
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/,

Ozone Data Assimilation with GEOS-Chem: a
Comparison Between 3D-Var, 4D-Var, and Suboptimal
Kalman Filter Approaches
K. Singh1, A. Sandu1, K. W. Bowman2, M. Parrington3, D. B. A. Jones4, and

M. Lee2

Corresponding author: A. Sandu, Computational Science Laboratory, Department of Com-

puter Science, Virginia Polytechnic Institute and State University, 2202 Kraft Drive, Blacks-

burg, VA 24060, USA. E-mail: sandu@cs.vt.edu. Tel: 540-231-2193. Fax: 540-231-9218.

1Computational Science Laboratory,

Department of Computer Science, Virginia

Polytechnic Institute and State University,

2202 Kraft Drive, Blacksburg, VA 24060,

USA

2Jet Propulsion Laboratory, 4800 Oak

Grove Drive, Pasadena, CA 91109, USA

3School of GeoSciences, University of

Edinburgh, Edinburgh, UK

4Department of Physics, University of

Toronto, ON M5S 1A7, Canada

D R A F T March 10, 2013, 12:42pm D R A F T



X - 2 K. SINGH ET AL.: COMPARISON OF CHEMICAL DATA ASSIMILATION SCHEMES

Abstract. Chemistry transport models determine the evolving chem-

ical state of the atmosphere by solving fundamental equations that gov-

ern physical and chemical transformations subject to initial conditions

of the atmospheric state and surface boundary conditions, e.g., surface

emissions. The development of data assimilation techniques synthesize

model predictions with measurements in a rigorous mathematical frame-

work that provides observational constraints on these conditions.

Two families of data assimilation methods are currently widely used:

variational and Kalman filter (KF). The variational approach is based on

control theory and formulates data assimilation as a minimization prob-

lem of a cost functional that measures the model-observations mismatch.

The Kalman filter approach is rooted in statistical estimation theory and

provides analysis covariance together with the best state estimate. Sub-

optimal Kalman filters employ different approximations of the covariances

in order to make computations feasible with large models. Each family

of methods have both merits and drawbacks.

This paper compares several data assimilation methods used for global

chemical data assimilation. Specifically, we evaluate data assimilation ap-

proaches for improving estimates of the summertime global tropospheric

ozone distribution in August 2006 based on ozone observations from the

NASA Tropospheric Emission Spectrometer and the GEOS-Chem chem-

istry transport model. The resulting analyses are compared against in-

dependent ozonesonde measurements to assess the effectiveness of each
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assimilation method. All assimilation methods provide notable improve-

ments over the free model simulations, which differ from ozonesonde mea-

surements by about 20% (below 200 hPa). Four dimensional variational

data assimilation with window lengths between five days and two weeks

is the most accurate method, with mean differences between analysis pro-

files and ozonesonde measurements of 1-5%. Two sequential assimila-

tion approaches (three dimensional variational and suboptimal KF), al-

though derived from different theoretical considerations, provide sim-

ilar ozone estimates, with relative differences of 5-10% between the anal-

yses and ozonesonde measurements.

Adjoint sensitivity analysis techniques are used to explore the role of

uncertainties in ozone precursors and their emissions on the distribution

of tropospheric ozone. A novel technique is introduced that projects 3D-

Variational increments back to an equivalent initial condition, which fa-

cilitates comparison with 4D variational techniques
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1. Introduction

Understanding the distribution of tropospheric ozone is one of the principal scien-

tific challenges in global atmospheric chemistry, e.g., Jacob [1999]. Ozone is an inte-

gral constituent of the troposphere that plays a significant role in determining chemi-

cal and radiative state of the atmosphere. Ozone in stratosphere absorbs UV radiation,

which is harmful to human health. In upper troposphere, ozone is a greenhouse gas

through absorption of upwelling long wave radiation. In the mid-troposphere, ozone

is a precursor to OH radicals which moderate pollution levels. At the surface, ozone

is a pollutant causing respiratory problems and affecting crop yields.

Numerous studies have attempted to quantify the distribution of tropospheric

ozone through chemical transport models. Findings from these studies vary signifi-

cantly due to the strong variability in ozone lifetimes and uncertainties in determining

the amount of ozone lost through dry deposition, entered through upper troposphere-

stratosphere exchanges, or evolved due to chemical reactions of trace gas and emission

precursors. Ozone lifetime varies from a few minutes at the surface, to a few days in

the lower troposphere, to months in the upper troposphere. In such situations, it is

important to validate the accuracy of model predictions against observed state of the

atmosphere. Studies of variations in tropospheric ozone have been conducted through

ozonesonde measurements, surface measurements [Logan, 1994, 1999; Tarasick et al.,

2005; Oltmans et al., 2006], and satellite observations [Munro et al., 1998; Tellmann et

al., 2004].
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Chemical data assimilation is a process of optimally combining imperfect obser-

vations with imperfect model simulations to produce a better estimate of the chem-

ical state of the atmosphere and its boundary conditions [Carmichael et al., 2008].

Considerable experience with data assimilation has been accumulated in the field of

numerical weather prediction [Daley, 1991; Courtier et al., 1998; Rabier et al., 2000;

Kalnay, 2002; Navon, 2009; Lahoz and Errera, 2010]. In this work, we focus on at-

mospheric constituent data assimilation. Chemical data assimilation poses specific

challenges related to the multiphysics nature of the system, the stiffness of chemical

kinetic equations, the sparseness of chemical observations, and the uncertainty in the

levels of anthropogenic and natural pollutants emitted into the atmosphere. Through-

out this paper we will refer to model results as model predictions or model forecasts

even when a past period is simulated.

