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An explicit four-dimensional variational data assimila-
tion method based on the proper orthogonal decom-
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The proper orthogonal decomposition (POD) method is used to construct a set of basis functions for 
spanning the ensemble of data in a certain least squares optimal sense. Compared with the singular 
value decomposition (SVD), the POD basis functions can capture more energy in the forecast ensemble 
space and can represent its spatial structure and temporal evolution more effectively. After the analysis 
variables are expressed by a truncated expansion of the POD basis vectors in the ensemble space, the 
control variables appear explicitly in the cost function, so that the adjoint model, which is used to de-
rive the gradient of the cost function with respect to the control variables, is no longer needed. The 
application of this new technique significantly simplifies the data assimilation process. Several as-
similation experiments show that this POD-based explicit four-dimensional variational data assimila-
tion method performs much better than the usual ensemble Kalman filter method on both enhancing 
the assimilation precision and reducing the computation cost. It is also better than the SVD-based ex-
plicit four-dimensional assimilation method, especially when the forecast model is not perfect and the 
forecast error comes from both the noise of the initial filed and the uncertainty of the forecast model. 

POD, data assimilation, 4DVAR, explicit method  

The four-dimensional variational data assimilation 
(4DVAR) method has been a very successful technique 
used in operational numerical weather prediction (NWP) 
at many weather forecast centers[1,2]. The 4DVAR tech-
nique has two attractive features: (1) the full model is set 
as a strong dynamical constraint, and (2) it has the abil-
ity to assimilate the observation data at multiple times, 
but it still faces numerous challenges to code, maintain 
and update the adjoint or linearity model of the forecast 
model. Usually, the control variables (initial state) are 
expressed implicitly in the cost function. In order to 
compute the gradient of the cost function with respect to 
the control variables, one has to integrate the adjoint 
model, which is extremely labor-intensive, especially 
when the forecast model is highly nonlinear and the 
model physics contains parameterized discontinuities[3,4], 
which often occures in land surface models.  
Many efforts have been devoted to avoiding integrating 

the adjoint model or reducing the expensive computation 
cost[5－7]. But the linear or adjont model is still required 
in the methods above. On the other hand, the ensemble 
Kalman filter (EnKF)[8] is becoming an increasingly 
popular method for its high precision and simple opera-
tion. By forecasting the statistical characteristics of the 
background errors, the EnKF can provide flow-     
dependent error estimates of the background errors with 
the Monte Carlo method, but it lacks the two advantages 
of the 4DVAR mentioned above. Some studies have 
been done to relate 4DVAR to the EnKF[9,10], however, 
the adjoint model is still needed in these methods. In 
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order to retain the two primary advantages of the tradi-
tional 4DVAR method while avoiding the need of an 
adjoint or linearity model of the forecast model, Qiu et 
al.[11,12] proposed a new method for 4DVAR by the sin-
gular value decomposition (SVD) technique based on 
the theory of the attractors of atmosphere, which was 
shown to perform well. We resort to the proper orthogo-
nal decomposition (POD) (or the Karhunan Loève pro-
cedure) technique[13,14] and the idea of EnKF. Cao et 
al.[15] also applied the POD technique to the 4DVAR to 
reduce the forecast model orders in order to simplify the 
computation and save CPU and memory requirements, 
but the adjoint integration is still necessary in their 
method. Proper orthogonal decomposition technique has 
been used to obtain low dimensional dynamical models 
of many applications in engineering and science. In 
principle, the idea starts with an ensemble of data, called 
snapshots, collected from an experiment or a numerical 
procedure of a physical system. The POD technique is 
then used to produce a set of basis functions which 
spans the snapshot collection. The goal of the approach 
is to represent the ensemble of data in terms of an opti-
mal coordinate system. That is, the snapshots can be 
generated by a smallest possible set of basis functions. 
An explicit four-dimensional data assimilation method 
based on the POD technique is proposed in this paper: it 
begins with a four-dimensional sample ensemble ob-
tained from the forecast ensembles at all the time levels 
(or at the observational time steps) in an assimilation 
window produced by the Monte Carlo method, which is 
similar to that in the ensemble Kalman filter. If we apply 
the technique of proper orthogonal decomposition to the 
four-dimensional forecast ensemble, the orthogonal ba-
sis vectors can not only capture the spatial structure of 
the state but also reflect its temporal evolution. After the 
model status is expressed by a truncated expansion of 
the basis vectors obtained by the POD technique, the 
control variables in the cost function appear explicitly, 
so that the adjoint model is no longer needed. This 
method is expected to not only simplify the data assimi-
lation procedure but also retain the two main advantages 
of the traditional 4DVAR method.  Several numerical 
experiments are conducted with a one-dimensional soil 
water equation model and synthetical observations to 
evaluate this method in land data assimilation. Com-
parison is also made between this newly proposed 
method, Qiu’s method (thereafter called SVD-E4DVAR 

