Multinomial Data

The multinomial distribution is a generalization of the binomial for the situation in which each trial results in one and only one of several categories, as opposed to just two, as in the case of the binomial experiment.

Let $\boldsymbol{Y}=\left(Y_{1}, \ldots, Y_{k}\right)$, where Y_{i} is the number of n independent trials that result in category $i, i=1, \ldots, k$. The likelihood function is such that

$$
f(\boldsymbol{y} \mid \boldsymbol{\theta}) \propto \prod_{i=1}^{k} \theta_{i}^{y_{i}}
$$

where θ_{i} is the probability that a given trial results in category $i, i=1, \ldots, k$.

The parameter space is

$$
\Theta=\left\{\boldsymbol{\theta}: \theta_{i} \geq 0, i=1, \ldots, k ; \sum_{j=1}^{k} \theta_{j}=1\right\}
$$

Of course, the vector of observations satisfies $y_{1}+\cdots+y_{k}=n$.

Conjugate prior for multinomial data

The so-called Dirichlet distribution is the conjugate family of priors for the multinomial distribution. The Dirichlet distribution is such that

$$
\pi(\boldsymbol{\theta} ; \boldsymbol{\alpha})=\frac{\Gamma\left(\sum_{i=1}^{k} \alpha_{i}\right)}{\prod_{i=1}^{k} \Gamma\left(\alpha_{i}\right)} \prod_{i=1}^{k} \theta_{i}^{\alpha_{i}-1} I_{\Theta}(\boldsymbol{\theta})
$$

where $\alpha_{i}>0, i=1, \ldots, k$.

Using this prior in the multinomial experiment yields a Dirichlet posterior with parameters $y_{i}+$ $\alpha_{i}, i=1, \ldots, k$.

The parameters of the Dirichlet prior have the same sort of interpretation as those of a beta prior, which of course is a special case of the Dirichlet.

The information in a prior with parameters α_{1}, \ldots, α_{k} is equivalent to that in a multinomial experiment with $\alpha_{1}+\cdots+\alpha_{k}$ trials and α_{i} outcomes in category $i, i=1, \ldots, k$.

A natural noninformative prior is to take $\alpha_{i}=$ $1, i=1, \ldots, k$, which is uniform over Θ.

What is the Jeffreys prior?

$$
\log f(\boldsymbol{y} \mid \boldsymbol{\theta})=C \boldsymbol{y}+\sum_{i=1}^{k} y_{i} \log \theta_{i}
$$

$$
\begin{gathered}
\frac{\partial}{\partial \theta_{j}} \log f(\boldsymbol{y} \mid \boldsymbol{\theta})=\frac{y_{j}}{\theta_{j}} \\
\frac{\partial^{2}}{\partial \theta_{i} \partial \theta_{j}} \log f(\boldsymbol{y} \mid \boldsymbol{\theta})= \begin{cases}-y_{i} / \theta_{i}^{2}, & i=j, \\
0, & i \neq j .\end{cases}
\end{gathered}
$$

The information matrix is thus diagonal with diagonal entries equal to

$$
\frac{1}{\theta_{i}^{2}} E\left(Y_{i}\right)=\frac{n}{\theta_{i}}, \quad i=1, \ldots, k .
$$

So, the Jeffreys prior is Dirichlet with $\alpha_{i}=1 / 2$, $i=1, \ldots, k$, which is a proper prior.

One can verify that the marginal distributions of a Dirichlet are also Dirichlet.

Multivariate Normal Distribution

Suppose we have a random sample of size n from the d-variate normal distribution. Here the data \boldsymbol{Y} are an n by d matrix. The i th row of this matrix is \boldsymbol{Y}_{i}^{T}, where

$$
\boldsymbol{Y}_{i}^{T}=\left(Y_{i 1}, \ldots, Y_{i d}\right), \quad i=1, \ldots, n .
$$

The parameters of the d-variate normal are the mean vector $\boldsymbol{\mu}$ and the covariance matrix Σ. These are defined by

$$
\boldsymbol{\mu}=\left(\mu_{1}, \ldots, \mu_{d}\right)^{T}=E\left(\boldsymbol{Y}_{i}^{T}\right)
$$

and

$$
\begin{aligned}
\Sigma_{i j}=\operatorname{Cov}\left(Y_{r i}, Y_{r j}\right), & i=1, \ldots, d \\
& j=1, \ldots, d
\end{aligned}
$$

The likelihood function is

$$
\begin{gathered}
f(\boldsymbol{y} \mid \boldsymbol{\mu}, \boldsymbol{\Sigma}) \propto|\boldsymbol{\Sigma}|^{-n / 2} \\
\times \exp \left(-\frac{1}{2} \sum_{i=1}^{n}\left(\boldsymbol{y}_{i}-\boldsymbol{\mu}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\boldsymbol{y}_{i}-\boldsymbol{\mu}\right)\right) .
\end{gathered}
$$

In the (unlikely) event that Σ is known, we only need a prior for $\boldsymbol{\mu}$. It can be verified that the multivariate normal is a conjugate prior for $\boldsymbol{\mu}$ in this case.

