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ABSTRACT 43 
44 

The adjoint and linearity models in the traditional four dimensional variational data 45 

assimilation (4DVAR) are difficult to obtain if the forecast model is highly nonlinear or the 46 

model physics contains parameterized discontinuities.  A new method (referred to as POD-47 

E4DVAR) is proposed in this paper by merging the Monte Carlo method and the proper 48 

orthogonal decomposition (POD) technique into the 4DVAR in order to transform an implicit 49 

optimization problem into an explicit one. The POD method is used to efficiently approximate a 50 

forecast ensemble produced by the Monte Carlo method in a 4-dimensional (4-D) space using a 51 

set of base vectors that span the ensemble and capture its spatial structure and temporal evolution.  52 

After the analysis variables being represented by a truncated expansion of the base vectors in the 53 

4-D space, the control (state) variables in the cost function appear explicitly, so that the adjoint 54 

model, which is used to derive the gradient of the cost function with respect to the control 55 

variables in the traditional 4DVAR, is on longer needed. The application of this new technique 56 

significantly simplifies the data assimilation process and retains the two main advantages of the 57 

traditional 4DVAR method. Assimilation experiments show that this ensemble-based explicit 58 

4DVAR method performs much better than the traditional 4DVAR and ensemble Kalman filter 59 

(EnKF) method. It is also superior to another explicit 4DVAR method, especially when the 60 

forecast model is imperfect and the forecast error comes from both the noise of the initial field 61 

and the uncertainty in the forecast model. Computational costs for the new POD-E4DVAR are 62 

about twice as the traditional 4DVAR method, but 5% less than the other explicit 4DVAR and 63 

much lower than the EnKF method. 64 
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1.  Introduction   65 

           The four dimensional variational data assimilation (4DVAR) method [Johnson et al., 66 

2006; Kalnay et al., 2007; Tsuyuki and Miyoshi, 2007] has been a very successful technique used 67 

in operational numerical weather prediction (NWP) at many weather forecast centers [Bormann 68 

and Thepaut, 2004; Park and Zou, 2004; Caya et al., 2005; Bauer et al., 2006; Rosmond and Xu, 69 

2006; Gauthier, 2007]. The 4DVAR technique has two attractive features: 1) the physical model 70 

provides a strong dynamical constraint, and 2) it has the ability to assimilate the observational 71 

data at multiple times. However, 4DVAR still faces numerous challenges in coding, maintaining 72 

and updating the adjoint model of the forecast model and it requires the linearization of the 73 

forecast model. Usually, the control variables (or initial states) are expressed implicitly in the 74 

cost function. In order to compute the gradient of the cost function with respect to the control 75 

variables, one has to integrate the adjoint  model, whose development and maintenance require 76 

significant resources, especially when the forecast model is highly nonlinear and the model 77 

physics contains parameterized discontinuities [Xu, 1996; Mu and Wang, 2003].  Many efforts 78 

have been devoted to avoid integrating the adjoint model or reduce the expensive computation 79 

costs [Courtier et al., 1994; Kalnay et al., 2000; Wang and Zhao, 2005], Nevertheless, the 80 

linearity of the forecast model is still required in all these methods.  On the other hand, the usual 81 

ensemble Kalman Filter (EnKF) [e.g., Evensen, 1994, 2003; Kalnay et al., 2007; Beezley and  82 

Mandel, 2008; also see Appendix A] has become an increasingly popular method because of its 83 

simple conceptual formulation and relative ease of implementation. For example, it requires no 84 

derivation of a tangent linear operator or adjoint equations, and no integrations backward in time. 85 

Furthermore, the computational costs are affordable and comparable with other popular and 86 

sophisticated assimilation methods such as the 4DVAR method. By forecasting the statistical 87 



4

characteristics, the EnKF can provide flow-dependent error estimates of the background errors 88 

using the Monte Carlo method, but it lacks the dynamic constraint as in the 4DVAR. Heemink 89 

[2001] developed a variance reduced EnKF method by using a reduced-rank approximation 90 

technique to reduce the huge amount of computer costs. Farrell and Ioannou [2001] also 91 

proposed a reduced-order Kalman filter by the balanced truncation model-reduction technique. 92 

Uzunoglu et al. [2007] modified a maximum likelihood ensemble filter method [Zupanski, 2005] 93 

through an adaptive methodology. Generally, these three methods mentioned above belong to the 94 

Kalman filters. Vermeulen and Heemink [2006] have attempted to combine 4DVAR with the 95 

EnKF; however, the linearity model is still needed in their method. How to retain the two 96 

primary advantages of the traditional 4DVAR while avoiding the need of an adjoint or linearity 97 

model of the forecast model has become a roadblock in advancing data assimilation. Recently, 98 