for simplicity) and the EnKF method. 

1  Proper orthogonal decomposition 

1.1  Continuous case 

Let ( ),  1,  2,  ,  iU x i N=  denote the set of obser-
vations or simulations (also called snapshots) of some 
physical process taken at position 

N

( ,  )x x y= . The av-
erage of the ensemble snapshots is given by 

1

1 ( ).
N

i
i

U U
N =

= ∑ x              (1) 

We form new ensemble by focusing on deviation from 
mean as follows: 

.i iV U U= −               (2) 
One wish is to find an optimal compressed description 
of the sequence of data (eq. (2)). One description of the 
process is a series expansion in terms of a set of basis 
functions. Intuitively, the basis functions should be 
representative of the members of the ensemble in a sense. 
Such a coordinate system, which possesses several op-
timality properties, is provided by the Karhunan Loève 
expansion, where the basis functions Φ are, in fact, ad-
mixtures of the snapshots and are given by 

1
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N
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i
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where the coefficients ai are to be determined so that Φ 
given by eq. (3) will most resemble the ensemble 
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maximize 

2

1

1 | ( , ) | ,
N

i
i

V
N

Φ
=
∑                (4) 

subject to 2( ,  ) || || 1,Φ Φ Φ= =  where ( ⋅ , ) and ||⋅ ⋅ || de-
note the usual L2 inner product and L2-norm, respec-
tively.  

It follows that the basis functions are the eigenfunc-
tions of the integral equation 

' ' '
( ,  ) ( )d ( ).C x x x x xΦ λΦ=∫         (5) 

Substituting eq. (3) into eq. (5) yields the eigenvalue: 

1
,

N

ij j i
j

L a aλ
=
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where 1 ( , )ij i jL V V
N

=  is a symmetric and nonnegative 
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matrix. Thus, we see that our problem amounts to solv-
ing the eigenvectors of a N × N matrix where N is the 
size of the ensemble of snapshots. Straightforward cal-
culation shows that the cost functional  

2

1

1 | ( , ) | ( , ) ,
N

i
i

V
N

Φ λΦ Φ
=

=∑ λ=        (7) 

which is maximized when the coefficients  of eq. (3) 
are the elements of the eigenvector corresponding to the 
largest eigenvalue of L. 

ia

1.2  Discrete case 

We can consider the discrete Karhunan Loève expansion 
to find an optimal representation of the ensemble of 
snapshots. In the two-dimensional case, each sample of 
snapshots  (defined on a set of n × n nodal 
points (x, y)) can be expressed as an n2 dimensional 
vector  as follows: 
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                (8) 

where  denotes the jth component of the vector iju iu . 

Here the discrete covariance matrix of the ensemble u  
is defined as 

{ }( )( )T
u uuC E u m u m= − − ,          (9) 

where 

{ },um E u=               (10) 

the mean vector, E is the expected value. Eqs. (9) and 
(10) can be replaced by 

1
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respectively.  

2  The explicit 4DVAR method based on 
the POD 

In principle, the 4DVAR analysis, xa is obtained through 
the minimization of a cost function J, which measures 

the misfit between the model trajectory Hk(xk) and the 
observation yk at a series of time tk, t=1, 2, …, K. 

