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ABSTRACT 36 

One of the main hypothese made in variational data assimilation is to consider that the 37 

model is a strong constraint of the minimization, i.e. that the model describes exactly the 38 

behavior of the system. Obviously the hypothesis is never respected. A new approach is 39 

proposed in this paper by merging the Monte Carlo method and the proper orthogonal 40 

decomposition (POD) technique into the weak-constraint 4DVar to transform an implicit 41 

optimization problem into an explicit one, which can account for and estimate the 42 

flow-dependent model errors similar to that in the ensemble Kalman filter (EnKF). The 43 

Monte Carlo method is used to initiate an evolving forecast ensemble in a four-dimensional 44 

(4-D) space to cover the analysis state over each assimilation time window. The model errors 45 

are also represented by the evolving ensemble forecasts simultaneously. Since the 4-D 46 

analysis ensemble vectors are supposed to be in linear space, each of them can be expressed 47 

by a set of basis vectors of this space obtained through the POD technique, respectively. The 48 

4DVar optimization problem is then resolved directly without an iterative procedure. 49 

Assimilation experiments in soil moisture assimilation show this new approach moderately 50 

outperforms another explicit strong-constraint 4DVar (referred to as ESC4DVar) method 51 

with assimilation errors can be reduced as only a fraction of the latter. Another assimilation 52 

experiment using the Lorenz model shows that it performs almost same as the ESC4DVar if 53 

the model is perfect. 54 

55 

56 
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1.  Introduction   57 

Strong constraint (perfect model assumption) 4DVar algorithms [Johnson et al., 2006;58 

Kalnay et al., 2007; Tsuyuki and Miyoshi, 2007] are increasingly used for synoptic and global 59 

scale data assimilation at operational numerical weather prediction centers around the world. 60 

4DVar takes into account several sources of information to produce an estimate of the 61 

forecast state at the analysis time. It is essential to transform the data assimilation problem 62 

into an optimization one, whose advantages mainly embody on the followings: 1) the 63 

physical model provides a whole dynamical constraint throughout the assimilation time 64 

window. And 2) it has the ability to assimilate the observational data at multiple times. While 65 

errors in observations and background state are accounted for, the numerical model 66 

representing the evolution of the state flow is assumed to be perfect, or at least to have errors 67 

that are negligible compared with others errors in the system.  68 

As other aspects of the data-assimilation process have processed over the years, one 69 

might ask whether this assumption remains valid, and whether neglecting model error 70 

degrades the quality of the analysis and forecast. Is there any evidence of the presence of 71 

model error in the system, or is it still legitimate to neglect it? [Trémolet, 2006] 72 

The data assimilation windows currently range from 6 hours to 12 hours at different 73 

centers. It is preferable to have as many independent observations as possible in each data 74 

assimilation window under the variational framework. Longer data assimilation windows 75 

generally increase the information content from the observations, but also make the perfect 76 

model assumption more improper [Liang et al., 2007]. When model error is present, the 77 



4

model drifts away from the correct solution, and the discrepancy with observations increase 78 

with time, as explained, for example, by Talagrand [1998]. It is clear that weak constraint 79 

(imperfect model assumption) 4DVar algorithms will be required to properly combine the 80 

background forecast with high resolution observations in longer data assimilation windows in 81 

the not too distant future. There have been attempts to take model error into account in 82 

various data assimilation systems, particularly in the context of Kalman filter systems [Dee, 83 

1995; Dee and Da Silva, 1998]. The ensemble Kalman filter (EnKF) [e.g., Evensen, 1994, 84 

2003; Kalnay et al., 2007; Beezley and Mandel, 2008] has become an increasingly popular 85 

method because of its simple conceptual formulation and relative ease of implementation. 86 

For example, it requires no derivation of a tangent linear operator or adjoint equations, and 87 

no integrations backward in time. Furthermore, by forecasting the statistical characteristics, 88 

EnKF can provide flow-dependent error estimates of the background (model) errors using 89 

the Monte Carlo method. Consequently, arguments on “which one is better, 4DVar or 90 

ensemble Kalman filter” [e.g., Kalnay et al., 2007] appear a lot in debate due to the perfect 91 

model assumption in the strong-constraint 4DVar method, which forms a sharp contrast with 92 

that in the EnKF. 93 

Weak-constraint 4DVar theory was firstly introduced by Sasaki [1970]. The main 94 

underlying idea is that, since the model’s equations are not exact, it is sufficient to satisfy 95 

them only approximately: they can be imposed as a weak constraint in the optimization 96 

problem. Weak-constraint 4DVar has never been implemented fully with a realistic forecast 97 

model because of the computational cost and because of the lack of information to define the 98 
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model error covariance matrix required to solve the problem [Trémolet, 2006, 2007]. 99 