Suppose that a priori $\boldsymbol{\mu} \sim N(\boldsymbol{\eta}, \boldsymbol{\Lambda})$. Proceeding analogously to the univariate case, it can be shown that the posterior distribution is normal with mean vector $\boldsymbol{\mu}_{n}$ and covariance matrix Λ_{n}, where

$$
\boldsymbol{\mu}_{n}=\left(\boldsymbol{\Lambda}^{-1}+n \boldsymbol{\Sigma}^{-1}\right)^{-1}\left(\boldsymbol{\Lambda}^{-1} \boldsymbol{\eta}+n \boldsymbol{\Sigma}^{-1} \overline{\boldsymbol{y}}\right)
$$

and

$$
\Lambda_{n}^{-1}=\Lambda^{-1}+n \Sigma^{-1}
$$

Let μ_{1} and μ_{2} contain the first k and the last $d-k$ elements of μ, respectively. Similarly, define $\boldsymbol{\mu}_{n 1}$ and $\boldsymbol{\mu}_{n 2}$ in terms of the elements of μ_{n}.

Partition $\boldsymbol{\Lambda}_{n}$ as

$$
\Lambda_{n}=\left[\begin{array}{ll}
\Lambda_{n}^{11} & \Lambda_{n}^{12} \\
\Lambda_{n}^{21} & \Lambda_{n}^{22}
\end{array}\right],
$$

where Λ_{n}^{11} is $k \times k$ and Λ_{n}^{22} is $(d-k) \times(d-k)$.
It follows that the conditional distribution of μ_{1} given μ_{2} is normal with mean vector

$$
\mu_{n 1}+\Lambda_{n}^{12}\left(\Lambda_{n}^{22}\right)^{-1}\left(\mu_{2}-\mu_{n 2}\right)
$$

and covariance matrix

$$
\Lambda_{n}^{11}-\Lambda_{n}^{12}\left(\Lambda_{n}^{22}\right)^{-1} \Lambda_{n}^{21} .
$$

Of course, the marginal of, for example, μ_{1} is normal with mean vector $\mu_{n 1}$ and covariance matrix Λ_{n}^{11}.

By letting $\left|\Lambda^{-1}\right| \rightarrow 0$, we can obtain a noninformative prior in the limit. The resulting prior is uniform over all the d-dimensional reals, and of course is improper.

If $n \geq d$, the posterior corresponding to the uniform prior for $\boldsymbol{\mu}$ is $N(\overline{\boldsymbol{y}}, \boldsymbol{\Sigma} / n)$.

Inadmissibility of a Bayes estimator: JamesStein theory

Suppose we observe \boldsymbol{Y} that has a d-variate normal distribution with unknown mean vector μ and known covariance matrix \boldsymbol{I}_{d}, the $d \times d$ identity.

This problem is equivalent to one where we simultaneously estimate means from independent experiments.

If we use the noninformative, uniform prior for $\boldsymbol{\mu}$, and the squared error loss

$$
L(\boldsymbol{\mu}, \boldsymbol{a})=\sum_{i=1}^{d}\left(\mu_{i}-a_{i}\right)^{2},
$$

then the Bayes estimator of $\boldsymbol{\mu}$ is, not surprisingly, \boldsymbol{Y}.

The surprising thing is that this "natural" estimator is inadmissible for $d \geq 3$. (It is admissible for $d=1$ or 2.) This result is proven by Stein (1955), Proceedings of the Third Berkeley Symposium.

James and Stein (1960), Proceedings of the Fourth Berkeley Symposium, produced an estimator that has uniformly smaller risk than \boldsymbol{Y}. The estimator is

$$
\delta_{\mathrm{JS}}(\boldsymbol{Y})=\left(1-\frac{d-2}{\sum_{i=1}^{d} Y_{i}^{2}}\right) \boldsymbol{Y} .
$$

It turns out that the ratio $R\left(\boldsymbol{\mu}, \delta_{\mathrm{Js}}\right) / R(\boldsymbol{\mu}, \boldsymbol{Y})$ is very close to 1 over most of the parameter space. Only near $\boldsymbol{\mu}^{T}=(0, \ldots, 0)$ is the ratio of risks substantially smaller than 1.

One way of seeing why is to first prove the following fact:

For a set of μ_{i} 's that are all bounded in absolute value by the same constant, and when d is large, the statistic

$$
T_{d}=\sum_{i=1}^{d} Y_{i}^{2} /(d-2)
$$

is very close to $\theta_{d}=1+\sum_{i=1}^{d} \mu_{i}^{2} / d$.

