Stein estimator, we now consider

δ̂JS(Y ) =

(
1− 1

θd

)
Y

=

(
µ̄2

d

1 + µ̄2
d

)
Y ,

where µ̄2
d =

∑
i=1 µ2

i /d.

The result proved on the previous pages shows

that, for large d, δJS ≈ δ̂JS.

The random variable δ̂JS provides us with some

intuition about the James-Stein estimator. If

the vector µ is close to the origin, i.e., 0 =

(0, . . . ,0)T , then µ̄2
d is close to 0, and hence

δ̂JS ≈ 0. This is good!!
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On the other hand, if µ is far from the origin,

then

µ̄2
d

1 + µ̄2
d

≈ 1,

and δ̂JS ≈ Y . This is good, because if µ is not

close to the origin, then there’s no rationale

for shrinking the estimate towards the origin.

Shrinkage towards 0 is arbitrary

Suppose we have a rationale for shrinking the

estimate towards a point α in d-space. For

example, some theory may suggest that µ = α.

We may define an estimate

δJS(Y ;α) = Y − d− 2
∑d

i=1(Yi − αi)2
(Y −α).
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Using the squared error loss on p. 130N, verify

that

R(µ, δJS(Y ;α)) = R(µ−α, δJS(Y )) (∗)
for all µ.

Because Y has constant risk and because

R(µ, δJS(Y )) ≤ R(µ, Y )

for all µ, (∗) implies that δJS(Y ;α) has risk no

larger than that of Y for all µ.

The part of the parameter space where δJS(Y ;α)

has substantially smaller risk is near α.

Read Example 46, p. 256 of Berger (2nd edi-

tion) for more details on this problem.
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