However, even with important approximations, in the representation of model error itself, 100 

and of the model-error covariance matrix, good results have been obtained by several authors 101 

such as Derber [1998], Wergen [1992], Zupanski [1993] or Bennett et al. [1996] with 102 

atmospheric models and by Vidard et al. [2004] with an ocean model. Trémolet [2006, 2007] 103 

also discussed several formulations of weak-constraint 4DVar. These formulations were 104 

developed and evaluated at the European Centre for Medium Weather Forecasts (ECMWF). 105 

How to represent the forecast model errors of the state flow appropriately needs to be 106 

addressed. Here we resort to the idea of the Monte Carlo method and the POD technique [Ly 107 

and Tran, 2001, 2002; Volkwein, 2008]: We merged the Monte Carlo method and the POD 108 

technique into the weak-constraint 4DVar to transform an implicit optimization problem into 109 

an explicit one. The basic idea of the POD technique is to start with an ensemble of data, 110 

called snapshots, collected from an experiment or a numerical procedure of a physical system. 111 

The POD technique is then used to produce a set of base vectors which span the snapshot 112 

collection.  The goal is to represent the ensemble of the data in terms of an optimal113 

coordinate system. That is, the snapshots can be generated by a smallest possible set of base 114 

vectors. Based on this approach, an ensemble-based weak-constraint 4DVar method (referred 115 

to as EWC4DVar) is proposed in this paper: it begins with a 4-D ensemble obtained from the 116 

forecast ensembles at all times in an assimilation time window produced using the Monte 117 

Carlo method. The model errors are then represented by the evolving ensemble forecasts 118 

simultaneously. We then apply the POD technique to the 4-D forecast ensemble, so that the 119 
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orthogonal base vectors can not only capture the spatial structure of the state but also reflect 120 

its temporal evolution. After the model status is expressed by a truncated expansion of the 121 

base vectors obtained using the POD technique, the control variables in the weak-constraint 122 

cost function appear explicit, so that the adjoint or tangent linear model is no longer needed.  123 

We conducted several numerical experiments using a one-dimensional (1-D) soil water 124 

equation and synthetic observations to evaluate our new method in land data assimilation. 125 

Comparisons were also made between our method and another ensemble-based 126 

strong-constraint 4DVar (referred to as ESC4DVar, [Tian et al., 2008a,b]). We found that our 127 

new ensemble-based explicit weak-constraint 4DVar performs moderately better than the 128 

ESC4DVar in terms of increasing the assimilation precision. We also evaluate this approach 129 

using the Lorenz model (3D case), which shows the EWC4DVar performs almost same as 130 

the ESC4DVar if the forecast model is perfect. 131 

2. Methodology132 

The observations of the forecast state represented by the vector y in observation space 133 

are one source of information about the state. An observation operator )x(H represents 134 

knowledge of what the observations should be given the forecast state represented by the 135 

state variable x . Errors in the observations and in the observation operator are assumed to be 136 

unbiased, Gaussian, and uncorrelated with other sources of error. They are characterized by 137 

their covariance matrix R . 138 

A particular source of information available in meteorology is a prior estimate of the 139 

state of the system. In practice, in operational weather-forecasting centers, it is a forecast 140 
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from the most recent analysis. This represents our prior knowledge about the state of the 141 

system without resorting to the current observations y . The prior estimate of the mean of 142 

the state is represented by bx , and called the “background”. We assume that background 143 

error is unbiased and uncorrelated with other errors in the problem; it is characterized by the 144 

background-error covariance matrix B .  145 

Another source of information about the system is theoretical knowledge, represented 146 

by the equation 147 

0)( =xF .                                                         (1) 148 

In meteorological applications, F can include the equations governing the evolution of 149 

the flow, as well as additional constraints, such as balance equations or prior knowledge 150 

about the state of the system. Errors in F are assumed to be unbiased, Gaussian, and 151 

uncorrelated with other sources of error. They are characterized by their covariance matrix 152 

fC . 153 

Using these sources of information, four-dimensional variational data assimilation 154 

consists in minimizing the cost function: 155 

))(())((
2

1
)()(

2

1
)( 11 yxHRyxHxxBxxxJ T

b
T

b −−+−−= −−156 

)()(
2

1
))(())((

2

1 11 xFCxFyxHRyxH f
T −− +−−+ ,            (2) 157 

The cost function can be interpreted as a weighted measure of the distance from the state 158 

x to the various available sources of information, either observational or theoretical. More 159 

details on this result are presented in, for example, Jazwinski [1970] or Rodgers [2000]. 160 
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The components of x  are the physical variable describing the forecast state (e.g., 161 

temperature, wind, humidity and surface pressure), discretized over the three spatial 162 

dimensions of the model’s domain and the temporal dimension over the period for which 163 

observations are available. The assimilation window [0,T] is discretized into 1+n  time 164 