The 4DVAR method is defined as a process minimiz-
ing the following cost function 
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(11)
 

with the forecast model M imposed as strong constraints, 
defined by 

0( ),k kx M x=                 (12) 
where the superscript T stands for a transpose, b is 
background value, the index k denotes the observational 
time, Hk is the observational operator, and matrices B 
and R are the background and observational error co-
variances, respectively. The control variable is the initial 
conditions x0 (at the beginning of the assimilation time 
window) of the model. 

In the cost function (eq. (11)), the control variable x0 
is connected with xk through forwarding the model and 
expressed implicitly, which makes it difficult to compute 
the gradient of the cost function with respect to x0. 

For simplicity, the proposed method is referred to as 
POD-E4DVAR. Like the traditional 4DVAR, the 
POD-E4DVAR also needs to choose an assimilation 
time window. The four-dimensional sample ensemble is 
constructed from the forecast ensembles in the assimila-
tion time window produced by the Monte Carlo method, 
which is similar to that in the ensemble Kalman filter. 
Then the basis vectors are generated by applying the 
proper orthogonal decomposition (POD) technique to 
the four-dimensional sample ensemble. The model state 
can be expressed by the linear combination of the lead-
ing POD modes then. In this way, the control variables 
are transformed to the expansion coefficients and are 
expressed explicitly in the cost function. The details are 
described are follows: assuming there are S time steps 
during the assimilation time window (0, T). Generate N 
random perturbation fields and add each perturbation 
field to the initial background filed at t = t0 and integrate 
the model to produce a perturbed 4D field (snapshots) Xn 
(n=1, …, N) over the whole assimilation time window 
(S time steps) or at the observational time steps (K).  

The average of the ensemble of snapshots is given by 

1

1 .
N

n
n

X
N =

= ∑ X               (13) 
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We form a new ensemble by focusing on deviations 
from the mean as follows: 

,  1, , ,n nX X X n Nδ = − =        (14) 
which form the matrix A (M×N), where M = Mg× 

( ),vM S K×  Mg and Mv are the number of the model 
spatial grid points and the number of the model variables 
respectively, and ( ) is the number of all time levels 
(observational time levels) over each analysis time win- 
dow. To compute the POD modes, one must solve an M × 

M eigenvalue problem 

S K

( )T
M MT AA V .λ×= =  

In practice, the direct solution of this eigenvalue 
problem is often not feasible if M >> N, which is very 
usual in numerical models. We can transform it into an  
N × N eigenvalue. In the method of snapshots, one then 
solves the N × N eigenvalue  

, 1, ,k k kTV V k Nλ= = ,         (15) 

where  The nonzero eigenvectors λk  

(1≤k≤N) may be chosen to be orthonormal, and the 

POD modes are given by 

( ) .T
N NT A A ×=

/k kAV ,kφ λ=  (1≤k≤N). 

The truncated reconstruction of analysis variable in 
the four- dimensional space Xa is given by 

1
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where P (the number of the POD modes) is defined as 
follows: 
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It is well known that the expansion (eq. (16)) is opti-
mal[16,17]. Particularly, among all linear combinations 
(including the linear combination based on the SVD ba-
sis vectors), the POD is the most efficient, in the sense 
that for a given number of modes P , the POD decompo-
sition will capture the most possible kinetic energy. The 
forward solution is approximately expressed by a trun-
cated expansion of the POD basis vectors in the 
four-dimensional space. Substituting eq. (16) into eq. 
(11), the control variable becomes  in-

stead of
1( )T

Pα α α=

0x , so the control variable is expressed explic-
itly in the cost function and the computation of the gra-
dient is simplified greatly . 