Proof

We have, for each i,

$$
E\left(Y_{i}^{2}\right)=1+\mu_{i}^{2}
$$

and

$$
\operatorname{Var}\left(Y_{i}^{2}\right)=2\left(1+2 \mu_{i}^{2}\right)
$$

For an arbitrarily small, positive ϵ, Markov's inequality says that

$$
P\left(\left|T_{d}-\theta_{d}\right|<\epsilon\right) \geq 1-E\left(T_{d}-\theta_{d}\right)^{2} / \epsilon^{2}
$$

Now,

$$
\begin{aligned}
E\left(T_{d}-\theta_{d}\right)^{2} & =\operatorname{Var}\left(T_{d}\right)+\left[E\left(T_{d}\right)-\theta_{d}\right]^{2} \\
& =\operatorname{Var}\left(T_{d}\right)+\frac{4 \theta_{d}^{2}}{(d-2)^{2}}
\end{aligned}
$$

Since the Y_{i} s are independent,

$$
\operatorname{Var}\left(T_{d}\right)=\frac{2}{(d-2)^{2}} \sum_{i=1}^{d}\left(1+2 \mu_{i}^{2}\right)
$$

Using the fact that $\left|\mu_{1}\right|, \ldots,\left|\mu_{d}\right|$ are all less than or equal to the same constant, we have

$$
E\left(T_{d}-\theta_{d}\right)^{2} \leq \frac{C}{d}
$$

for some positive constant C. It follows that when d is sufficiently big, $P\left(\left|T_{d}-\theta_{d}\right|<\epsilon\right)$ is arbitrarily close to 1.
Q.E.D.

To get a better understanding of the JamesStein estimator, we now consider

$$
\begin{aligned}
\hat{\delta}_{\mathrm{JS}}(\boldsymbol{Y}) & =\left(1-\frac{1}{\theta_{d}}\right) \boldsymbol{Y} \\
& =\left(\frac{\bar{\mu}_{d}^{2}}{1+\bar{\mu}_{d}^{2}}\right) \boldsymbol{Y}
\end{aligned}
$$

where $\bar{\mu}_{d}^{2}=\sum_{i=1} \mu_{i}^{2} / d$.
The result proved on the previous pages shows that, for large $d, \delta_{\mathrm{JS}} \approx \hat{\delta}_{\mathrm{JS}}$.

The random variable $\hat{\delta}_{J S}$ provides us with some intuition about the James-Stein estimator. If the vector $\boldsymbol{\mu}$ is close to the origin, i.e., $\mathbf{0}=$ $(0, \ldots, 0)^{T}$, then $\bar{\mu}_{d}^{2}$ is close to 0 , and hence $\hat{\delta}_{\mathrm{JS}} \approx \mathbf{0}$. This is good!!

On the other hand, if $\boldsymbol{\mu}$ is far from the origin, then

$$
\frac{\bar{\mu}_{d}^{2}}{1+\bar{\mu}_{d}^{2}} \approx 1
$$

and $\hat{\delta}_{\mathrm{JS}} \approx \boldsymbol{Y}$. This is good, because if $\boldsymbol{\mu}$ is not close to the origin, then there's no rationale for shrinking the estimate towards the origin.

Shrinkage towards 0 is arbitrary

Suppose we have a rationale for shrinking the estimate towards a point $\boldsymbol{\alpha}$ in d-space. For example, some theory may suggest that $\boldsymbol{\mu}=\boldsymbol{\alpha}$.

We may define an estimate

$$
\delta_{\mathrm{JS}}(\boldsymbol{Y} ; \boldsymbol{\alpha})=\boldsymbol{Y}-\frac{d-2}{\sum_{i=1}^{d}\left(Y_{i}-\alpha_{i}\right)^{2}}(\boldsymbol{Y}-\boldsymbol{\alpha})
$$

Using the squared error loss on p. 130N, verify that

$$
\begin{equation*}
R\left(\boldsymbol{\mu}, \delta_{\mathrm{JS}}(\boldsymbol{Y} ; \boldsymbol{\alpha})\right)=R\left(\boldsymbol{\mu}-\boldsymbol{\alpha}, \delta_{\mathrm{JS}}(\boldsymbol{Y})\right) \tag{*}
\end{equation*}
$$

for all μ.

Because \boldsymbol{Y} has constant risk and because

$$
R\left(\boldsymbol{\mu}, \delta_{\mathrm{JS}}(\boldsymbol{Y})\right) \leq R(\boldsymbol{\mu}, \boldsymbol{Y})
$$

for all $\boldsymbol{\mu},(*)$ implies that $\delta_{\mathrm{JS}}(\boldsymbol{Y} ; \boldsymbol{\alpha})$ has risk no larger than that of \boldsymbol{Y} for all $\boldsymbol{\mu}$.

The part of the parameter space where $\delta_{\mathrm{JS}}(\boldsymbol{Y} ; \boldsymbol{\alpha})$ has substantially smaller risk is near $\boldsymbol{\alpha}$.

Read Example 46, p. 256 of Berger (2nd edition) for more details on this problem.