steps },,0:{ niti L= . The state vector ix  represents the three-dimensional state of the 165 

atmosphere at time it . The observation operator will use the components of the state 166 

variable at the appropriate time to evaluate the observation term of the cost function, and will 167 

make accurate use of available observations. 168 

In practice, approximations are necessary in order to solve the variational data 169 

assimilation problem. In operational variational data assimilation implementations, model 170 

error is assumed to be small enough to be neglected compared with initial-condition error, 171 

and the forecast model is imposed as a strong constraint. The state variable is a solution of 172 

the model equation: 173 

)( 1−= iii xMx ,                                                        (3) 174 

where iM  represents the model describing the evolution of the atmospheric flow from time 175 

1−it  to it . The evolution of the forecast state is then entirely determined by the initial 176 

condition 0x , the control variable reduces to a three-dimensional state, and the constraint 177 

F disappears from the cost function. This reduction of the control variable, combined with 178 

the adjoint technique to compute the gradient of the cost function (required by most 179 

minimization algorithms), was introduced by Le Dimet and Talagrand [1986], and is usually 180 

referred to as strong-constraint 4DVar or simple 4DVar. Although the time dimension of the 181 
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information provided by the observations and the forecast model is taken into account, the 182 

control variable is defined over a three dimensional space. The size of the control variable, 183 

and the elimination of the model-error covariance matrix, make this algorithm operationally 184 

achievable with today’s supercomputers. 185 

A more general approach is to consider that the forecast model is not perfect. In such 186 

formulation, the forecast model is only imposed as a weak constraint, since the minimizing 187 

solution x does not have to be an exact solution of the model. This formulation is known as 188 

weak-constraint 4DVar. In this case, fC  is the model error covariance matrix usually 189 

denoted byQ ; the associated term in the cost function will denoted by qJ . A more complex 190 

introduction to the formulation of 4DVar accounting for an imperfect model is given in 191 

Trémolet [2006]. 192 

The weak-constraint 4DVar cost function in its most general form is defined by Eq. (2). 193 

It can be written more explicitly, as a function of the components of the control variable x , 194 

as 195 

∑
=

−− −−+−−=
m

i
iii

T
iiib

T
b yxHRyxHxxBxxxJ

0

1
0

1
0 ))(())(()()()(196 

∑
=

− −−+
m

i

iiii
T

ii xMxQxMx
0

0,
1

00, ))(())(( ,                        (6) 197 

where )( 00, xMx ii = represents the state at time it  resulting from the forced model 198 

integrated from time 0t  to it , and observation and model errors are assumed uncorrelated 199 

in time. Time correlation can be taken into account, at the expense of using a 200 

non-block-diagonal model-error covariance matrix and determining the appropriate statistics.  201 
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The need of huge amount of information and then high computational costs to represent 202 

the model errors severely limits the implementation of the weak-constraint 4DVar. This 203 

problem is usually solved through some significant simplifications [Courtier,1997]. 204 

Obviously, such simplifications are likely subject to their poor description the evolution of 205 

the state flow. This issue is addressed in our new approach as follows.  206 

Assuming there are S  time steps within the assimilation time window (0, T), generate 207 

N  random perturbation fields using the Monte-Carol method and add each perturbation 208 

field to the initial background field at 0t t=  to produce N  initial fields 0( ), 1,2,nx t n N=
r

L . 209 

Integrate the forecast model ,0 0( ) ( ( ))n ni ix t M x t=
r r

 with the initial fields 0( )( 1, 2, )nx t n N=
r

L210 

throughout the assimilation time window to obtain the state series ( )n ix t
r

( 0,1, 1i S= −L ) and 211 

then construct the perturbed 4-D fields (snapshots) nX
uur

( 1, 2,n N= L ) over the assimilation 212 

time window: 213 

0 1 1( ( ), ( ), , ( ))n n n n SX x t x t x t −=
uur r r r

L , 1, 2, ,n N= L ,                           (7) 214 

It is obvious that such vectors can capture the spatial structure of the model state and its 215 

temporal evolution. All the perturbed 4-D fields nX
uur

( 1, 2,n N= L ) can expand a finite 216 

dimensional space 1 2( )NX X XΩ
6447448
uur uur uur

L . Similarly, the analysis field 217 

( )( 0,1,2, 1)a ix t i S= −
r

L over the same assimilation time window can also be stored into the 218 

following vector: 219 

0 1 1( ( ), ( ), , ( ))a a a a SX x t x t x t −=
uur r r r

L , 1, 2, ,n N= L .                             (8) 220 
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When the ensemble size N  is increased by adding random samples, the ensemble space 221 

could cover the analysis vector aX
uur

, i.e. aX
uur

 is approximately assumed to be embedded in 222 

the linear space 1 2( )NX X XΩ
6447448
uur uur uur

L .  Let bnX
uur

( 1,2, ,n K K N= ≤L ) be the base vectors of 223 

this linear space 1 2( )NX X XΩ
6447448
uur uur uur

L , the analysis vector aX
uur

 can be expressed by the linear 224 

combinations of this set of base vectors since it is in this space, i.e. 225 

1

K

a bnn
n

X Xβ
=

=∑
uur uur

.                                                      (9) 226 

Setting ,0 0
1

1
( ( )) ( )