Qiu et al. [Qiu and Chou, 2006; Qiu et al., 2007a,b] proposed a new method for 4DVAR (more 99 

details below) using the singular value decomposition (SVD) technique based on the theory of 100 

the atmospheric attractors. Cao et al. [2006] has applied the proper orthogonal decomposition 101 

(POD) technique [Ly and Tran, 2001, 2002; Volkwein, 2008] to 4DVAR to reduce the forecast 102 

model orders while reducing the computational costs, but the adjoint integration is still necessary 103 

in their method. 104 

  Here we resort to the idea of the Monte Carlo method and the POD technique. The basic 105 

idea of the POD technique is to start with an ensemble of data, called snapshots, collected from 106 

an experiment or a numerical procedure of a physical system. The POD technique is then used to 107 

produce a set of base vectors which span the snapshot collection.  The goal is to represent the 108 

ensemble of the data in terms of an optimal coordinate system. That is, the snapshots can be 109 

generated by a smallest possible set of base vectors. Based on this approach, an explicit new 110 
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4DVAR method is proposed in this paper: it begins with a 4-D ensemble obtained from the 111 

forecast ensembles at all times in an assimilation time window produced using the Monte Carlo 112 

method. We then apply the POD technique to the 4-D forecast ensemble, so that the orthogonal 113 

base vectors can not only capture the spatial structure of the state but also reflect its temporal 114 

evolution. After the model status being expressed by a truncated expansion of the base vectors 115 

obtained using the POD technique, the control variables in the cost function appear explicitly, so 116 

that the adjoint or linearity model is no longer needed.  117 

     Our new method was motivated by the need to merge the Monte Carlo method into the 118 

traditional 4DVAR in order to transform an implicit optimization problem into an explicit one. 119 

Our method not only simplifies the data assimilation procedure but also maintains the two main 120 

advantages of the traditional 4DVAR. This method is somewhat similar to Qiu et al.’s SVD-121 

based method (referred to as SVD-E4DVAR hereafter, see Appendix B for details) because they 122 

both begin with a 4-D ensemble obtained from the forecast ensembles. However, they differ 123 

significantly in several aspects as discussed in section 2. Hunter et al. [2004], John and Hunter124 

[2007] and Szunyogh et al. [2008] also developed a 4-D ensemble Kalman filter that infers the 125 

linearity model dynamics from the ensemble instead of the tangent-linear map as done in the 126 

traditional 4DVAR, in which the model states are expressed by the linear combinations of the 127 

ensemble samples directly rather than some orthogonal base vectors of the ensemble space. This 128 

method is also largely Kalman filtering, with the generation of its ensemble space being different 129 

from our method.  130 

  We conducted several numerical experiments using a one-dimensional (1-D) soil water 131 

equation and synthetical observations to evaluate our new method in land data assimilation. 132 

Comparisons were also made between our method, the SVD-E4DVAR [Qiu and Chou, 2006; 133 
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Qiu et al., 2007a,b], traditional 4DVAR, and EnKF method. We found that our new ensemble- 134 

based explicit 4DVAR (referred to as POD-E4DVAR) performs much better than the usual 135 

EnKF method in terms of both increasing the assimilation precision and reducing the 136 

computational costs. It is also better than the traditional 4DVAR and the SVD-E4DVAR, 137 

especially when the forecast model is not perfect and the forecast error comes from both the 138 

noise of the initial field and the uncertainty in the forecast model.   139 

2. Methodology140 

In principle, the traditional, implicit 4DVAR (referred to as I4DVAR) analysis of ax
uur

 is 141 

obtained through the minimization of a cost function J  that measures the misfit between the 142 

model trajectory ( )k kH x
uur

 and the observation ky
uur

 at a series of times kt , 1, 2, ,t m= L : 143 

1 1
0 0 0

0

( ) ( ) ( ) ( ) ( )
m T

T
b b i ii i ii i

i

J x x x B x x y H x R y H x− −

=

⎡ ⎤ ⎡ ⎤= − − + − −⎣ ⎦ ⎣ ⎦∑
r r r r r ur r ur r

,                            (1) 144 

with the forecast model 0 kM → imposed as strong constraints, defined by 145 

0 0( )k kx M x→=
uur uur

,                                                                                                                  (2) 146 

where the superscript T stands for a transpose, b is a background value, index k denotes the 147 

observational time, kH  is the observational operator, and matrices B  and R  are the background 148 

and observational error covariances, respectively. The control variable is the initial conditions 0x
uur

149 

(at the start of the assimilation time window) of the model. In the cost function (1) the control 150 

variable 0x
uur

 is connected with kx
uur

 through forwarding the model (2) and expressed implicitly, 151 

which makes it difficult to compute the gradient of the cost function with respect to 0x
uur