3  Numerical experiments 

In this section, the applicability of this newly proposed 
method is evaluated by several assimilation experiments 
with a simple one-dimensional soil water equation 
model used in the NCAR Community Land Model 
(CLM)[16]. In addition, comparison is made between the 
POD-E4DVAR method (POD1-E4DVAR: the perturbed 
4D fields are produced only at the observational times 
(K time steps); POD2-E4DVAR: the perturbed 4D fields 
are produced over the whole assimilation time window 
(S time steps)), the SVD-E4DVAR method and the 
EnKF method. 

3.1  Setup of experiments 

The conservation of water mass (θ ) for one-dimensional 
vertical water flow in a soil column in the CLM is ex-
pressed as  

,fm
q E R

t z
θ∂ ∂

= − − −
∂ ∂

           (17) 

where q is the vertical soil water flux, E is the 
evapotranspiration rate, and Rfm is the melting (negative) 
or freezing (positive) rate, (for simplicity, E, Rfm are 
taken as zero in the experiments), and z is the depth 
from the soil surface. Both q and z are positive down-
ward. 

The soil water flux q is described by Darcy’s law[17]: 
( )zq k

z
ϕ∂ +

= −
∂

,               (18) 

where 2 3( / ) b
s sk k θ θ +=

( / ) b
s sϕ ϕ θ θ

 is the hydraulic conductivity, 

and −=  is the soil matric potential, and ks, 

ϕs, θs and b are real constants (Table 1). The CLM 
computes soil water content in the 10 soil layers through 
(eq. (17) and eq. (18)) (see ref. [16] for detail). The up-
per boundary condition is 

0
0

( )( ) ,
z

zq t k
z

κ

=

∂ +
= −

∂
 

where q0(t) is the water flux of the land surface (infiltra-
tion), and the lower boundary condition is ql=0. The 
time step Δt is 1800 s. 

For experiments, the soil water equation model with 
the “perfect” infiltration series (Figure 1) acts as the 
 
Table 1  The parameters used in the soil water equation model 

θs ks b ϕs 
0.46 2.07263×10−6 m/s 8.634 −3.6779 m 
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perfect model, and it is forced by the “imperfect” infil-
tration (Figure 1) which acts as the imperfect model. The 
“perfect” (or “true”) state is produced by integrating the 
perfect model with the “perfect” initial soil moisture 
(Figure 2) for 1092 time steps. The observations are 
made through adding 3% random error perturbation to 
the “perfect” state series. Figure 3 shows that time series 
of the skin volumetric soil moisture is simulated by (1) 
the “perfect” model with the “perfect” initial soil mois-
ture (P with P), (2) the “perfect” model with the “imper-
fect” initial field (P with Im) and (3) the “imperfect” 
model with the “imperfect” soil moisture (Im with Im), 
respectively. The forecast state is produced by integrat-
ing the perfect (imperfect) model with the “imperfect” 
initial soil moisture: The former means that the forecast 
error comes only from the noise of the initial filed, and 
the latter indicates that the forecast error comes not only 
from the noise of the initial field but also from the un-
certainty of the forecast model. The length of an assimi-
lation time window in our experiments is 7. Two group 
experiments are conducted in our research (Table 2). 
The perfect model with the “imperfect” initial field is 
used in Group 1 and the imperfect model with the “im-
perfect” initial field is applied in Group 2. Three assimi-
lating observation frequencies (7 times/window, 4 
times/window and 3 times/window) are adopted in each 
group experiment. The ensemble size of all the three 
assimilation methods (POD-E4DVAR, SVD-E4DVAR 
and EnKF) is 60. 

 
Figure 1  The perfect and imperfect infiltration used in the assimilation 
experiments. 

 
Figure 2  The perfect and imperfect initial soil moisture used in the 
assimilation experiments. 

 
Figure 3  Time series of the simulated skin soil moisture (volumetric soil 
moisture, θ(t)).  

