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Abstract 

 

This study examines the performance of coupling deterministic four-dimensional variational 

assimilation (4DVAR) with an ensemble Kalman filter (EnKF) to produce a superior hybrid 

approach for data assimilation. The coupled assimilation scheme (E4DVAR) benefits from using 

the state-dependent uncertainty provided by EnKF while taking advantage of 4DVAR in 

preventing filter divergence. The 4DVAR analysis produces posterior maximum likelihood 

solutions through minimization of a cost function about which the ensemble perturbations are 

transformed, and the resulting ensemble analysis can be propagated forward both for the next 

assimilation cycle and as a basis for ensemble forecasting. The feasibility and effectiveness of 

this coupled approach are demonstrated in an idealized model with simulated observations. It is 

found that the E4DVAR is capable of outperforming both 4DVAR and the EnKF under both 

perfect- and imperfect-model scenarios. The performance of the coupled scheme is also less 

sensitive to either the ensemble size or the assimilation window length than that for standard 

EnKF or 4DVAR implementations. 
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1 Introduction 

Data assimilation is the blending of two independent estimates of the state of a system, 

typically in the form of observational information and a short-term model forecast, in a manner 

consistent with their respective uncertainties (Talagrand 1997). Ensemble Kalman filters (EnKF; 

Evensen 1994) and four-dimensional variational assimilation (4DVAR; Courtier et al. 1994) are 

two of the most advanced and state-of-the-art data assimilation techniques. The 4DVAR 

produces posterior maximum likelihood analysis through minimization of a cost function while 

the EnKF seeks an analysis that minimizes the posterior variance or analysis uncertainties 

(Kalnay 2001). The potential of the EnKF for numerical weather prediction models in 

comparison with 4DVAR can be seen in Lorenc (2003), which also discussed approaches of 

combining the two techniques. More recently, Caya et al. (2005) directly compared these two 

approaches for storm-scale data assimilation, and clearly demonstrated the strengths and 

weaknesses of each technique. In a perfect-model setting, they found that 4DVAR were able to 

generate good, dynamically consistent analyses almost immediately, likely due to its temporal 

smoothness constraint.  It took longer for the EnKF to spin up, but ultimately the state-dependent 

uncertainty information utilized by the EnKF enabled it to outperform 4DVAR (in terms of root-

mean square error or RMSE), which used very simplistic first guess information. The current 

study seeks to advance the state-of-the-science in data assimilation by coupling 4DVAR with 

EnKF aiming at maximally exploiting the strengths of the two forms of data assimilation, while 

simultaneously offsetting their respective weaknesses. Past studies have noted the benefits of 

including flow-dependent background error covariance in 4DVAR (Rabier et al. 1998, Navon et 

al. 2005) and limitations of using rather uninformative, static background uncertainty (Zou  etal. 
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1997; Sun and Crook 1997). A hybrid form of the ensemble-based methods using three-

dimensional variational data assimilation (3DVAR) has been previously used in Hamill and 

Snyder (2000) and more recently Wang et al. (2007). To a broader extent, the Houtekamer et al. 

(2001) concept of additively combining ensemble-based covariance estimates with those from a 

3DVAR background error covariance can be regarded as a special form of a hybrid approach.  

The current work can be viewed as an extension to previously published hybrid methods. 

2 EnKF, 4DVAR and E4DVAR 

2.1 EnKF 

The EnKF approximates the extended Kalman filter though Monte-Carlo sampling using 

ensembles to define the uncertainty information associated with the prior state estimate.  Define 

f n
x to be the prior minimum error variance estimate of the state, and 

f
P to be the covariance 

matrix that defines the uncertainty associated with the prior.  An estimate of 
f

P is obtained by 

considering k ensemble members,
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.  Given this prior information, and 

assuming observations, y , and their error covariance, R , are available, the posterior minimum 

error variance estimate of the state (the analysis) 
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where H  is is an observation operator that maps from model space to observation space. Also, 

the expected posterior uncertainty is given by  
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 There are several variations to the original ensemble Kalman filter (EnKF) first proposed 

Evensen (1994) and later in Houtekamer and Mitchell (1998) including the use of the ensemble 

square root filter (EnSRF, Whitaker and Hamill 2002; Snyder and Zhang 2003), the ensemble 

adjustment filter (EAF, Anderson, 2001), and the ensemble transform Kalman filter (ETKF, 

Bishop et al 2001).  In this work the EnSRF-version of the EnKF is used. 