Previous studies have employed various approaches to assimilating observations

of trace gases for improved tropospheric chemistry representations. Data assimila-

tion has been used to improve initial conditions, boundary values (emissions), and

has resulted in improved air quality forecasts. Early work in chemical data assimila-

tion using variational techniques has been reported in Fisher and Lary [1995]; Elbern

et al. [1997]; Khattatov et al. [1999]; Errera and Fonteyn [2001]; Elbern and Schmidt

[2001]. Since then there is a growing body of literature with applications of 3D-Var

and 4D-Var chemical data assimilations. The base concepts of variational approach to

chemical data assimilation, and the construction of adjoint chemical transport mod-

els are discussed in detail in Sandu et al. [2005a]; Hakami et al. [2007]; Henze et al.

[2007]; Carmichael et al. [2008]. 3D-Var was first used by Derber et al. [1991]; Parrish
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and Derber [1992] and later applied by most of the meteorological centers [Courtier

et al., 1998; Cohn et al., 1998; Gauthier et al., 1999a]. A study on ozone improve-

ment using 3D-Var assimilation is presented in Bei et al. [2008]. Adjustment of gas

phase chemical tracer initial conditions has been studied in Chai et al. [2007]; Sandu

et al. [2005b]; Tang et al. [2004]; Zhang et al. [2008]. Adjustment of pollutant emis-

sions through 4D-Var chemical data assimilation has been discussed in Chai et al.

[2009]. Data assimilation studies involving particle measurements to improve aerosol

fields have been discussed in Hakami et al. [2005]; Sandu et al. [2005b]; Henze et al.

[2004, 2009]. Suboptimal Kalman filters have been employed successfully for chemical

data assimilation [Khattatov et al., 2000; Menard et al., 2000; Lamarque et al., 2002;

Liao et al., 2006; Segers et al., 2005; Clark et al., 2006; Pierce et al., 2007; Parrington et

al., 2009]. The use of the ensemble Kalman filter (EnKF) [Evensen, 1994] in chemical

data assimilation has been studied in Constantinescu et al. [2007a, b, c].

Different approaches to data assimilation are rooted in different theories (control,

statistical estimation), have different implementations and computational costs, and

yield different performances on large scale problems of practical interest. A discus-

sion on relationship between optimality of variational data assimilation and Kalman

filter is presented in Li and Navon [2001]. Houtekamer [2005] compared the quality

of background statistics in 3D-Var and EnKF using radiance observations from satel-

lite, while, Laroche et al. [2005] compared the characteristics of 3D-Var and 4D-Var

introduced in the operational suite of the Canadian Meteorological Center (CMC).

Constantinescu et al. [2007c] and Wu et al. [2008] compare the performances of EnKF

with 4D-Var for chemical transport models on a regional scale using ground-level
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ozone measurements, while, Geer et al. [2006] provide an intercomparison of strato-

spheric ozone estimates obtained through 3D-Var, 4D-Var, and Kalman filter assimila-

tion systems for both chemical transport and global circulation models as part of the

Assimilation of ENVISAT Data (ASSET) project. The comparison between techniques

in Wu et al. [2008] is done in the context of regional assimilation and using surface

network data.

The Tropospheric Emission Spectrometer (TES) [Beer et al., 2001] is the first dedi-

cated infrared instrument from which information of the global and vertical distribu-

tion of tropospheric ozone can be retrieved. Parrington et al. [2009] reported assim-

ilation of vertical profiles of ozone from TES into the GEOS-Chem using suboptimal

Kalman filter while Pierce et al. [2009] used TES and OMI in conjunction with a sim-

ple univariate filtering approach to investigate the impact of distant sources on air

quality in Dallas and Houston. We have developed 3D-Var and 4D-Var data assim-

ilation capabilities for GEOS-Chem v7. The goal of this paper is to provide the first

direct comparison of global tropospheric ozone distribution estimated through 3D-

Var, 4D-Var and suboptimal KF assimilation systems showcasing the potential of TES

profile retrievals. The assessment of analyses generated through different assimilation

systems is on the similar lines of Geer et al. [2006]; Parrington et al. [2009].

This paper is structured as follows: Section 2 provides the mathematical overview of

how observations are integrated into the model in different data assimilation systems.

Section 5.2 discusses characteristics of background error covariance matrices used in

this study. Section 3 provides a brief overview of the global chemical transport model

(GEOS-Chem) and its adjoint development. A description of the TES instrument,
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its observation operator and profile retrieval formulation is provided in Section 4.

Section 6 details the experimental settings, computational costs and assessment of

tropospheric ozone estimates through different assimilation systems. Summary and

points of future work are discussed in Section 7.

2. Chemical data assimilation

Variational methods solve the data assimilation problem in an optimal control

framework [Sasaki, 1958; Le Dimet and Talagrand, 1986; Courtier and Talagrand, 1987;

Lions, 1971]. Specifically, they attempt to find the control variable values (e.g., initial

conditions) that minimize the discrepancy between the model forecast and observa-

tions subject to the governing dynamic equations, taking into account the error covari-

ances of the forecast and the observations. In contrast, statistical estimation methods

(generically known as Kalman filters/smoothers) solve the data assimilation problem

in a Bayesian framework by combining probability densities of errors from different

sources [Khattatov et al., 2000; Menard et al., 2000; Lamarque et al., 2002; Segers et

al., 2005; Clark et al., 2006; Pierce et al., 2007; Parrington et al., 2009; Constantinescu

et al., 2007b, c]. In the following discussion, for simplicity of presentation, we focus

on discrete models (in time and space) where the initial conditions are the control

variables.

Data assimilation provides best estimates of the state of the atmosphere by combin-

ing the following three sources of information.

1. The apriori, or background state xb represents the best estimate of the true state

xt available before any measurements are taken. This estimate is assumed unbiased,

and the random background (estimation) errors εb are typically assumed to have a
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normal probability density with a background error covariance matrix B

εb = xb − xt ∈ N (0, B) . (1)

2. The model encapsulates our knowledge about physical and chemical laws that

govern the evolution of the system. The model evolves an initial state x0 ∈ Rn at the

initial time t0 to future state values xi ∈ Rn at future times ti,

xi =Mt0→ti (x0) . (2)

The size of the state space in realistic chemical transport models is very large. For

example, a GEOS-Chem simulation at the 2◦ × 2.5◦ horizontal resolution has n ∈

O
(
108) variables.