. 152 

          Assuming there are S  time steps within the assimilation time window (0, T). Generate N153 

random perturbation fields using the Monte-Carol method and add each perturbation field to the 154 
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initial background field at 0t t=  to produce N  initial fields 0( ), 1,2,nx t n N=
r

L . Integrate the 155 

forecast model 1( ) ( ( ))n ni i ix t M x t −=
r r

 with the initial fields 0( )( 1,2, )nx t n N=
r

L  throughout the 156 

assimilation time window to obtain the state series ( )n ix t
r

( 0,1, 1i S= −L ) and then construct the 157 

perturbed 4-D fields (snapshots) nX
uur

( 1,2,n N= L ) over the assimilation time window: 158 

0 1 1( ( ), ( ), , ( ))n n n n SX x t x t x t −=
uur r r r

L , 1,2,n N= L .                                                                 (3) 159 

It is obvious that such vectors can capture the spatial structure of the model state and its temporal 160 

evolution. All the perturbed 4-D fields nX
uur

( 1,2,n N= L ) can expand a finite dimensional space 161 

1 2( )NX X XΩ
6447448uur uur uur

L . Similarly, the analysis field ( )( 0,1,2, 1)a ix t i S= −
r

L over the same assimilation 162 

time window can also be stored into the following vector: 163 

  0 1 1( ( ), ( ), , ( ))a a a a SX x t x t x t −=
uur r r r

L .                                                                                      (4) 164 

When the ensemble size N  is increased by adding random samples, the ensemble space could 165 

cover the analysis vector aX
uur

, i.e. aX
uur

 is approximately assumed to be embedded in the linear 166 

space 1 2( )NX X XΩ
6447448uur uur uur

L .  Let bnX
uur

( 1, 2, ,n K K N= ≤L ) be the base vectors of this linear space 167 

1 2( )NX X XΩ
6447448uur uur uur

L , the analysis vector aX
uur

 can be expressed by the linear combinations of this set 168 

of base vectors since it is in this space, i.e. 169 

1

K

a bnn
n

X Xβ
=

=∑
uur uur

,                                                                                                              (5) 170 

Substituting (4) and (5) into (1), the control variable becomes 1( )T
Kβ β β= L  instead of 0( )x t

r
, 171 

so the control variable is expressed explicitly in the cost function and the computation of the 172 

gradient is simplified greatly. The linearity or adjoint model is no longer required. To minimize 173 



8

the cost function, Eq. (1) is transformed into an explicit optimization problem with the variable 174 

vector 1( )T
Kβ β β= L  , which can be solved by the usual optimization algorithms, such as the 175 

quasi-Newton method.  It is noted that, unlike EnKF, only one analyzed field is obtain in each 176 

analysis procedure in the POD-E4DVAR and the initial condition should be perturbed at the start 177 

time of the assimilation in each cycle. 178 

         How to obtain the appropriate base vectors remains the only task left.  We found that the 179 

POD technique is a good choice for doing this.  It can produce a set of base vectors spanning the 180 

ensemble of data in certain least squares optimal sense (see Appendix C).                                                               181 

    The average of the ensemble of snapshots is given by  182 

1

1 N

n

n

X X
N =

= ∑
uur

183 

We form a new ensemble by focusing on deviations from the mean as follows 184 

, 1,nnX X X n Nδ = − =
uur

L185 

which form the matrix A ( M N× ), where g vM M M S= × × , and ,g vM M are the number of the 186 

model spatial grid points and the number of the model variables respectively. To compute the 187 

POD modes, one must solve an M M×  eigenvalue problem:  188 

( )T
M MAA V Vλ× =189 

In practice, the direct solution of this eigenvalue problem is often not feasible if M N>> , which 190 

occurs often in numerical models. We can transform it into an N N×  eigenvalue problem 191 

through the following transformations: 192 

(( ) ) ( )T T T
M MAA V Vλ× =193 

T T T TV A A V λ=194 
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T TA AV Vλ=195 

 In the method of snapshots, one then solves the N N×  eigenvalue problem                            196 

, 1,k k kTV V k Nλ= = L ,                                                                                    (8) 197 

where NN
T AAT ×= )( , kV  is the k th column vector of V  and kλ  is the k th  row vector of λ  . 198 

The nonzero eigenvectors kλ  (1 k N≤ ≤ ) may be chosen to be orthonormal, and the POD modes 199 

are given by /k k kAVφ λ= ,(1 k N≤ ≤ ). 200 

The truncated reconstruction of analysis variable in the four dimensional space aX
uur

 is given 201 

by 202 

1

P

a j j
j

X X α φ
=

= +∑
uur

203 

where P  (the number of the POD modes) is defined as follows 204 

1

1

min , ( ) : ( )