 

2.2 4DVAR  

Data assimilation via 4DVAR seeks posterior maximum likelihood analysis through the 

minimization of a cost function containing observations that are distributed in time and a 

background estimate.  The traditional 4DVAR cost function can be written as 
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where 
b

x is the first guess at the system state (the equivalent of 
f

x in the ensemble filter 

discussion above), B  is the background error covariance defining the uncertainty associated with 

the first guess (the equivalent of 
f

P in the ensemble filter discussion above), 
  
y

t
is an observation 

at time t, 
  
H

t
 and 

  
R

t
 are the associated observation operator and error covariance, and the 

  
x

t
 are 

the model estimates of the system state through the assimilation window.  Data assimilation 

proceeds by adjusting the initial condition 
0

x  to 
0

optimal
x , so that when 

  
x

t

optimal  propagates forward 

in time it gets as close as possible to the observations 
  
y

t
 in assimilation window N, conditional 

upon 
0

optimal
x  not getting too far from the first guess value, 

b
x .  Here “close” and “too far” are 

defined by the background and observation covariance matrices, B  and 
  
R

t
.  
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 As with the ensemble-based filters, there are numerous approaches to estimating the 

minimum of the cost function in equation 4.  In this work we employ a limited-memory quasi-

Newton method (L-BFGS) (Liu and Nocedal 1989) for the minimization in all 4DVAR  

approaches. The L-BFGS method is found to have superb performance in nonlinear 

minimization problems and has relatively low computing cost and low storage requirement. 

  

2.3 E4DVAR: coupling the EnKF and 4DVAR 

  Conceptually, the coupled approach, hereafter termed as “E4DVAR”, aims to link the 

distributed in time, maximum likelihood approach of 4DVAR and sequential in time, minimum 

variance approach of the EnKF. However, while the ensemble-based filters benefit from their use 

of state-dependent uncertainty information and from the explicit and consistent production of 

analysis ensembles for forecasting, limited ensemble sizes, along with nonlinearity and error in 

the forecast model, would render the sample covariances rank deficient and inaccurate, which 

would result in bad ensemble analyses and filter divergence.  Rather ad hoc fixes such as 

localization (Gaspari and Cohn, 1999) are applied to the covariance in order to increase the rank 

of the prior covariance.  The 4DVAR analysis, on the other hand, benefits from the temporal 

smoothness constraint of finding a model trajectory that gets as close as possible to a trajectory 

of observations distributed in time, enabling it to overcome static background error covariance 

information.  In addition to the limitations of the static background error covariance, it is often 

difficult to derive the posterior analysis uncertainty that is essential to generate internally 

consistent ensemble perturbations.  The proposed E4DVAR data assimilation scheme uses the 

respective strengths of the two constituent schemes to off-set the weaknesses of each: the state-

dependent uncertainty information and ensemble construction capability of the ensemble-based 
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filter compensates for the inherent weaknesses of 4DVAR, while the ability of 4DVAR to 

overcome inaccuracies in the background error covariance compensates for an inherent weakness 

of the ensemble-based filter.  Under an assumption of linearity there is no inconsistency between 

the maximum likelihood solution of 4DVAR and the minimum error variance solution of the 

EnKF.  Nonlinearity in the forecast model and observation operators will render the linearity 

assumption invalid, but no ill effect due to the mis-match between maximum likelihood and 

minimum error variance  solutions were observed in this work. 

 There are many possible implementations of E4DVAR but for the purpose of clarity we 

choose to concentrate on a representative formulation.  The mechanics of this representative 

scheme couples 4DVAR with an EnKF where the state and perturbation updates have been 

separated. An illustration of the E4DVAR coupling procedure used in the current study is 

depicted in the schematic flowchart of Fig. 1: a prior ensemble forecast produced by the EnKF 

that is valid at time t is used to estimate 
f

P for the subsequent 4DVAR assimilation cycle 

(t=j,j+1) while the 4DVAR analysis from the previous assimilation cycle (t=j-1,j) is used to 

replace the EnKF analysis mean for subsequent ensemble forecast. More generally, if there are 

observations between t=(j, j+1), the standard EnKF will be used to assimilate those observations 

(that will be within the dotted box of labeled with “Ensemble forecast” in Fig. 1). An alternative 

stronger coupling is to replace the posterior ensemble mean with the 4DVAR trajectory after 

each EnKF analysis.  