3. Observations yi ∈ Rm of the state are taken at times ti, 1 = 1, · · · , N

yi = H (xi) + εobs
i . (3)

The observation operator H maps the model state vector onto the observation space.

In many practical situations H is a highly nonlinear mapping , e.g., satellite radiance

operators.

The observations are characterized by measurement and representativeness errors

εobs
i . The observation errors at each time are assumed to be independent of back-

ground errors, and independent of the observation errors at other times. They are

typically assumed to have a normal distribution with mean zero and covariance Ri,

εobs
i ∈ N (0, Ri) . (4)

Based on these three sources of information data assimilation computes the poste-

rior estimate xa of the true state; xa is called the “analysis” state.
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2.1. Three dimensional variational (3D-Var) data assimilation

In the 3D-Var data assimilation the observations (3) are considered successively at

times t1, · · · , tN. The background state (i.e., the best state estimate at time ti) is given

by the model forecast, starting from the previous analysis (i.e., best estimate at time

ti−1):

xb
i =Mti−1→ti

(
xa

i−1
)

.

The discrepancy between the model state xi and observations at time ti, together with

the departure of the state from the model forecast xb
i , are measured by the 3D-Var cost

function:

J (xi) =
1
2

(
xi − xb

i

)T
B−1

i

(
xi − xb

i

)
+

1
2
(H(xi)− yi)

T R−1
i (H(xi)− yi) (5)

The 3D-Var analysis is computed as the state which minimizes (5)

xa
i = arg minJ (xi) . (6)

Typically a gradient-based numerical optimization procedure is employed to solve (6).

The gradient ∇J of the cost function (5) is

∇J (xi) = B−1
i

(
xi − xb

i

)
+ HT

i R−1
i (H(xi)− yi) (7)

Note that the gradient requires to computation of the linearized observation operator

Hi = H′(xi) about the current state xi.

Preconditioning is often used to improve convergence of the numerical optimization

problem (6). A change of variables is performed by shifting the state and scaling it

with the square root of covariance:

x̂i = B1/2
i

(
xi − xb

i

)
, (8)
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and carrying out the optimization with the new variables x̂i.

2.2. Four dimensional variational (4D-Var) data assimilation

In strongly-constrained 4D-Var data assimilation all observations (3) at all times

t1, · · · , tN are simultaneously considered. The control parameters are the initial con-

ditions x0; they uniquely determine the state of the system at all future times via the

model equation (2).

The discrepancy between model predictions and observations at all future times

t1, · · · , tN, together with the departure of the initial state from the background state,

are measured by the 4D-Var cost function:

J (x0) =
1
2

(
x0 − xb

0

)T
B−1

0

(
x0 − xb

0

)
+

1
2

N

∑
i=1

(H(xi)− yi)
T R−1

i (H(xi)− yi) (9)

Note that the departure of the initial conditions from the background is weighted

by the inverse background covariance matrix, B−1, while the differences between the

model predictions H(xi) and observations yi are weighted by the inverse observation

error covariances, R−1
i .

The 4D-Var analysis is computed as the initial condition which minimizes (9) subject

to the model equation constraints (2)

xa
0 = arg minJ (x0) subject to(2). (10)

The model (2) propagates the optimal initial condition (9) forward in time to provide

the analysis at future times, xa
i =Mt0→ti (x

a
0).

The optimization problem (10) is solved numerically using a gradient-based tech-

nique. The gradient of (9) reads

∇J (x0) = B−1
0

(
x0 − xb

0

)
+

N

∑
i=1

(
∂xi

∂x0

)T
HT

i R−1
i (H(xi)− yi) (11)
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The 4D-Var gradient requires not only the linearized observation operator Hi, but

also the transposed derivative of future states with respect to the initial conditions.

The 4D-Var gradient can be obtained effectively by forcing the adjoint model with

observation increments, and running it backwards in time.

2.3. Suboptimal Kalman filter

The suboptimal Kalman filter is a sequential data assimilation approach [Khattatov

et al., 2000] in which corrections in the concentration state vector are performed as

soon as observations become available. Similar to 3D-Var, for every observation time

ti, this technique starts with the model forecast state (x f
i ) and provides an expected

analysis state (xa
i ) that reduces the discrepancy between the model forecast and the

observations yi. The analysis state vector is obtained as

xa
i = x f

i + Ki

(
yi −H

(
x f

i

))
(12)

where H is the observation operator defined in equation (3) and y the vector of ob-

servations at a given time. The Kalman gain matrix (K) is defined as

Ki = P f
i HT

(
Hi P f

i HT
i + Ri

)−1
(13)

where P f
i is the forecast error covariance matrix, Ri is the observation error covari-

ance matrix (4), and Hi = H′(x f
i ) is the linearized observation operator about the

forecast state. If a diagonal or block-diagonal approximation of the error covariance

matrix P f is used in equation (13), the analysis state generated through equation (12)

is suboptimal. A description of the structure of P f is provided in Section 5.2.
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At each observation time, along with the analysis state, the analysis error covariance

matrix Pa
i is also calculated as

Pa
i = (I−Ki Hi) P f

i (14)

where I is the identity matrix. There are multiple ways in which this analysis covari-

ance matrix is made available to the next observation window. A simple approach

is to keep the analysis covariance equal to the background covariance for the entire

assimilation period [Parrington et al., 2009]. Here we build diagonal approximations

to P f
i+1 by transporting variances (diagonal entries in Pa

i ) as passive tracers following

Menard et al. [2000].