N

ni i
n

M x t x t
N =

= ∑
r r

 and then substituting (8) and (9) into (6), the control 227 

variable becomes 1( )T
Kβ β β= L  instead of 0( )x t

r

if the model error covariances iQ228 

( 0, ,i m= L ) are known (This will be discussed further below), so the control variable is 229 

expressed explicitly in the cost function and the computation of the gradient is simplified 230 

greatly. The tangent linear model or adjoint model is no longer required. To minimize the 231 

cost function, Eq. (6) is transformed into an explicit optimization problem with the variable 232 

vector 1( )T
Kβ β β= L .   233 

Tian and Xie [2008a,b] proposed a concept of sample density to illustrate that the 234 

vector transformation , 1, ,nnX X X n Nδ = − =
uur

L  is the optimization one in certain optimal 235 

sense, which can obtain the maximum sample density for the same ensemble forecasts and 236 

then yield the most efficient assimilation effects. That means any other vector 237 

transformation such as inni XXX −=δ , Nn ,,1L= , ( ),,,( 21 Ni XXXX L∈∀ ) can only 238 

result in some analysis vector partly close to the optimization analysis vector, whose 239 
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relationship is very similar to that between the analysis ensemble and the mean analysis in 240 

the EnKF.  Inspired by this similarity, we form N  new ensembles by focusing on 241 

deviations from the vector ),,1(, NiX i L= , respectively, as follows 242 

n iniX X Xδ = −
uur uur

,                                            (10) 243 

which form the matrix iA ( M N× ), where g vM M M S= × × , and ,g vM M are the number 244 

of the model spatial grid points and the number of the model variables respectively. To 245 

compute the POD modes, one must solve an M M×  eigenvalue problem:  246 

VVAA MM
T
ii λ=×)( ,                                          (11) 247 

In practice, the direct solution of this eigenvalue problem is often not feasible if M N>> , 248 

which occurs often in numerical models. We can transform it into an N N×  eigenvalue 249 

problem through the following transformations: 250 

VAA i
T
i λ= ,                                                     (12a) 251 

VAVAAA ii
T
ii λ= ,                                                (12b) 252 

VAVAAA ii
T
ii λ= ,                                                (12c) 253 

)()( VAVAAA ii
T
ii λ= ,                                             (12d)254 

In the method of snapshots, one then solves the N N×  eigenvalue problem.  255 

, 1,k k kTV V k Nλ= = L ,                                            (13) 256 

where NNi
T
i AAT ×= )( , kV  is the k th column vector of V  and kλ  is the k th  row 257 

vector of λ  . The nonzero eigenvectors kλ  (1 k N≤ ≤ ) may be chosen to be orthonormal, 258 

and the POD modes are given by kkik VA λφ /= ,(1 k N≤ ≤ ). 259 
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The truncated reconstruction of analysis variable in the four dimensional space 
i

aX  is 260 

given by 261 

∑
=

+=
iP

j

i
j

i
ji

i

a XX
1

φα , (14)262 

where  iP (the number of the POD modes) is defined as follows263 

⎪
⎪

⎭

⎪
⎪

⎬

⎫

⎪
⎪

⎩

⎪
⎪

⎨

⎧

≥==
∑

∑

=

= γ
λ

λ
)(:)(,min

1

1
iN

j
j

P

j
j

iii PIPIPP

i

, 10 << γ .                              (15) 264 

Given the vector of measurements ( )TmyyyY ,,, 10 L=  , we can define the N  vectors 265 

with perturbed observations as 266 

,ii YY Ε+= Ni L,1= ,                                                 (16) 267 

where ( ),0 ,1 ,, , ,
T

i i i i mε ε εΕ = L  are random real vectors. The measurement error covariance 268 

matrix can be estimated by 269 

1

T
j j

j

E E
R

N
=

−
, ,,0 mj L=                                                 (17) 270 

where ( )1, ,, ,j j N jE ε ε= L . 271 

Subsequently, one can construct the model error covariance iQ  as follows: 272 

The ensemble matrix at time it  is constructed by 273 

1( ( ), , ( ))ni i iA x t x t=
r r

L ,                                            (17) 274 

The ensemble perturbation can be defined as 275 

1( ( ) ( ), , ( ))Ni i i iA x t x t x x t∆ = − −
r r

L ,                                   (18) 276 
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where ,0 0
1