P

i
i
N

i
i

P P I P I P
λ

γ
λ

=

=

⎧ ⎫
⎪ ⎪⎪ ⎪= = ≥⎨ ⎬
⎪ ⎪
⎪ ⎪⎩ ⎭

∑

∑
, 0 1γ< ≤ .                                                                (10) 205 

It is well known [Ly and Tran, 2001, 2002] that the expansion (9) is optimal. In particular, 206 

among all linear combinations (including the linear combinations based on the SVD base 207 

vectors), the POD is the most efficient, in the sense that, for a given number of modes P , the 208 

POD decomposition captures the most possible kinetic energy. The solution for the analysis 209 

problem is approximately expressed by a truncated expansion of the POD base vectors in the 4-D 210 

space. Substituting (9) and (4) into (1), the control variable becomes 1 2( , , , )T
Pα α α α= L  instead 211 

of 0x
r

, so the control variable is expressed explicitly in the cost function and the linearity or 212 

adjoint model is not needed any more. 213 
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           The two explicit methods (the SVD- and POD–based methods) share some similar 214 

features: for example, they both begin with a 4-D ensemble and do not need the linearity or 215 

adjoint model. However, the POD-E4DVAR method differs from the SVD-E4DVAR 216 

significantly in three aspects: 1) the 4-D sample in the SVD-E4DVAR method is only composed 217 

of the state vectors at the observational times over the assimilation time window, while it is 218 

composed of the state vectors at all the time steps over the assimilation time window in the POD-219 

E4DVAR method. The latter contains the most possible forecast information in the assimilation 220 

time window. 2) The SVD technique is used to generate the set of base vectors in the SVD-221 

E4DVAR, while the POD-E4DVAR adopts the POD method, which captures the most possible 222 

kinetic energy of the ensemble space because of its optimality. And 3) The application of matrix 223 

transformation technique in the POD-E4DVAR greatly lowers the computational costs by 224 

reducing the decomposition into an N N×  eigenvalue problem ( N M<< ). 225 

3. Numerical experiments 226 

In this section, the applicability of this new method is evaluated through several 227 

assimilation experiments with a simple 1-D soil water equation model used in the NCAR 228 

Community Land Model (CLM) [Oleson et al., 2004]. In addition, we also compare assimilation 229 

results  using the SVD-E4DVAR,  I4DVAR, and EnKF methods. 230 

3.1. Set-up of experiments 231 

The volumetric soil moisture (θ) for 1-D vertical water flow in a soil column in the CLM 232 

is expressed as  233 

fm

q
E R

t z

θ∂ ∂= − − −
∂ ∂

 ,                                                                                                     (11) 234 
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where q   is the vertical soil water flux , E  is the evapotranspiration rate, and fmR  is the melting 235 

(negative) or freezing (positive) rate, (for simplicity, , fmE R  are taken as zero in the experiments),  236 

and z  is the depth from the soil surface. Both q and z are positive downward. 237 

  The soil water flux q  is described by Darcy’s law [Darcy, 1856]: 238 

( )z
q k

z

ϕ∂ += −
∂

,                                                                                                           (12) 239 

where 
2 3b

s
s

k k
θ
θ

+
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 is the hydraulic conductivity, and 
b

s
s

θϕ ϕ
θ

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 is the soil matric 240 

potential , sk , sϕ , sθ  and b  are constants. The CLM computes soil water content in the 10 soil 241 

layers through (11-12) (see [Oleson et al., 2004] for details). The upper boundary condition is   242 

0
0

( )
( )

z

z
q t k

z

ϕ
=

∂ += −
∂

,             (12b) 243 

where 0 ( )q t  is the water flux at the land surface (referred to as infiltration), and the lower 244 

boundary condition is 0lq = . The time step tΔ  is 1800 s (0.5 hour). 245 

We took a site at (47.43oN, 126.97oE) as the experimental site. The soil parameters 246 

sk , sϕ , sθ  and b  at this site were calculated by the CLM using the high-resolution soil texture 247 

data released with the CLM by NCAR: sθ =0.46m3/m3, sk =2.07263E-6 m/s, b =8.634, sϕ =-248 

3.6779m. We then ran the model at the site forced with observation-based 3-hourly forcing data 249 

[Qian et al., 2005; Tian et al., 2007] from January 1, 1992 to December 31, 1993 after ten-year 250 

spinning-up to obtain a two-year time series of simulated infiltration (i.e., the water flux q at the 251 

surface, c.f., Eq.(12b)) for driving the soil water hydrodynamic equation (11). We used the first 252 

year (January 1, 1992 to December 31, 1992) data of CLM-simulated infiltration as the “perfect” 253 

infiltration series, and took the second year data as the “imperfect” infiltration series (Fig. 1). In 254 
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our experiments, we integrated the soil water hydrodynamic equation (11) forced by the two 255 

infiltration time series for 365 days separately: Eq. (11) forced by the “perfect” infiltration series 256 

represents the perfect forecast model, whose forecast error comes only from the noise in the 257 

initial (soil moisture) field; on the contrary, Eq. (11) forced by the “imperfect” infiltration series 258 

acts as the “imperfect” forecast model, whose forecast error comes from not only the noise of the 259 

initial field but also the uncertainty in the forecast model itself.  260 

Figure 2 shows the “imperfect” and the “perfect” initial soil moisture profiles (which are 261 

obtained by randomly taking two arbitrary CLM-simulated soil moisture profiles in the process 262 

of the infiltration series producing), which denote the initial fields with and without noise. The 263 