3. GEOS-Chem

In this paper we specifically consider GEOS-Chem (http://geos-chem.org),

a global three-dimensional chemical transport model (CTM) driven by assimilated

meteorological fields from Goddard Earth Observing System(GEOS-4) at the NASA

Global Modeling and Assimilation Office (GMAO). It is being widely used by re-

search groups world-wide for performing global atmospheric chemistry studies. The

model along with comparison of model predictions with observations was first de-

scribed in Bey et al. [2001]. GEOS-Chem accounts in detail for emissions from both

natural and anthropogenic sources, for tropospheric chemistry, aerosol processes,

long range transport of pollutants, troposphere-stratosphere exchanges, etc. Anthro-

pogenic emissions are obtained from the Global Emissions Inventory Activity (GEIA)

[Benkovitz et al., 1996] while lightning NOx source emissions are estimated using

Price and Rind [1992], based on deep convective cloud top heights provided with the
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GMAO meteorological fields. Biomass burning emissions are based on Duncan et al.

[2003] while biofuel emissions are from Yevich and Logan [2003]. The meteorological

fields have a horizontal resolution of 1◦ along latitude and 1.25◦ along longitude with

55 vertical levels, and a temporal resolution of 6 hrs (3 hrs for surface fields). We

use GEOS-Chem v7-04-10. Subsequent model releases and references can be found at

http://geos-chem.org.

The GEOS-Chem Adjoint system (http://wiki.seas.harvard.edu/geos-chem/

index.php/GEOS-Chem_Adjoint) has been developed through a joint effort of

groups at Virginia Tech, University of Colorado, Caltech, Jet Propulsion Laboratory,

and Harvard [Henze et al., 2007; Singh et al., 2009a, b; Eller et al., 2009]. The sys-

tem can perform adjoint sensitivity analysis and 4D-Var chemical data assimilation.

Inverse modeling studies with GEOS-Chem-Adjoint are exemplified in Henze et al.

[2009]; Kopacz et al. [2007]; Zhang et al. [2009].

4. Tropospheric Emission Spectrometer (TES)

TES [Beer et al., 2001], one of four science instruments aboard NASA’s Aura satellite,

measures top-of-the-atmosphere high resolution spectrally-resolved longwave radi-

ation (http://tes.jpl.nasa.gov). Vertical profiles of chemical concentrations

are inferred from these radiance measurements using an off-line inversion process

[Bowman et al., 2006]. In this work we assimilate the retrieved ozone vertical profiles.

Figure 1 shows the location of TES profiles for two days. Only TES profiles between

60◦S- 60◦N are considered because lower poleward thermal contrast pose difficulty in

measurements leading to higher inaccuracies in the retrieved profiles.
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A-priori information about the vertical concentration profile of the species of interest

is needed to solve the retrieval inverse problem (the prior information does not come

from the measurement). Let xprior be the prior vertical ozone concentration profile (in

volume mixing ratio units), and let zprior = log xprior. Let ztrue (=log xtrue) be the "true"

atmospheric profile.

The vertical ozone profile retrieval can be expressed according to the formula

ẑ = zprior + A
(

ztrue − zprior
)
+ G η, x̂ = exp (ẑ) . (15)

Here A is the averaging kernel matrix, G is the gain matrix, and η is the spectral

measurement error (assumed to have mean zero and covariance Sη). More details can

be found in Bowman et al. [2002]; Jones et al. [2003]; Worden et al. [2004].

The corresponding TES observation operator (3) is linear with respect to the loga-

rithm of the concentrations, but nonlinear with respect to the concentration profile:

H (x) = zprior + A
(

log(L x)− zprior
)

(16)

where L is an interpolation operator that transforms x from the GEOS-Chem N-level

vertical grid to the TES profile retrieval P-level grid.

For this reason several chemical data assimilation studies based on TES retrieved

profiles [Jones et al., 2003; Bowman et al., 2006; Parrington et al., 2009] have opted to

perform the suboptimal Kalman filtering step (12) in the logarithm of the concentra-

tions:

log xa = log x f + K
(

ẑ−H
(

x f
))

Here K is the Kalman gain matrix, H is the observation operator defined in equation

(16), and ẑ is the ozone profile retrievals from TES as described in equation (15). The
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analysis state is calculated in natural logarithm of volume mixing ratio (log VMR) at

each observation location since the TES profile retrievals are in log VMR. An expo-

nential operator and a linear interpolation operator based on pressure is then applied

to this logarithm of analysis state in succession, to regain the actual analysis state in

GEOS-Chem grid domain. The model grid points which do not lie on the observation

locations in observation space remain unaffected by the assimilation.

The observation operator H that transforms higher resolution model state to the

TES profile vertical grid (observation grid) domain is expressed by equation (16). The

Kalman gain matrix K is defined by equation (13), particularized to the case where

the state is the logarithm of volume mixing ratio.

For variational data assimilation the forcing calculation is carried out in concentra-

tions. For this reason, an adjoint of the observation operator needs to be derived to

update the gradients as described in equations (7) and (11)

HT · v =

(
∂

∂x
(
A log (L x)

))T
· v = LT ·


(Lx)−1

0 0 · · · 0
0 (Lx)−1

1 · · · 0
...

... . . . ...
0 0 · · · (Lx)−1

P

 ·AT · v

Here, H = H′(x) is a matrix and v = R−1 (H(x)− y). The TES averaging kernel A

is usually a non-symmetric matrix, and the result of AT · v is fed to the interpolation

operator to construct the diagonal matrix with the i-th element being 1/(Lx)i. The

term LT is the adjoint of the interpolation operator and brings entities from the TES

profile retrieval domain back to the GEOS-Chem model domain.