1
( ) ( ( )) ( )

N

ni i i
n

x t M x t x t
N =

= = ∑
r r

. 277 

Then the model error covariance can be represented same as that in EnKF 278 

1

)(

−
∆∆

=
N

AA
Q

T
ii

i ,                                             (19) 279 

The SVD of iA∆ yields 280 

T
i i i iA U V∆ = Λ ,                                              (20)281 

where iΛ  is a diagonal matrix composed of the singular values of  iA∆ . Ui and Vi are 282 

orthogonal matrices composed of the left and right singular vectors of iA∆ , respectively, 283 

then 284 

1

2

−
Λ

=
N

UU
Q

T
iii

i ,                                              (21)285 

and  286 

T
iiii UUNQ 21 )1( −− Λ−= ,                                        (22) 287 

Substituting (14), (17) and (22) into (6), the control variable becomes 288 

Ti
P

ii

i
),,( 1 ααα L= instead of 0( )x t

r

 and then the analysis vector 
i
aX ( Ni ,,1L= ) can be 289 

easily obtained. The mean analysis state is then generated as follows: 290 

∑
=

=
N

i

i

aa X
N

X
1

1
,                                             (23) 291 

Similarly, the ensemble initial 0A  for next assimilation cycle is then constructed by  292 

))(,),(( 11

1

0 −−= S

N

aSa txtxA L ,                                    (24) 293 

and the background error covariance B  can be updated by the evolving analysis ensemble 294 

forecasts (so it is flow-dependent) as follows 295 
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))(,),()(( 1

*

1

*

1

1

0 −−− −−=∆ Sa

N

aSaSa txxtxtxA L ,                        (25) 296 

where ∑
=

−− =
N

n
S

n

aSa tx
N

tx
1

11

*
)(

1
)( . 297 

1

)( 00

−
∆∆=

N

AA
B

T

,                                              (26)298 

The SVD of 0A∆ yields 299 

0 0 0 0
TA U V∆ = Λ ,                                                (27) 300 

where 0Λ  is a diagonal matrix composed of the singular values of  0A∆ . U0 and V0 are 301 

orthogonal matrices composed of the left and right singular vectors of 0A∆ , respectively, 302 

then 303 

2
0 0 0

1

TU U
B

N

Λ=
−

,                                                 (28) 304 

and  305 

1 2
0 0 0( 1) TB N U U− −= − Λ .                                            (29) 306 

Eqs. (24) and (29) are used to drive next assimilation cycle, which indicates that the initial 307 

condition is perturbed only once throughout the whole assimilation in this new scheme 308 

formulation.   309 

In the above formulations, the usual optimization algorithms to find the solution of 310 

Ti
P

ii

i
),,( 1 ααα L= still need the iterative procedure and probably result in higher 311 

computational cost. This issue is addressed as follows: 312 

Form the POD mode matrix 313 

( )1 2, , ,
i

i i i i
Pφ φ φΦ = L ,                                                  (30) 314 
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where, ( )T

S
i
j

i
j

i
j

i
j ttt )(,),(),( 110 −= φφφφ L , 1, 2, , ij P= L  . Transform (30) into the following 315 