“perfect” (or “true”) state was produced by integrating the “perfect” model with the “perfect” 264 

initial soil moisture profile for 365 days. The “observations” were generated by adding 3% 265 

random error perturbation to the time series of the “perfect” state (i.e., “observation” = 266 

(1+ ε )) × “perfect”, where ε  is a real random number varying from -3% to 3%), and these 267 

“observations” were assimilated using the various methods in the assimilation experiments (but 268 

not in the forecast experiments). In addition, two separate forecast states were produced by 269 

integrating the perfect and imperfect models with the “imperfect” initial soil moisture separately: 270 

for the former case, the forecast error comes only from the noise in the initial field, but in the 271 

latter case it comes from both the noise and the uncertainty in the forecast model.  272 

The length of an assimilation time window in our experiments is one day (48 time steps), 273 

i.e. 48S = . The size of 1 2 1( ( ), ( ), , ( ))n n n n SX x t x t x t −=
uur r r r

L  in our method is 480, 274 

where 1 2 10( ) ( ( ), ( ), ( ))n i n i n i n ix t t t tθ θ θ=
r

L  and 10, 1g vM M= = . The background and observational 275 

error covariance matrices used in the E/I4DVAR methods can be obtained by using the ensemble 276 
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covariance matrices defined by Eqs. (a.4) and (a.8) in Appendix A, respectively. We 277 

used 0.90γ =  in our experiments. 278 

Two groups of experiments were done: The perfect model with the “imperfect” initial field 279 

as Group 1 and the imperfect model with the “imperfect” initial field as Group 2. Three 280 

observation sampling frequencies (hourly, 2-hourly, and 3-hourly) were tested in each group’s 281 

experiments. The ensemble size used in the POD- and SVD-E4DVAR and EnKF methods was 282 

60 in this study (the impact of the ensemble size on the assimilation results will be discussed in 283 

another study).  The linearization of the soil moisture equation (11) follows the format in Zhang 284 

et al. [2001].285 

3.2. Experimental results    286 

To evaluate the performance of the four algorithms (POD/SVD-E4DVAR, I4DVAR and 287 

EnKF), a relative error is defined as follows 288 

0 1

1
2

0 1

1
2

0 1

( ( ) ( ))

( ( ) ( ))

g v

S g v

M MS a t
j ji i

i j
t M MS f t

j ji i
i j

x t x t

E

x t x t
→ −

×−

= =
×−

= =

−
=

−

∑ ∑

∑ ∑

r r

r r
 ,                                                                                      (13)                         289 

where the index 0 1St → −  denotes an assimilation time window (one day in our experiments), S  is 290 

the length of an assimilation window ( S =48 in our experiments), f  and a  denote the forecast 291 

state (without assimilation of the “observations”) and the analysis state, respectively, t292 

represents the “true” (“perfect”) state. Thus, a relative error of 1% for a given assimilation 293 

method would mean that the mean error of the analyzed soil moisture is only 1% of that in the 294 

forecast case. 295 

 Figures 3-4 show that the POD/SVD-E4DVAR methods perform much better than the EnKF 296 

and the I4DVAR methods in both groups of experiments. The two explicit 4DVAR methods 297 
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perform almost same in Group 1 experiments. Their relative errors for analyzed soil moisture are 298 

very small (less than 1%) in the case that the forecast model is perfect, in which the forecast 299 

error comes only from the noise of the initial field (Fig. 3). However, the relative errors of the 300 

EnKF method are many times higher than those of POD/SVD-E4DVAR, around 1~ 2% or so. 301 

The traditional 4DVAR method performs even worse than the EnKF, which is consistent with  302 

the results of  Reichle et al. [Reichle and Entekhabi, 2001; Reichle et al., 2002a,b]. This is 303 

expected because the soil water hydrodynamic equation (11) is a highly nonlinear system and the 304 

tangent linearization operator used in the usual 4DVAR can only propagate analytically with the 305 

first-order precision, which introduces large errors in variable estimation and leads to sub-306 

optimal performance.  307 

When the forecast model is imperfect, its forecast error comes from both the noise of the 308 

initial field and the uncertainty in the model itself. The relative errors of the four methods all 309 

become lager in this case (Fig. 4), presumably due to the reduced effect of data assimilation 310 

under a poorly constrained model. Nevertheless, the relative errors for the POD-E4DAVR are 311 

substantially smaller than those of the other methods, including the SVD-E4DVAR which 312 

performs similarly with the EnKF in this case: most of the POD-E4DVAR relative errors are still 313 

controlled in the magnitude between 0 and 6 %, however many of the relative errors of I4DVAR 314 