Note that the TES data can be biased by as much as 10% [Nassar et al., 2008]. We

have estimated the bias using the technique proposed in Nassar et al. [2008] and have

removed it before assimilating the data.
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5. Experimental setting for data assimilation

For numerical experiments, we employ GEOS-Chem v7-04-10 adjoint code package

[Singh et al., 2009b], capable of performing both 3D-Var and 4D-Var data assimilations

with real data. It also incorporates suboptimal Kalman filter approach of data assim-

ilation developed in Parrington et al. [2009]. We assimilate Tropospheric Emission

Spectrometer (TES) satellite ozone profile retrievals into the GEOS-Chem model and

validate the generated analyses against an independent observation dataset provided

by direct ozone profile measurements from ozonesondes. The numerical optimization

method used in all variational experiments is the limited memory bound-constrained

BFGS [Zhu et al., 1997]. This quasi-Newton approach has become the “gold standard”

in solving large scale chemical data assimilation problems [Sandu et al., 2005a].

The 3D-Var and suboptimal KF frameworks use Sparse Matrix Vectorized GEAR

(SMVGEAR) solver for chemistry. However, to construct the adjoint of chemistry re-

quired by the 4D-Var, we implemented the Kinetic PreProcessor (KPP) solver [Damian

et al., 2002] into GEOS-Chem which not only provides a suite of high performance

chemical solvers to choose from but also generates automatically the continuous and

discrete adjoint codes [Daescu, 2000, 2003; Sandu et al., 2003a, b]. A detailed discus-

sion on interfacing KPP with GEOS-Chem and comparison with native SMVGEAR

solver for accuracy and computational performance is presented in Eller et al. [2009].

Thus, 4D-Var has KPP, and 3D-Var and suboptimal KF have SMVGEAR as their un-

derlying chemistry solvers.

The GEOS-Chem model over which the three assimilation methods are built upon,

has been modified further to use the linearized ozone (linoz) scheme [McLinden et al.,
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2000] for a better estimate of ozone exchanges at troposphere-stratosphere boundary.

This scheme is available in GEOS-Chem v8 and higher (see http://geos-chem.

org).

Simulations with GEOS-Chem v7-04-10 adjoint can be carried out at 4◦ × 5◦ and

2◦ × 2.5◦ resolutions. We have used 4◦ × 5◦ resolution in all our experiments. There

are 46 x 72 latitude-longitude grid boxes at this resolution, and 55 vertical levels. Near

the equator and at ground level each grid box covers an area of about 400 km × 500

km. We performed data assimilation for only the first 23 model levels (for up to about

50 hPa), which encompasses where TES observations are most sensitive.

5.1. Assimilation window lengths

The TES data in all our data assimilation experiments were read once every four

simulation hours; the observation operator called at model time t (hours) reads in all

the measurements collected within the interval t− 2 (hours) to t + 2 (hours). This col-

lective reading increases computational efficiency since reading through observation

data files is an expensive process. However, this assumes that the model state does

not vary significantly in a four hour time interval which is true in our case as we are

using global GEOS-Chem model with 4◦ × 5◦ resolution.

3D-Var data assimilation experiments were performed for a period of two weeks

in the month of August 2006, starting at 00:00(GMT) on August 1st. The assimila-

tion treats all observations in the four hour interval as instantaneous, and assimilates

them in the same optimization run. In all our 3D-Var experiments, we performed 8

iterations per analysis since the cost function decreased significantly within the first

few iterations. It is important to note that 3D-Var does not involve any model ad-
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joint calculations; gradients require only the adjoint of the observation operator. The

optimization adjusts the ozone concentrations. Generated analysis profile at the end

of each observation window is evolved through the forward model that becomes the

initial condition for the next observation window. It is also worth mentioning that

these new initial conditions are used to construct a new background error covariance

matrix (17) every observation window.

The setup for data assimilation using the suboptimal Kalman filter is quite similar

to 3D-Var where we assimilated TES profile retrievals into GEOS-Chem over a two

week period from 00:00 GMT on August 1, 2006 to 00:00 GMT on August 15, 2006.

Observations were read every 4 hours and analysis states were generated for each

observation window through the sequential update formula (12).

The 4D-Var data assimilation experiments were performed for two different as-

similation window lengths to adjudge if model errors hamper the quality of assim-

ilations in GEOS-Chem involving longer assimilation windows; 4D-Var is strongly

constrained by the forward model equation (10). Starting at 00:00 GMT on August

1, 2006, the first assimilation window is considered to be of five days while the sec-

ond window is of two weeks. All the three assimilation systems had the same initial

conditions to start with and were generated through a free GEOS-Chem model run.

There were 12 optimization iterations performed in order to improve the ozone initial

condition. Each iteration during 4D-Var assimilation includes a forward model and a

backward model adjoint run. TES profile retrievals were read every 4 hours during

the model adjoint run, and the cost function and adjoint gradients accumulated the

impact of all 4 hour data sets throughout the assimilation window. Unlike 3D-Var
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and suboptimal KF, where analysis states are generated sequentially every observa-

tion window, 4D-Var produces new initial conditions that could be used by the model

to generate analysis at any time during the assimilation window.

To assess the quality of analysis generated by the above mentioned assimilation

techniques, we provide in section 6.2, various plots including comparison of analyses

against ozonesonde observations and global ozone distribution for 5 days and 2 weeks

assimilation windows. It is important to note that, since 3D-Var and suboptimal KF

are sequential in nature, we did not have to run 5 days assimilation for these two

methods separately. Rather, we used the saved analyses generated during the 2 weeks

assimilation.

5.2. Specification of background error variances

We consider a diagonal background error covariance matrix (B) in all our variational

data assimilation experiments for simplicity. The initial variances (the diagonal entries

of the B matrix) are constructed from the average background concentrations xB
0 on

each of the Nlev model vertical layers

B =


B(0) 0 . . . 0

0 B(1) . . . 0
... . . . ...

0 0 . . . B(Nlev)

 (17)

where

B(`) =


σ2
` 0 . . . 0

0 σ2
` . . . 0

... . . . ...
0 0 . . . σ2

`


dim×dim

, dim = Nlon ·Nlat, (18)

with

σ` =
αrel

dim

Nlon

∑
i=1

Nlat

∑
j=1

xB
0 (i, j, `, sO3), ` = 1, · · · , Nlev, sO3 = index of ozone . (19)

D R A F T March 10, 2013, 12:42pm D R A F T



K. SINGH ET AL.: COMPARISON OF CHEMICAL DATA ASSIMILATION SCHEMES X - 21

The relative uncertainty level in the background initial conditions (i.e., at the begin-

ning of the assimilation window) is taken to be 50%, i.e., αrel = 0.5.