format 316 

( )Ti
S

iii
110 ,,, −ΦΦΦ=Φ L ,                                              (31)317 

where  ( )1 2( ), ( ), , ( )
i

i i i i
k k k P kt t tφ φ φΦ = L , 1,,1,0 −= Sk L .  318 

Eq. (14) is rewritten as follow: 319 

ii
i

i

a XX αΦ+= ,                                                  (32) 320 

where ( )Ti
P

iii

i
αααα ,,, 21 L= .  321 

The cost function (14) can be transformed into the following 322 

1
0 0 0 0( ) ( ( ) ) ( ( ) )i i i i i

i b i bJ x t x B x t xα α α−= − + Φ + Φ −
r r r r

323 

[ ] [ ]∑
=

− Φ−−Φ−−+
m

j

ii
jjjijjj

T
ii

jjjij txyRtxy
0

1 H)(HH)(H αα             324 

                 1

0

( ) ( ) Q ( ) ( )
m T

i i i i
i ij j j j j j j

j

x t x t x t x tα α−

=

⎡ ⎤ ⎡ ⎤+ − − Φ − − Φ⎣ ⎦ ⎣ ⎦∑
r r

,       (33) 325 

where H j is the tangent linear observation operator. 326 

Because 1R j
−  and 1Q j

−  are symmetrical (see (17,22)), we can obtain the gradient of the cost 327 

function through simple calculations:  328 

1 1
0 0 0

0

( ) ( ) ( ( ) ) H R H ( ) H
m Ti i T i i i i i

i b ij j j j j j jj
j

J B x t x y x tα α α− −

=

⎡ ⎤⎡ ⎤∇ = Φ − + Φ + − Φ − − Φ⎣ ⎦ ⎣ ⎦∑
r r ur r

329 

1

0

Q ( ) ( )
m Ti i i

ij j j j j
j

x t x t α−

=

⎡ ⎤⎡ ⎤+ − Φ − − Φ⎣ ⎦ ⎣ ⎦∑
r

,  (34) 330 

One can solve the optimization problem  331 

0)( =∇ i
iJ α ,                                                       (35) 332 

and 333 
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1 1 1
0 0

0 0

( ) B H R H Q
m mT Ti T i i i i i i

j j j j j j j j
j j

α− − −

= =

⎛ ⎞
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤Φ Φ + Φ Φ + Φ Φ⎜ ⎟⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎝ ⎠
∑ ∑334 

1 1 1
0 0

0 0

H R H ( ) Q ( ) ( ) ( ) B ( ( ) )
m mT Ti i i T

i i i bj j j j j j j j jj
j j

y x t x t x t x t x− − −

= =

⎡ ⎤ ⎡ ⎤⎡ ⎤ ⎡ ⎤= Φ − + Φ − − Φ −⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣ ⎦∑ ∑
ur r r r r

335 

(36) 336 

Eq. (36) can be solved directly without an iterative procedure. 337 

3. Evaluations in a 1-D soil water model 338 

In this section, the applicability of this new method is evaluated through several 339 

assimilation experiments with a simple 1-D soil water equation model used in the NCAR 340 

Community Land Model (CLM) [Oleson et al., 2004]. Since we have compared the 341 

ESC4DVAR with the usual strong-constraint 4DVar, the EnKF and another explicit 342 

strong-constraint 4DVar [Qiu et al., 2007] in Tian et al. [2008b] and found that the 343 

ESC4DVar’s performance is superior to the others’ involved in term of increasing the 344 

assimilation precision, it is enough for us to only compare the EWC4DVar method with the 345 

ESC4DVar. 346 

3.1. Set-up of experiments 347 

The volumetric soil moisture (θ) for 1-D vertical water flow in a soil column in the 348 

CLM is expressed as  349 

fm

q
E R

t z

θ∂ ∂= − − −
∂ ∂

,                                             (37) 350 

where q  is the vertical soil water flux , E  is the evapotranspiration rate, and fmR  is the 351 

melting (negative) or freezing (positive) rate, and z  is the depth from the soil surface. Both 352 

q and z are positive downward. 353 
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The soil water flux q  is described by Darcy’s law [Darcy, 1856]: 354 

( )z
q k

z

ϕ∂ += −
∂

,                                             (38) 355 

where 
2 3b

s
s

k k
θ
θ

+
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 is the hydraulic conductivity, and 
b

s
s

θϕ ϕ
θ

−
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 is the soil matric 356 

potential , sk , sϕ , sθ  and b  are constants. The CLM computes soil water content in the 10 357 

soil layers through (37-38) (see [Oleson et al., 2004] for details). The upper boundary 358 

condition is   359 

0
0

( )
( )

z

z
q t k

z

ϕ
=

∂ += −
∂

,                                       (38b) 360 

where 0 ( )q t  is the water flux at the land surface (referred to as infiltration), and the lower 361 

boundary condition is 0lq = . The time step t∆  is 1800 s (0.5 hour). 362 

We took a site at (47.43oN, 126.97oE) as the experimental site. The soil parameters 363 

sk , sϕ , sθ  and b  at this site were calculated by the CLM using the high-resolution soil 364 

texture data released with the CLM by NCAR: sθ =0.46m3/m3, sk =2.07263E-6 m/s,365 

b =8.634, sϕ =-3.6779m. We then ran the model at the site forced with observation-based 366 

3-hourly forcing data [Qian et al., 2006; Tian et al., 2007] from January 1, 1992 to December 367 

31, 1993 after ten-year spinning-up to obtain a two-year time series of simulated infiltration 368 

(i.e., the water flux q at the surface, c.f., Eq.(38b)) for driving the soil water hydrodynamic 369 

equation (24). We used the first year (January 1, 1992 to December 31, 1992) data of 370 

CLM-simulated infiltration as the “perfect” infiltration series, and took the second year data 371 

as the “imperfect” infiltration series (Fig. 1). In our experiments, we integrated the soil water 372 

hydrodynamic equation (37) forced by the two infiltration time series for 365 days separately: 373 
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Eq. (37) forced by the “perfect” infiltration series represents the perfect forecast model, 374 

whose forecast error comes only from the noise in the initial (soil moisture) field; on the 375 

contrary, Eq. (37) forced by the “imperfect” infiltration series acts as the “imperfect” forecast 376 

model, whose forecast error comes from not only the noise of the initial field but also the 377 

uncertainty in the forecast model itself.  378 

Figure 2 shows the “imperfect” and the “perfect” initial soil moisture profiles, which 379 

were obtained by randomly taking two arbitrary CLM-simulated soil moisture profiles in the 380 

process of the infiltration series producing. These profiles represent the initial fields with and 381 

without noise. The “perfect” (or “true”) state was produced by integrating the “perfect” 382 

model with the “perfect” initial soil moisture profile for 365 days (Figure 3). The 383 