 
Table 2  Experiments design 

Experiments No. Initial errors
Observation 
frequency 

(times/window) 
Model errors

1 yes 7 no 
2 yes 4 no 
3 yes 3 no 
4 yes 7 yes 
5 yes 4 yes 
6 yes 3 yes 

3.2  Experimental results 

To evaluate the performance of the three algorithms 
(POD-E4DVAR, SVD-E4DVAR and EnKF), the relative 
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error is defined as follows: explicit four-dimensional variational methods perform 
almost the same, but we can still find that the relative 
errors of the POD-based method are appreciably less 
than that of the SVD-based method, probably because of 
the POD basis optimality in the ensemble space. When 
the forecast model is not perfect, its forecast error comes 
from both the noise of the initial filed and the uncer-
tainty of the model itself. The relative errors of three 
methods are becoming bigger as a result (Figure 5). 
Most of the POD-E4DAVR relative errors are still con-
trolled in the scope between 0.0 and 0.03, only a few are 
beyond 0.03 but do not exceed 0.06 yet except for those 
in some windows. Most of the relative errors of the 
SVD-E4VAR are also less than 0.06, but in several as-
similation windows (such as windows 30－40, and 
windows 15－25), its relative errors of the analyzed soil 
moisture exceed 0.09, with some being up to 0.15. We 

2
, ,
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2
, ,

1

( )
( ) ,

( )
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a t
n i n i

i
n S

f t
n i n i

i

E
θ θ
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θ θ

=

=

−
=

−

∑

∑
         (19) 

where the index n denotes the number of the assimila-
tion cycle, S is the length of an assimilation window, f 
and a denote the forecast state (without assimilation) 
and the analysis state, respectively, and t represents the 
“true” (“perfect”) state. Figures 4 and 5 show that the 
POD/SVD-E4DVAR methods perform much better than 
the EnKF method in the two group assimilation experi-
ments. Their relative errors for soil moisture are very 
small (most less than 0.01) in the case that the forecast 
model is perfect (The forecast error comes only from the 
noise of the initial filed (Figure 4)), however the relative 
errors of the EnKF method are about 0.03 or so. The two  

 
Figure 4  Relative error for analyzed soil moisture in the assimilation experiments by the perfect model with the “imperfect” initial filed. (a), (b) and (c) 
are the three time, four time and seven time observations in an assimilation window, respectively. 



 

 

Figure 5  Relative error for analyzed soil moisture in the assimilation experiments by the imperfect model with the “imperfect” initial filed. (a), (b) and (c) 
are the three time, four time and seven time observations in an assimilation window, respectively. 

 
can also find that the observation frequency has more 
impacts on the SVD-E4DVAR method compared with 
the POD-E4DVAR method. Most of the corresponding 
relative errors of the EnKF method are bigger than 0.03, 
with some even bigger than 0.15. On the computation 
efficiency, the ratio of the computation costs for the 
three methods is about 1:1:30 in the two group assimi-
lation experiments. 

We can also find that the two different sampling 
POD-E4DVAR (POD1-E4DVAR and POD2-EDVAR) 
methods perform almost the same in the two group ex-
periments. Of course, the 4D vector sampled over the 
whole assimilation time window (S time steps) can suf-
ficiently represent the spatio-temporal evolution of the 
forecast state, which makes the POD2-E4DAVR method 
outperform the POD1-E4DVAR to some extent (Figures 

4 and 5). More investigations are still needed to explore  
the impacts of the different sampling on the assimilation 
results. 

4  Summary  

We propose an ensemble-based explicit four-dimen- 
sional variational data assimilation method in this paper. 
Several numerical experiments performed with a simple 
one-dimensional soil water model show that the newly 
proposed method can perform better than the usual 
EnKF method not only on the assimilation precision but 
also on the computation cost, and it is also better than 
another explicit four-dimensional variational assimila-
tion method, especially when the forecast model is not 
perfect and the forecast error comes from both the noise  
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of the initial filed and the uncertainty of the forecast 
model, which shows that this new method has great po- 
tential in data assimilation. Several issues, such as the 
impacts of the sample size, the initial perturbation fields 
on this data assimilation method and its actual perform-

ance in real numerical forecast models, are under inves-
tigation. 

The three anonymous reviewers are greatly appreciated for their construc-
tive comments on this paper.
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