The forecast error covariance matrix P f used in our suboptimal Kalman filter ap-

proach is diagonal. The initial forecast error is assumed to be 50% of the initial forecast

field that is supposed to capture the representativeness error as well. In matrix form,

P f
0 is represented as

P f
0 =


P f (0)

0 0 . . . 0

0 P f (1)
0 . . . 0

... . . . ...

0 0 . . . P f (Nobs)

0

 (20)

where Nobs is the number of observation locations (in our case, the number of grid

points in the TES retrieval domain). The initial forecast error covariance matrix block

corresponding to each observation location is given as

P f (i)
0 = α2

rel ·


(x f

0(i, 1, sO3))
2 0 . . . 0

0 (x f
0(i, 2, sO3))

2 . . . 0
... . . . ...
0 0 . . . (x f

0(i, Nret, sO3))
2


Nret×Nret

, (21)

for i = 1, 2, . . . , Nobs, and where Nret is the number of vertical TES profile retrieval

levels. Although the initial forecast error covariance matrix P f and all analysis Pas

henceforth are diagonal and there are no spatial correlations being accounted for;

the averaging kernels in the observation operator of TES as defined in equation (16)

provide vertical correlations when operated on P f through equation (13). A detailed

discussion on how to efficiently extend the background error covariance matrices to

non-diagonal forms that capture spatial error correlations is provided in Singh et al.

[2010a].
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6. Data assimilation results

6.1. Computational costs

As pointed out in Henze et al. [2007], the computational cost of Rosenbrock solver

increases significantly with the tolerance levels; higher tolerances use smaller internal

time steps requiring more computation. Therefore, in our experiments, we have set the

KPP parameters RTOL=10−3 and ATOL=10−2 to achieve moderate to high accuracy.

The suboptimal Kalman filter is less expensive than 3D-Var as it generates the anal-

ysis through single update formula (12), whereas 3D-Var requires a few iterations

before the optimization routine could generate a stable optimal analysis field. This

is true however as long as the forecast error covariance matrix is diagonal. Once we

move to non-diagonal matrices, the cost of calculating Kalman gain matrix (13) can

be high, although this can be parameterized following, for example, Khattatov et al.

[2000]. In the case of 3D-Var and 4D-Var, using even full B matrix adds a minimal

cost to the overall simulation since the complete matrix is never constructed; at each

step only a matrix vector product is required and efficient techniques are employed

to derive the inverse and other powers of B matrix [Singh et al., 2010a]. The 4D-Var

assimilation is the most expensive of all the assimilation systems under considera-

tion. The reason is attributed to the fact that a single 4D-Var iteration performs both

the forward and adjoint model runs, where, several variables on which the adjoint

equation depends on, are written in checkpoint files during forward model run and

read during adjoint model run. In our study, a full adjoint run for one simulation day

requires about 12 GB of hard drive storage. This consumption could be reduced by

almost 50% if rather than saving intermediate concentrations of chemical integration,
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they are recalculated by calling forward chemistry in the adjoint run, which would

eventually lead to higher computational time.

Table 1 provides a comparison of the computational costs of the different data as-

similation systems and the cost of free running model for a 24 hour simulation. All

the simulations are performed on a Dell Precision T5400 workstation with two quad-

core Intel(R) Xeon(R) processors, with clock speed 2.33GHz, and 16GB of RAM shared

between the two processors.

6.2. Comparison with ozonesonde measurements

In order to assess the quality of analysis fields generated through different assim-

ilation systems, we use ozonesonde profiles measured by the INTEX Ozonesonde

Network Study 2006 (IONS-6) (http://croc.gsfc.nasa.gov/intexb/ions06.

html, [Thompson et al., 2007a, 2007b]) for the month of August, assuming that these

measurements provide values close to the true state of the atmosphere. There are

418 ozonesondes launched from 22 stations across North America as shown in the

Figure 1. A detailed description of the number of ozonesondes launched per station

with longitude and latitude information can be found in Parrington et al. [2008]. The

ozonesonde observations are not used in data assimilation, and therefore provide an

independent data set against which the analysis results are validated. Forecast scor-

ing techniques as described in Wu et al. [2008]; Constantinescu et al. [2007c] that use

assimilated data for validation, do not provide a fair assessment of the quality of as-

similation for sparse spatio-temporal sampling and longer time scales used in this

analysis.
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We first consider the case where the assimilation window length is five days. As per

the property of sequential data assimilation algorithms, the model forecast is corrected

as soon as an observation is available. Ingesting observations every four simulation

hours, we obtain an analysis field every four hours that accounts for the mismatch

between the model prediction and the observations within that observation window.

However, it is important to note that the model prediction at any observation window

incorporates implicitly the corrections from all previous observations. Thus, as we

move forward in time, the analysis field agrees better with the true state of the atmo-

sphere. 4D-Var on the other hand accumulates the forcing due to mismatch between

model forecast and observations throughout the assimilation window to produce an

initial condition that, when evolved forward in time through the model, will best fit

the observations. Therefore, in the case of sequential assimilation approaches, to ob-

tain a stable analysis state that resembles the true chemical state of the atmosphere at

a particular instant, we need to start the simulation days or months prior to that in-

stant to benefit from earlier observations. 4D-Var is advantageous in situations where

past observations are not available, as it provides the best estimate using only the

observations available in the assimilation window under consideration.