“observations” were generated by adding 3% random error perturbations to the time series of 384 

the “perfect” state (i.e., “observation” = (1+ε )×“perfect”, whereε  is a real random number 385 

varying from -3% to 3%), and these “observations” were assimilated using the two methods 386 

in the assimilation experiments (but not in the forecast experiments). In addition, a forecast 387 

states were produced by integrating the imperfect model with the “imperfect” initial soil 388 

moisture: The forecast error comes from both the noise of the initial field and the uncertainty 389 

in the forecast model (Figure 3), which shows that the forecast model drifts seriously away 390 

from the “perfect” solution. Two observation frequencies (twelve-hourly and two-hourly) are 391 

used to test their sensitivity on the assimilation effects.   392 

3.2. Experimental results    393 
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To evaluate the performance of the two algorithms (ESC4DVar, EWC4DVar), a 394 

relative error is defined as follows 395 

0 1

1
2

0 1

1
2

0 1

( ( ) ( ))

( ( ) ( ))

g v

S g v

M MS a t
j ji i

i j
t M MS f t

j ji i
i j

x t x t

E

x t x t
→ −

×−

= =
×−

= =

−
=

−

∑ ∑

∑ ∑

r r

r r
,                                     (39) 396 

where the index 0 1St → −  denotes an assimilation time window (one day in our experiments), 397 

S  is the length of an assimilation window ( S =48 in our experiments), f  and a  denote 398 

the forecast state (without assimilation of the “observations”) and the analysis state, 399 

respectively, t  represents the “true” (“perfect”) state. Thus, a relative error of 1% for a 400 

given assimilation method would mean that the mean error of the analyzed soil moisture is 401 

only 1% of that in the forecast case. 402 

Figure 4a shows that the EWC4DVar method performs moderately better than the 403 

ESC4DVar: the relative errors of the ESCW4DVar for the analyzed soil moisture are all 404 

lower than12% and most of them are even lower than 3%. However, the relative errors of the 405 

ESC4DVar for the analyzed soil moisture fluctuate between 0 and 18%, which are higher 406 

than the EWC4DVar’s as a whole, especially during Day 100 to Day 200. This is expected 407 

because model error is not negligible in such data assimilation: The pure simulated (Im with 408 

Im) deviates from the true (P with P) apparently during Day 100 to Day 200 (Fig.3). The 409 

perfect model assumption in the ESC4DVar introduces larger errors and leads to sub-optimal 410 

performance. With the observation frequency being increased, there is so much observation 411 

information merged into the analyzed soil moisture that the relative errors of the 412 
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EWC4DVar’s become very small (<2.0%)(Fig.4b). The relative errors of the ESC4DVar are 413 

not reduced as so much as the EWC4DVar: Some of are even up to 8%.  414 

4. Evaluations within the Lorenz model  415 

In this section, our approach (EWC4DVar) is further evaluated within the Lorenz model 416 

for investigating its wider applications. The Lorenz model is widely used to test the new 417 

proposed methods in data assimilation community:  e.g. Xiong, Navon and Uzunoglu [2006] 418 

used it to test the performances of the EnKF and PF (particle filter) methods. Their results 419 

show that the PFGR (PF with Gaussian resampling) method possesses good stability and 420 

accuracy and is potentially applicable to large-scale data assimilation problems.  421 

4.1. Set-up of experiments 422 

The Lorenz system under chaotic regime is used as a test problem, which is given by 423 

equation(e.g., see http://www.taygeta.com/perturb/node2.html): 424 

( )
dx

s x y
dt

= − − ,                                                   (40a) 425 

dy
rx y xz

dt
= − − ,                                                  (40b) 426 

dz
xy bz

dt
= − ,                                                     (40c) 427 

For numerical experiment the Lorenz system with parameters 
8

10, 28,
3

s r b= = =  was 428 

integrated using a second order Runge Kuatta’s method, with 0.1t∆ = , and initial conditions  429 

(0) 1.5x = − , (0) 1.5y = − , (0) 25z =  for the true solution (observations) and 430 