(also the SVD-E4DVAR) method are higher than 6%, and some are even up to 10%; It is also a 315 

bit surprising that the SVD-based method is apparently inferior to the POD-E4DVAR in some 316 

assimilation time windows and even worse than the EnKF method (Fig. 4). Figs.3-4 also show 317 

that the observation frequency has larger impacts in the I4DVAR method than in the POD-318 

E4DVAR method.  319 
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For the two goups of experiments, the ratio of the computational costs for the four methods 320 

(POD-E4DVAR: SVD-E4DVAR: I4DVAR : EnKF) is about 1 : 1.05 : 0.5 : 30. The high 321 

computational cost in EnKF method is mainly due to the fact the analysis process composed of 322 

huge matrix computations has to be conducted repeatedly at every time step in the assimilation 323 

time window, while that in POD-E4DVAR is performed only once in each cycle correspondingly. 324 

The 5% reduction in the POD-E4DVAR compared with the SVD-E4DVAR results from the 325 

application of the matrix transformation technique described in section 2. The main 326 

computational costs of the POD-E4DVAR come from the ensemble integrations over the 327 

assimilation time window, which can be done on parallel computers. Thus, the additional costs 328 

of the POD-E4DVAR compared with the traditional 4DVAR should not result in real difficulties, 329 

and it still costs only one thirtieth of that of the EnKF method in our experiments. 330 

4. Summary and concluding remarks 331 

To retain the main strength of traditional 4DVAR while avoiding the need of an adjoint or 332 

linearity model of the forecast model in data assimilation, we have developed an ensemble-based 333 

explicit 4DVAR method in this paper (called POD-E4DVAR).  This new method merges the 334 

Monte Carlo method and the proper orthogonal decomposition (POD) technique into the 4DVAR 335 

to transform an implicit optimization problem into an explicit one. The POD method efficiently 336 

approximates a forecast ensemble produced by the Monte Carlo method in a 4-D space using a 337 

set of base vectors that span this ensemble and capture its spatial structure and temporal 338 

evolution. After the analysis variables being represented by a truncated expansion of the base 339 

vectors in the 4-D space, the control (state) variables in the cost function appear explicitly, so 340 

that the adjoint model, which is used to derive the gradient of the cost function with respect to 341 

the control variables in traditional 4DVAR, is on longer needed. This new method significantly 342 
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simplifies the data assimilation process and retains the two main advantages of the traditional 343 

4DVAR (i.e., dynamic constraint and assimilation of observations). 344 

Several numerical experiments performed with a simple 1-D soil water equation show that 345 

the new POD-E4DVAR method performs much better than the traditional 4DVAR and EnKF 346 

method with assimilation errors being reduced to a fraction of the latter two. It is also superior to 347 

the SVD-E4DVAR, another explicit 4DVAR method developed by Qiu et al. [2007a,b], 348 

especially when the forecast model is imperfect and the error comes from both the noise of the 349 

initial field and the uncertainty in the forecast model. In our experiments, the traditional (implicit) 350 

4DVAR method performs worst, which is due to errors associated with the tangent linearization 351 

operator used in the usual 4DVAR that only propagates analytically with the first-order precision. 352 

The results show that the POD-E4DVAR method provides a promising new tool for data 353 

assimilation.   354 

Several issues, such as the impacts of the ensemble size and the initial perturbation fields 355 

on the assimilated results and the actual performance of this new method in real numerical 356 

forecast models, still need to be addressed. Another potential issue existing in our method should 357 

be specially mentioned: since this method begins with a 4-D ensemble obtained from the 358 

perturbed ensembles, the quality of the results relies on the perturbation method a lot. How to 359 

generate a reasonable perturbed field is a critical step in using this method, which also requires 360 

further investigation. 361 
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367 

Appendix A: The Ensemble Kalman Filter (EnKF) Method 368 

A.1  Ensemble representation for covariance matrix 369 

One can define the matrix holding the ensemble members n
ix R∈
r

as 370 

1 2( , , , ) n N
NA x x x R ×= ∈

r r r
L ,                                                                                                  (a.1) 371 

where N  is the number of ensemble members and n  is the size of the model state vector.  372 