We present in Figure 2, a comparison of analysis profiles obtained from differ-

ent assimilation systems, and free GEOS-Chem model run against ozonesonde mea-

surement data. The left panel shows vertical ozone profiles (concentrations against

pressure levels); the model predictions are sampled at the locations and times of

ozonesonde measurements available in the 5-day assimilation window. The differ-

ences between model results and ozonesonde data reflect model prediction errors;
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one error vertical profile is obtained for each ozonesonde launch. The center and

right panels show the mean and the standard deviation of these errors. The plots pro-

vide an assessment of the quality of tropospheric ozone estimates given by the free

model run, and by data assimilation systems based on suboptimal Kalman filter, 3D-

Var and 4D-Var approaches. The errors also reflect the impact of TES profile retrievals

on these assimilation systems.

It is evident from the plots in Figure 2 that 4D-Var provided the best estimate for

lower and mid troposphere ozone concentrations. The relative difference between the

mean ozone analysis field and the ozonesonde measurements were decreased to less

than 4% up to 180 hPa as compared to 5-20% in cases of suboptimal KF and 3D-Var.

The overestimate of ozone in the upper troposphere is likely due to the accumulated

impact of the TES bias. The bias correction approach described in Nassar et al. [2008]

may not be sufficient for assimilation studies and suggests an on-line bias correction

scheme may be needed in the future.There was also a substantial improvement in the

variance of the assimilation relative to the ozonesonde measurements, particularly for

the 4D-Var case at 200 hPa. Consequently, the satellite observations have an impact

not only on the mean value of tropospheric ozone but they also provide additional

information on the ozone variability. A detailed analysis on the information brought

in by TES profile retrievals into 4D-Var assimilation system at different pressure levels

is provided in Singh et al. [2010b].

Figure 3 provides the global tropospheric ozone distribution as estimated by GEOS-

Chem free model run and different assimilation systems at the end of the 5 days

assimilation window. The ozone concentration values are averaged over 10 GEOS-
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Chem levels (from the surface to about 370 hPa) for each longitude-latitude grid point

on the horizontal domain.

As seen in Figure 3, all the assimilation systems seem to have caused an increase

in the tropospheric ozone as compared to the model forecast with 4D-Var bringing

the highest amount. The gain seems to be prominent in the 30◦ N to 60◦ N latitude

region in case of suboptimal KF and 3D-Var, while it is extended up to 90◦ N in case

of 4D-Var. For a clear demonstration of these changes, we provide in Figure 4, the

plots of differences in the tropospheric ozone estimates through free model run and

different assimilation systems.

In Figure 4, panels (a) and (b) show that the structure of corrections in the ozone

concentrations through 3D-Var and suboptimal KF data assimilation are quite similar.

The reason behind such a structure is that these sequential algorithms bring in instan-

taneous corrections based solely on the mismatch between the model predictions and

the observations in an observation window (analysis cycle). The localized corrections

here are mostly along the Aura satellite orbit. Panel (c) on the other hand showcases

the smoother correction profile of 4D-Var. In each 4D-Var optimization iteration, the

cost function and gradients are accumulated for all the observation windows where

the adjoint variable (gradient) is flown backwards in time as governed by the model

adjoint equation. The corrections brought in by the optimization routine therefore

are no longer localized resulting in an ozone distribution consistent with the model

dynamics and chemistry. We also plot the difference in the analysis fields obtained by

3D-Var and suboptimal KF showcasing their close resemblance (panel (d)). Interest-

ingly, there seems to be a localized overcorrection in the mid west Australian region
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by the suboptimal Kalman filter. This overcorrection is likely due to the propagation

of emissivity errors over Australian desert in the TES retrieval, which can have pos-

sess strong silicate spectral signatures into the TES ozone retrieval. While in case of

4D-Var, the underlying algorithm can smooth out localized satellite artifacts through

strong model constraints.

We next consider assimilation window length of 2 weeks. A longer assimilation

window provides an insight into how ozone estimates provided through assimila-

tion evolve with time and if the corrections maintain structures similar to 5-day case.

In particular, the ozone lifetime will limit the utility of ozone initial condition ad-

justment as the assimilation window increases. It also helps adjudge if model er-

rors in GEOS-Chem cause any degradation in the assimilation systems, especially the

strongly constrained 4D-Var. Similar to Figure 2, we present in Figure 5, a comparison

of analysis profiles obtained from different assimilation systems against ozonesonde

measurement data. The plots reflect that the accuracy of suboptimal Kalman filter

and 3D-Var assimilations start to differ with longer assimilation window. While sub-

optimal KF underestimates ozone concentrations in the lower and mid troposphere,

it performs better than 3D-Var in the mid and upper tropospheric region. 4D-Var

still provides the best ozone estimate of all the assimilation systems, and, unlike the

5 days assimilation window length case, it performs well in the upper tropospheric

region except near the tropopause. Panel (c) suggests that the standard deviation of

4D-Var analysis from the ozonesonde measurements stayed the least among all the

assimilation systems. The relative difference between the mean ozone analysis field

and the ozonesonde measurements were decreased to less than 4% up to 150 hPa as
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compared to 4-16% in cases of suboptimal KF and 3D-Var. With longer assimilation

window, all the assimilation systems seem to have benefited from more observations

being assimilated.

Figure 6 provides the global tropospheric ozone distribution as estimated by GEOS-

Chem free model run and different assimilation systems. Similar to the 5 days as-

similation window case, 4D-Var leads to the maximum increase in the tropospheric

ozone.

Figure 7 showcases the structure of corrections in model predicted ozone through

different assimilation systems. The ozone corrections are up to 20 ppbv, and are

consistent among the three assimilation schemes. The localized correction structure

in 3D-Var and suboptimal KF cases still persists with longer assimilation window.

4D-Var provides larger corrections with a significant increase in ozone concentrations

in the 30◦ N to 90◦ N latitude region. The reason for this difference can be explained

in part by the restriction of the TES to 60◦S-60◦N, which limits where the corrections

can be made in the 3D-Var. Changes poleward of 60◦N in the 3D-Var solution are

due to forward advection. However, as discussed in Section 6.3.2, the elevated ozone

poleward of 60◦N in the 4D-Var solution is due to the positive correction of high

latitude initial conditions at the beginning of the assimilation window at August 1,

2006.