3 Experimental design 

 This proof-of-concept study will be carried out using the model of Lorenz (1996): 

 
2 1 1 1

, 1,i

i i i i i

dx
x x x x x F i n

dt
+

= + + = , (5) 
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with cyclic boundary conditions.  Although not derived from any known fluids equations, the 

dynamics of equation 5 are “atmosphere-like” in that they consist of nonlinear advection-like 

terms, a damping term, and an external forcing; they can be thought of as some atmospheric 

quantity distributed on a latitude circle.  One can choose any dimension, n, greater than 4 and 

obtain chaotic behavior for suitable values of F.  The base-line configuration 

was  n = 80 and 8F = , which is computationally stable with a time step of 0.05 units, or 6 h in 

equivalent. 

 The performance of two coupled approaches of E4DVAR is examined in comparison to the 

standard non-coupled methods (EnKF and 4DVAR). E4DVAR1 completely replaces the static 

  
B

s
 in standard 4DVAR with ensemble-estimated flow-dependent background error covariance 

while E4DVAR2 mixes the static 
  
B

s
 and the ensemble-estimated   P

f
 (Hamill and Snyder 2000) 

through 

    
   
B = P

f
+ (1 )B

s
             (6) 

where the mixing coefficient is the weight given to the ensemble covariance estimate (only 

=0.5 is tested). E4DVAR2 is same as the standard 4DVAR (E4DVAR1) for =0 ( =1). 

 Ensemble sizes ranging between   k = 10  and   k = 500  were considered in the experiments 

utilizing ensemble techniques but most results were shown for   k = 40  and   k = 10 .  The default 

number of observations is   m = 20 (equally spaced at every observation time;  of the state 

dimension). Observations were taken every 2 steps, or 12 h (as for standard soundings), and 

specified observational error of 0.2 that is approximately 3% the radius of the attractor. For 

4DVAR, we considered the assimilation window length of both  N = 4  (standard 24-h daily 

assimilation cycle) and   N = 20  (near optimum window of 60h for this dynamic system studied). 
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The standard 4DVAR uses a diagonal background error covariance whose values (all equal to 

0.04) were determined through the statistics of a long EnKF integration. 

 Covariance inflation for the ensembles is achieved through the covariance relaxation method 

of Zhang et al. (2004)  

   
   
(x

i

' )new
= (x

i

' ) f
+ (1 )(x

i

' )a      (7) 

where  is the relaxation coefficient and 
   
(x

i

' )new  is final perturbation of the analysis ensemble 

used for the next forecast cycle. The covariance localization based on Gaspari and Cohn (1999) 

will be used for all ensemble-based experiments. Other methods of boosting and covariance 

localization radius were also assessed but did not yield better performance (not shown). All 

experiments were carried out over 10 years, and assessment took place through comparison of 

ensemble mean analysis errors in the full model space.  

4 Results 

4.1 Perfect-model experiments 

Figure 2 compares the performance of the coupled approach (two E4DVAR 

implementations with =0 and 0.5, respectively) with the standard EnKF and 4DVAR under the 

perfect-model assumption (F=8 for all truth, forecast and assimilation runs) and for the 

assimilation window length 20 and an ensemble size of 40 and 10, respectively. A radius of 

influence of 8 and a relaxation coefficient of  = 0.5 are used for all ensemble experiments. It is 

clear from Figure 2 that, without model error and given typical ensemble size (  k = 40 ), all 

methods will give satisfactory performance in terms of overall RMS error, in which all methods 

with ensemble-based flow-dependent background error covariances are slightly better than 

standard 4DVAR with static B (Fig. 2a). Remarkably, with a reduced ensemble size of   k = 10 , 
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degradation in the performance of the coupled approaches is rather insignificant while the 

standard EnKF fails quickly because of filter divergence (Fig. 2b).  

However, an acceptable performance of the standard EnKF with   k = 10 may still be 

achieved with a smaller radius of influence (R=4) and relaxation the error covariance more to the 

prior  = 0.7 . Some small improvement can also be achieved for other ensemble-based 

experiments through using different localization radius, relaxation and mixing coefficients 

(Table 1 & 2). Noticeably, when a large ensemble size is used, the ensemble methods will 

benefit more from using a larger radius of influence, smaller relaxation coefficient and a larger 

mixing coefficient, which is consistent with a smaller sampling error in the ensemble-based 

covariance estimate. Tuning the static B through varying the covariance magnitude does not 

yield improvement for the standard 4DVAR but it is very sensitive to the assimilation window 

length. Significant degradation in 4DVAR performance is observed if a standard 24-h (shorter) 

assimilation window is used (Table 2), partly due to frequent encountering of local minima in its 

minimization (not shown), much more than those in Fig. 2 (e.g., a RMSE spike during year 3-4). 