The ensemble mean is stored in each column of A  which can be defined as 373 

1NA A= ,                                                                                                                          (a.2) 374 

where 1 N N
N R ×∈  is a matrix in which each element is equal to 1/ N . One can then define the 375 

ensemble perturbation matrix as  376 

' ( 1 )NA A A A I= − = − ,                                                                                                        (a.3) 377 

The ensemble covariance matrix n n
eP R ×∈  can be defined as 378 

' '( )

1

T

e

A A
P

N
=

−
.                                                                                                                       (a.4) 379 

A.2  Measurement perturbations 380 

Given a vector of measurements my R∈ , with m  being the number of measurements, one 381 

can define N vectors of perturbed observations as 382 

, 1, 2, ,jjy y j Nε= + =
ur ur

L ,                                                                                               (a.5) 383 

which can be stored in the columns of a matrix  384 

1 2( , , , ) m N
NY y y y R ×= ∈

ur ur ur
L ,                                                                                             (a.6) 385 
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while the ensemble of perturbations, with ensemble mean equal to zero, can be stored in the 386 

matrix  387 

1 2( , , ) m N
NE Rε ε ε ×= ∈L ,                                                                                              (a.7) 388 

from which we can construct the ensemble representation of the measurement error covariance 389 

matrix  390 

1

T

e

EE
R

N
=

−
,                                                                                                                   (a.8) 391 

A.3  Analysis equation 392 

The analysis equation, expressed in terms of the ensemble covariance matrices, is  393 

1( ) ( )a T T
e e eA A P H HP H R D HA−= + + − .                                                                    (a.9) 394 

Using the ensemble of innovation vectors defined as395 

'D D HA= − ,                                                                                                            (a.10) 396 

and the definitions of the ensemble error covariance matrices in Eqs.(a.4) and (a.8), the analysis 397 

can be expressed as  398 

' ' ' ' 1 '( )a T T T T TA A A A H HA A H EE D−= + + .                                                               (a.11) 399 

When the ensemble size, N , is increased by adding random samples, the analysis computed 400 

from this equation will converge towards the exact solution of Eq.(a.9) with eP  and eR  replaced 401 

by the exact covariance matrices P and R . 402 

Appendix B: The SVD-E4DVAR Method   403 

Assuming there are m  observations ( 0,1, , 1)iy i m= −
ur

L at time 0 1, , , ,i mt t t t −= L L  during 404 

the assimilation time window. Generate N random perturbation fields and add each to the initial 405 

background field and integrate the model to produce a perturbed 4-D field over the analysis time 406 

window. The i th difference field is then given by i i bx x xδ = −
r r r

 at time 0 1, , , ,i mt t t t −= L L , where 407 



19

,b ix x
r r

 denote the background and the perturbed fields, respectively. Consider an ensemble of 408 

column vectors represented by matrix 1 2( , , )NA X X Xδ δ δ=
uur uur uur

L , where the i th column vector 409 

iXδ
uur

 represents the  i th sampled data field in a discrete four-dimensional analysis space. The 410 

length of vector iXδ
uur

 is g vM M m× × , where ,g vM M are the number of the model spatial grid 411 

points and the number of the model variables, respectively. The SVD of A  yields 412 

TA B V= Λ ,                                                                                                         (b.1) 413 

where Λ is a diagonal matrix composed of the singular values of A  with 1 2 rλ λ λ≥ ≥ ≥L  and 414 

1 2 0,r rλ λ+ += = =L min( , )g vr M M m N≤ × × , is the rank of A , B  and V  are orthogonal 415 

matrices composed of the left and right singular vectors of A , respectively . The SVD in (b.1) 416 

gives 2T TC A A V V= = Λ  and 2T TQ AA B B= = Λ . Thus, the i th column vector of V , denoted by 417 

iV , is the i th eigenvector of C , while the j th column vector of B , denoted by jb , is the j th 418 

column vector of Q  and is called the singular vector of A . 419 

       The truncated reconstruction of analysis variable aX
uur

 in 4-D space is given by  420 

1

P

a b i i
i

X X bα
=

= +∑
uur uur

,                                                                                                  (b.2) 421 

where ( )P r≤  is the truncation number, which can be obtained through Eq.(10) in section 2, 422 

( , , , )b b b bX x x x=
uur r r r

L  is composed of m  vectors ( bx
r

).  423 

        Substituting (b.2) into Eq. (1) in section 2, the control variable becomes α  instead of 0x , so 424 

the control variable is expressed explicitly in the cost function. 425 

Appendix C:The Proper Orthogonal Decomposition 426 

 Continuous case 427 
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Let ( ), 1,2,iU x i N=
r

L  denote the set of N observations or simulations (also called 428 

snapshots) of some physical process taken at position ( , )x x y=
r

. The average of the ensemble 429 

snapshots is given by 430 

1

1
( )

N

i
i

U U x
N =

= ∑
r

,                                                                                                        (c.1) 431 