(0) 1.52x = − , 3.1)0( −=y , 27)0( =z for background solution (a-priori forecast). The 431 

observation insertion is done at each 12 time-step. The length of each assimilation time 432 

window is 24 time-step. 433 



22

4.2. Experimental results 434 

Figure 5 shows time series of the Lorenz curve coordinates (x,y,z) from observations, 435 

the EWC4Dvar and ESC4Dvar assimilations: the forecast Lorenz curve is adjusted to 436 

approach the true curve rapidly at the end of the first assimilation cycle by the EWC4DVar 437 

method, even though only twice observations in each assimilation time window. On the 438 

contrary, the pure forecast state without assimilations begins to deviate from the true solution 439 

seriously after 60 time-step or so, even though the noise of the initial filed (x,y,z) only results 440 

in small departures from the true state in the first 48 time steps or two assimilation time 441 

windows (not shown). Figure 6 shows the root mean square (rms) errors for the EWC4Dvar 442 

assimilated Lorenz curve are mostly less than 4 in the first assimilation window, and become 443 

close to zero at the start of the second assimilation cycle. On the other hand, the rms errors 444 

for the simulated curve fluctuate drastically in the magnitude from 1 to 30 (not shown).  The 445 

ESC4DVar method was also applied in the same experiments. Because the forecast model 446 

(the Lorenz model) used in this experiments is perfect and the forecast errors come only from 447 

the noise of the initial fields, the EWC4DVar method with consideration of model errors 448 

doesn’t show superior performance compared with the ESC4DVar method: The two methods 449 

performs almost same during this assimilation experiments. 450 

5. Summary and concluding remarks 451 

     Weak-constraint 4DVar is a generalization of the more widely developed 452 

strong-constraint 4DVar: In weak-constraint 4DVar one simplifying assumption—namely, 453 

that the forecast model is perfect—has been removed. A new approach is proposed in this 454 
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paper by merging the Monte Carlo method and the POD technique into the weak-constraint 455 

4DVar formulation to transform it into an implicit optimization problem, which can account 456 

for and estimate model error similar to that in the EnKF. The model errors are then 457 

represented by the evolving ensemble forecasts. 458 

Assimilation experiments in soil moisture assimilation show this new approach 459 

moderately outperforms the strong-constraint 4DVar method with assimilation errors can be 460 

reduced only a fraction of the latter, which shows whether considering model error or not in 461 

data assimilation plays some role that can not be easily ignored. Another assimilation 462 

experiment conducted within the Lorenz model shows that it performs almost same as the 463 

usual strong-constraint 4DVar method if the model is perfect. 464 

It should be pointed out that the additional computational costs resulting from 465 

representing model error in the proposed method could possibly limit its further operational 466 

applications, even though it is not very obvious our experiments. How to reduce the 467 

computational costs as much as possible is a critical step in using this method. This aspect 468 

requires more evaluations and investigations.469 
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FIGURE CAPTIONS: 559 

FIG. 1. The “perfect” (solid line) and “imperfect” (dashed line) infiltration time series used in 560 

the assimilation experiments. 561 

FIG. 2. The “perfect” (solid line) and “imperfect” (dashed line) initial soil moisture profiles 562 

used in the assimilation experiments.563 

FIG. 3. Time series of skip volumetric soil moisture simulated by the perfect model with the 564 

“perfect” initial soil moisture, and the imperfect model with the “imperfect” initial soil 565 

moisture.  566 

FIG. 4. Relative error ( nE ) for analyzed soil moisture in the assimilation experiments by the 567 

imperfect model with the “imperfect” initial field.568 

FIG.5. Time series of the Lorenz curve coordinates (x,y,z) from observations (solid line), the 569 

EWC4DVar assimilations (long-dashed line) and the ESC4DVar assimilations (short-dashed 570 

line) 571 

FIG.6. Root mean square error for the EWC4Dvar assimilated (solid line) or the ESC4DVar 572 

assimilated (long-dashed line) Lorenz curves.  573 

574 

575 
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576 

FIG. 1. The “perfect” (solid line) and “imperfect” (dashed line) infiltration time series used in 577 

the assimilation experiments. 578 
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579 

FIG. 2. The “perfect” (solid line) and “imperfect” (dashed line) initial soil moisture profiles 580 

used in the assimilation experiments.581 
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582 

FIG. 3. Time series of skip volumetric soil moisture simulated by the perfect model with the 583 

“perfect” initial soil moisture, and the imperfect model with the “imperfect” initial soil moisture.  584 

585 
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586 

FIG. 4. Relative error ( nE ) for analyzed soil moisture in the assimilation experiments by the 587 

imperfect model with the “imperfect” initial field.588 
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589 

FIG.5. Time series of the Lorenz curve coordinates (x,y,z) from observations (solid line), the 590 

EWC4DVar assimilations (long-dashed line) and the ESC4DVar assimilations (short-dashed 591 

line) 592 
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593 

FIG.6. Root mean square error for the EWC4Dvar assimilated (solid line) or the ESC4DVar 594 

assimilated (long-dashed line) Lorenz curves.  595 