Also, the advantage of the coupled approach may be more (less) pronounced if less (more) 

observations are assimilated (not shown).  

 

4.2 Experiments with moderate model error 

In these experiments, the forecast model in all assimilation methods used a different 

(incorrectly-specified) forcing coefficient (F=8.5) from that used in the truth simulation (F=8.0). 

The truth run is used for verification and for generating observations. The ensemble-mean 

derivation (with model error, F=8.5) from the perfect-model ensembles (F=8.0) over 24 h 

(starting from the same initial perturbations every 24h and averaged over 10 years) is 
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approximately 20% and 30% of the forecast ensemble spread of 40 and 10 members, 

respectively. 

Figure 3 shows the performance of the EnKF, 4DVAR and the coupled approaches with an 

imperfect forecast model (F=8.5) for different ensemble sizes. The experiment configurations are 

exactly the same as those for the perfect model (Fig. 2) except that a radius of influence of 4 (vs. 

8) and a relaxation coefficient of  = 0.6 (vs. 0.5) are used for all associated experiments. The 

use of a smaller radius of influence and larger relaxation coefficient are a direct consequence of 

degradation of the ensemble-based error covariance estimate in the presence of model error. 

With moderate model error and an ensemble size of   k = 40 , all methods will still give 

satisfactory performance (values below 1.0 or 20-25% of the climatological uncertainty), though 

each of them will have significantly larger overall RMS error than the corresponding perfect-

model experiments (Fig. 3 vs. Fig. 2; Table 1 & 2).  Noticeably, in the presence of moderate 

model error, the standard 4DVAR performs significantly better than EnKF for an assimilation 

window of 60 h (N=10) (Fig. 3, Table 1) and the advantage of using the standard EnKF over the 

standard 4DVAR become much smaller for an assimilation window of 24 h (N=4) (Table 2), 

both of which are inferior to the two coupled approaches. Even with an ensemble size of 10, both 

coupled approaches can perform considerably better than 4DVAR, but in this case, significantly 

better performance is achieved through mixing the flow-dependent and static error covariance, 

which reduced both the appropriate and inappropriate correlations and prevented the 

underestimation of background error variance (Table 1 & 2).  

With an ensemble size of 10, the EnKF may barely function without filter divergence 

(though performs poorly) with an even smaller radius of influence (R=3) and a stronger 

relaxation of the error covariance to the prior with a mixing coefficient of  = 0.7 (Table 1). 
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Again, some small improvement can also be achieved for other ensemble-based experiments 

through using different localization radius, relaxation and mixing coefficients (Table 2). These 

additional sensitivity experiments demonstrate that, when an imperfect model is used, the 

ensemble methods will benefit more from using a smaller radius of influence, a larger relaxation 

coefficient and a smaller mixing coefficient, which is consistent with the degradation of the 

quality of the ensemble-based error covariance estimate (Hansen 2002; Meng and Zhang 2007; ).  

 

4.3 Experiments with severe model error 

In these experiments, the forecast model in all assimilation methods used a different 

(incorrectly-specified) forcing coefficient (F=9.0) from that used in the truth simulation (F=8.0). 

The ensemble-mean deviation (with model error, F=9.0) from the perfect-model ensembles 

(F=8.0) over 24 h (starting from the same initial perturbations every 24h and averaged over 10 

years) is approximately 35% and 50% of the forecast ensemble spread of 40 and 10 members, 

respectively.  

Figure 4 shows the performance of data assimilation methods will suffer greatly if the 

forecast model is fundamentally flawed. In this case, the standard 4DVAR will have an 

unacceptable overall RMSE of 1.12 for an assimilation window of 60 h or N=10 and an 

unacceptable overall RMS error of 1.52 for a shorter assimilation window of 24 h while the 

standard EnKF with radius of influence (R=4) will not converge at all. However, an acceptable 

performance can still be achieved with the coupled approaches, especially through mixing the 

flow-dependent and static error covariance, even with an ensemble size of 10 (Fig. 4). With such 

severe model error, stronger sensitivity is found for the ensemble methods and thus more delicate 

tuning is necessary (Table 1 & 2). 
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 Results from these imperfect-model experiments imply that, while model error imposes 

strong limitation on all data assimilation approached, the use of temporal smoothness constraint 

with distributed in time observations in 4DVAR makes it less vulnerable to model errors than 

EnKF (Vukicevic and Posselt 2007).  