We form new ensemble by focusing on deviation from mean as follows: 432 

i iV U U= − ,                                                                                                               (c.2) 433 

We wish to find an optimal compressed description of the sequence of data (c.2). One 434 

description of the process is a series expansion in terms of a set of base functions. Intuitively, the 435 

base functions should in some sense be representative of the members of the ensemble. Such a 436 

coordinate system, is provided by the Karhunan Lo ve expansion, where the base functions Φ437 

are, in fact, admixtures of the snapshots and are given by: 438 

1

( )
N

i i
i

aV x
=

Φ =∑
r

,                                                                                                 (c.3) 439 

Here, the coefficients ia  are to be determined so that Φ  given by (c.3) will resemble the 440 

ensemble { }
1

( )
N

i
i

V x
=

r
most closely. More specifically, we look for a function Φ  to maximize 441 

2

1

1
| ( , ) |

N

i
i

V
N =

Φ∑ ,                                                                                       (c.4) 442 

subjected to 2( , ) || || 1Φ Φ = Φ = , where ( ⋅ , ⋅ ) and || ⋅  ||  denote the usual 2L inner product and 2L -443 

norm, respectively.  444 

       It follows that the base functions are the eigenfunctions of the integral equation 445 

' ' '
( , ) ( ) ( )C x x x d x xλΦ = Φ∫
r r r r r

,                                                                   (c.5) 446 
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Substituting (c.3) into (c.5) yields the eigenvalue problem: 447 

1

N

ij j i
j

L a aλ
=

=∑ ,                                                                                       (c.6) 448 

where 
1

( , )ij i jL V V
N

=  is a symmetric and nonnegative matrix. Thus, our problem amounts to 449 

solving for the eigenvectors of an N N×  matrix, where N  is the ensemble size of the snapshots. 450 

Straightforward calculation shows that the cost function  451 

2

1

1
| ( , ) | ( , )

N

i
i

V
N

λ λ
=

Φ = Φ Φ =∑ ,                                                           (c.7) 452 

is maximized when the coefficients ia ’s of (c.3) are the elements of the eigenvector 453 

corresponding to the largest eigenvalue of L . 454 

Discrete case 455 

We consider the discrete Karhunan Lo ve expansion to find an optimal representation of 456 

the ensemble of snapshots. In the two-dimensional case, each sample of snapshots ( , )iU x y457 

(defined on a set of n n×  nodal points ( ,x y ) ) can be expressed as an 2n  dimensional vector iu
r

458 

as follows: 459 

2

1i

i ij

in

u

u u

u

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

r

M
r r

M
r

,                                                                                                              (c.8) 460 

where iju
r

 denotes the jth component of the vector iu
r

. Here the discrete covariance matrix of the 461 

ensemble u
r

 is defined as 462 

{ }( )( )T
u u

u
C E u m u m= − −r r

r

r ur r ur
,                                                                               (c.9) 463 
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where  464 

{ }um E u=r
ur r

                                                                                                    (c.10) 465 

is the mean vector, E  is the expected value. Eqs. (c.9) and (c.10) can be replaced by 466 

1

1 N T T

i j u u
u

i

C u u m m
N =

⎡ ⎤= −⎢ ⎥⎣ ⎦
∑ r r

r

r r ur ur
467 

and  468 

1

1 N

u i

i

m u
N =

= ∑r
ur r

469 

respectively.  470 

471 
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FIGURE CAPTIONS: 569 

FIG. 1. The “perfect” (solid line) and “imperfect” (dashed line) infiltration time series used in the 570 

assimilation experiments. 571 

FIG. 2. The “perfect” (solid line) and “imperfect” (dashed line) initial soil moisture profiles used 572 

in the assimilation experiments.573 

FIG. 3. Relative error ( nE ) for analyzed soil moisture in the assimilation experiments by the 574 

perfect model with the “imperfect” initial field. 575 

FIG. 4. Relative error ( nE ) for analyzed soil moisture in the assimilation experiments by the 576 

imperfect model with the “imperfect” initial field.  577 
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589 

FIG.1. The “perfect” (solid line) and “imperfect” (dashed line) infiltration time series used in the 590 

assimilation experiments. 591 

592 

593 

594 
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595 

FIG.2. The “perfect” (solid line) and “imperfect” (dashed line) initial soil moisture profiles used 596 

in the assimilation experiments. 597 

598 

599 

600 

601 

602 

603 

604 



30

605 

606 

FIG.3. Relative error ( nE ) for analyzed soil moisture in the assimilation experiments by the 607 

perfect model with the “imperfect” initial field.  608 
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609 

FIG.4. Relative error ( nE ) for analyzed soil moisture in the assimilation experiments by the 610 

imperfect model with the “imperfect” initial field.  611 