5 Concluding remarks 

We have found the coupled data assimilation approach (E4DVAR) to be effective in the 

context of an idealized model; the coupled approach is able to produce analyses that are superior 

to those produced either by the standard EnKF or 4DVAR under both perfect and imperfect 

model scenarios. Extensive sensitivity studies using the idealized model have helped to elucidate 

when and why the coupled approaches are effective.  In this context, 4DVAR’s primary strength 

is the use of temporal smoothness constraints to overcome inaccurate background covariance, 

but its primary weaknesses are the poor initial uncertainty estimates and the lack of posterior 

analysis uncertainty.  The primary strengths of the EnKF is the use of ensembles to provide a 

state-dependent estimate of first guess uncertainty and the cycling of posterior analysis 

uncertainty.  Its primary weakness is an extreme sensitivity to the quality of the state-dependent 

estimate of uncertainty.  The coupled schemes use the respective strengths of the two constituent 

schemes to off-set the weaknesses of each: the state-dependent uncertainty information and 

ensemble construction capability of the ensemble filter addresses the inherent weaknesses of 

4DVAR, while the ability of 4DVAR to overcome inaccuracies in the background error 

covariance addresses an inherent weakness of the ensemble-based filter. 

 One should never expect individual proof-of-concept results from simplified models to have 

any relevance for more complex models.  However, one should also not expect that issues 

elucidated in the context of a simplified model to simply disappear when more complex models 
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are considered.  We therefore anticipate that the proposed coupled approach to data assimilation 

will be fruitful for models of “real” systems in some regions of parameter space (assimilation 

window length, observation distribution, observation frequency, observation error level, 

ensemble size); we can not know a priori if those regions will correspond to the area of 

parameter space defined by current operational constraints and we can not know a priori if the 

improvement will balance the increase in computational cost. For the current study, the 

computational cost of the coupled approach is slightly higher than the sum of the standard EnKF 

and 4Dvar, partly due to the trivial inexpensive inversion of a simple diagonal B matrix for the 

standard 4Dvar. We envision in real-data atmospheric applications, the difference of 

computational cost between E4DVAR and the two standard approaches (4DVAR and EnKF) 

will be much reduced since the coupled approach allows the use of a smaller ensemble size while 

the use of flow-dependent B may reduce the number of minimization iterations. 

 

Acknowledgments: This research is sponsored by the NSF grant ATM0205599 and by the 
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List of Tables  

Table 1: The 10-year-avearged root-mean square analysis error and the associated default or 

tuned parameter values used in different data assimilation experiments for an assimilation 

window of 60 h (N=10) where R is the covariance localization radius,  is the covariance 

relaxation coefficient as in eq.7 and  is the mixing coefficient as in eq. 6. “NA” stands for not 

applicable and “failed” means no converged final analysis by that particular scheme. 
 

Ensemble size m = 40, 

default parameter setup 

Ensemble size m = 40, 

tuned parameter setup 

Ensemble size m = 10, 

default parameter setup 

Ensemble size m = 10, 

tuned parameter setup 
 

analysis 

error 

default 

R, ,  

analysis  

error 

tuned 

R, ,  

analysis 

error  

default 

R, ,  

analysis  

error 

tuned 

R, ,   

4DVAR 0.19 NA 0.19 NA 0.19 NA 0.19 NA 

EnKF 0.14 8, 0.5, NA 0.12 12, 0.3, NA Failed 8, 0.5, NA 0.84 4, 0.7, NA 

E4DVAR1 0.13 8, 0.5, 1.0 

 

0.11 12, 0.3, 1.0 

 

0.13 8, 0.5, 1.0 

 

0.13 8, 0.5, 1.0 

 

Perfect 

model 

F = 8.0 

E4DVAR2 0.17 8, 0.5, 0.5 

 

0.11 12, 0.3, 1.0 

 

0.16 8, 0.5, 0.5 

 

0.13 8, 0.5, 1.0 

 
4DVAR 0.45 NA 0.45 NA 0.45 NA 0.45 NA 

EnKF     0.68 4, 0.6, NA 

 

    0.64 3, 0.6, NA 

 

Failed 4, 0.6, NA 

 

   1.48 3, 0.7, NA 

 E4DVAR1 0.40 4, 0.6, 1.0 

 

0.38 3, 0.6, 1.0 

 

0.45 4, 0.6, 1.0 

 

0.38 4, 0.7, 1.0 

 

Moderate 

model 

error 

F = 8.5 

E4DVAR2 0.36 4, 0.6, 0.5 0.35 3, 0.6, 0.4 0.40 4, 0.6, 0.5 0.36 4, 0.7, 0.3 

4DVAR 1.12 NA 1.12 NA 1.12 NA 1.12 NA 

EnKF     Failed 4, 0.6, NA 

 

    1.24 3, 0.6, NA 

 

Failed 4, 0.6, NA 

 

   1.76 2, 0.6, NA 

 E4DVAR1 0.81 4, 0.6, 1.0 

 

0.70 3, 0.6, 1.0 

 

1.10 4, 0.6, 1.0 

 

0.70 3, 0.7, 1.0 

 

Severe 

model 

error 

F = 9.0 

E4DVAR2 0.80 4, 0.6, 0.5 0.66 3, 0.6, 0.4 

 

0.88 4, 0.6, 0.5 0.68 4, 0.7, 0.3 
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Table 2: As in Table 1 but for an assimilation window of 24 h (N=4) 
 

Ensemble size m = 40, 

default parameter setup 

Ensemble size m = 40, 

tuned parameter setup 

Ensemble size m = 10, 

default parameter setup 

Ensemble size m = 10, 

tuned parameter setup 
 

analysis 

error 

default 

R, ,  

analysis  

error 

tuned 

R, ,  

analysis 

error  

default 

R, ,  

analysis  

error 

tuned 

R, ,   

4DVAR 0.39 NA 0.39 NA 0.39 NA 0.39 NA 

 EnKF 0.14 8, 0.5, NA 0.12 12, 0.3, N Failed 8, 0.5, NA 0.84 4, 0.7, NA 

E4DVAR1 0.14 8, 0.5, 1.0 

 

0.12 12, 0.3, 0.8 

 

0.14 8, 0.5, 1.0 

 

0.14 8, 0.5, 1.0 

Perfect 

model 

F = 8.0 

E4DVAR2 0.18 8, 0.5, 0.5 

 

0.15 12, 0.3, 0.8 

 

0.18 8, 0.5, 0.5 

 

0.16 8, 0.5, 0.8 

4DVAR 0.77 NA 0.77 NA 0.77 NA 0.77 NA 

EnKF 0.68 4, 0.6, NA 

 

0.64 3, 0.6, NA 

 

Failed 4, 0.6, NA 

 

1.48 3, 0.7, NA 

E4DVAR1 0.46 4, 0.6, 1.0 

 

0.46 4, 0.6, 1.0 

 

0.60 4, 0.6, 1.0 

 

0.52 3, 0.5, 1.0 

Moderate 

model 

error 

F = 8.5 

E4DVAR2 0.42 4, 0.6, 0.5 0.41 3, 0.5, 0.4 0.44 4, 0.6, 0.5 0.42 4, 0.6, 0.3 

4DVAR 1.52 NA 1.52 NA 1.52 NA 1.52 NA 

EnKF Failed 4, 0.6, NA 

 

1.23 3, 0.6, NA 

 

Failed 4, 0.6, NA 

 

1.74 2, 0.6, NA 

E4DVAR1 1.00 4, 0.6, 1.0 

 

1.00 4, 0.6, 1.0 

 

1.41 4, 0.6, 1.0 

 

1.39 4, 0.7, 1.0 

Severe 

model 

error 

F = 9.0 

E4DVAR2 0.86 4, 0.6, 0.5 0.86 4, 0.6, 0.5 1.09 4, 0.6, 0.5 1.01 4, 0.6, 0.3 
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List of Figures 

 
 

Figure 1: Schematics of the coupling between EnKF and 4DVAR that constitutes the E4DVAR 

used in this work. 
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Figure 2: Time evolution of the monthly averaged root-mean square (rms) error for different data 

assimilation experiments with default parameter setups listed in table 1 for an assimilation 

window of 60 h (N=10) and am ensemble size m=40 (top) and m=10 (bottom) with a perfect 

forecast model (F=8.0). Some experiments may fail to converge to a solution and thus will 

not be plotted. 
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Figure 3: As in Figure 2 except for with moderate model error (F=8.5). 
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Figure 4: As in Figure 2 except for with severe model error (F=9.0). 

 