The overcorrection in the mid west Australian region which was not visible in the

3D-Var case for 5 days assimilation window, seems to be prominent in longer assimila-

tion, while, for suboptimal KF, it has been accentuated. The fact that this phenomenon

is seen only in 3D-Var and suboptimal KF could be attributed to the propagation of
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emissivity errors described earlier, combined with the localized correction property of

these methods. Differences in the amount of overcorrection in the two methods could

be attributed to differences in their implementations. For example, as described in

section 2.3, the forecast error variances at observation time i + 1 in the suboptimal KF

case, are constructed by transporting variances at observation time i as passive trac-

ers, while in case of 3D-Var, they are generated from the current model state. Also,

the KF implementation used in this study solves the underlying statistical problem

generating analysis in observation space, then maps the solution back to the model

space. While in 3D-Var, the same statistical problem is solved in the model space

itself, leading to different forecast error covariance matrices.

Contrary to what was observed in Wu et al. [2008] for the 4D-Var assimilation in

Polair3D case (where accuracy of the ozone estimates decreased with increase in the

assimilation window length), our findings show that the performance of 4D-Var sys-

tem improves with increase of the assimilation window length. However, this is likely

due to the fact that ozone lifetime is reasonably close to two weeks. Assimilation win-

dows longer than two weeks would lead to a reduction in performance of the 4D-Var

system as the initial conditions become less important towards the end of the win-

dow. Consequently, the assimilation window for ozone in a 4D-Var system should

be bounded by the ozone lifetime. There is however one case where the accuracy

of ozone estimates decrease with increase in assimilation window length for 4D-Var

and that is when the model adjoints are inaccurate. We have studied this case in de-

tail in Singh et al. [2010c] and have utilized inaccurate gradients to work toward our
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benefit in terms of reducing significantly the memory and computational costs, still

maintaining the quality of the analysis.

6.3. Comparison of 3D-Var and 4D-Var

As discussed in Section 2, the 3D-Var approach processes observations sequentially,

and generates a new analysis every time new observations are available. The 3D-Var

corrections perform successive adjustments of the forward model trajectory, which

decrease the error as more observations are being considered. The 4D-Var approach,

on the other hand, processes all observations at once and adjusts the initial conditions

for the current assimilation window. It is also worth reiterating that the background

error covariance matrix in 4D-Var is static and flow independent, while in case of 3D-

Var, it is constructed every observation time through model evolution of the analysis

generated at previous observation time.

We compare the 3D-Var and 4D-Var approaches in two different ways. Section 6.3.1

discusses the ability of 4D-Var to explicitly represent relationships between different

chemical components. Section 6.3.2 proposes a variational approach to directly com-

pare the use of information by the two methods.

6.3.1. Dependencies between multiple species

The data assimilation scenario discussed here corrects ozone distribution in re-

sponse to new information provided by ozone measurements. This correction is dis-

tributed implicitly to other state variables (e.g., other dependent chemical species)

through model evolution.

In order to perform explicit corrections to other chemical species, 3D-Var requires

an inter-species error correlation matrix. A correct specification of such matrix at each
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observation time is a difficult task. 4D-Var approach on other hand captures the rela-

tionship between species through model adjoint dynamics. This holds true even when

the background error covariance matrix does not specify inter-species correlations. It

is possible to directly extend the set of control variables to include initial conditions

of all chemical species present in the model, together with the emission and depo-

sition rates, and any other model parameters. There is no additional computational

cost since the adjoint model already computes derivatives with respect to all the state

variables. (Of course, extending the control vector may lead to separate issues related

to convergence, and to proper regularization of the problem).

The adjoint sensitivity analysis by itself is an important tool to investigate vari-

ous dependencies between model parameters. The gradient formula (11) provides

derivatives of the cost function with respect to initial conditions of other species be-

sides ozone, and with respect to model parameters such as emissions and bound-

ary conditions. The derivatives with respect to model parameters are obtained by

post-processing the adjoint variables [Sandu et al., 2005a]. The units of adjoint sen-

sitivities with respect to a parameter are one over the unit of that parameter since

the cost function (9) is unitless. Scaled adjoint sensitivities (e.g., ∇x0J � xa
0, where

� is component-wise multiplication) are unitless, and measure the impact of relative

changes in parameters on the cost function.

Figure 8 presents the scaled adjoint sensitivities of the 4D-Var cost function (9) with

respect to several model parameters. The linearization is performed around the 4D-

Var solution (10), i.e., around a forward trajectory that starts with optimized initial

ozone concentrations. Consequently, the sensitivity of the 4D-Var cost function with

D R A F T March 10, 2013, 12:42pm D R A F T



X - 32 K. SINGH ET AL.: COMPARISON OF CHEMICAL DATA ASSIMILATION SCHEMES

respect to the initial ozone concentration is very small (in theory is equal to zero, as

it represents the gradient value at a minimum point). The sensitivities with respect

to initial CO, NOX, and PAN concentrations are presented in Figures 8 (a),(b), and

(c) respectively. These sensitivities are far from zero; consequently, TES ozone pro-

files provide information that can potentially constrain ozone precursor initial con-

ditions as well. (This can be achieved by extending the vector of control variables

to include the initial conditions of additional species, and continuing the optimiza-

tion. Large scaled gradient components corresponding to initial CO, NOX, and PAN

indicate that changes in these initial conditions lead to a considerable decrease in

model-observation mismatch). Additional information can be obtained from influ-

ence functions, which are ratios of scaled sensitivities Fisher and Lary [1995]. More

importantly, Figure 8(d) displays the sensitivity of the 4D-Var cost function with re-

spect to total NOx emissions. These sensitivities indicate that ozone observations can

be used to constrain ozone precursor emissions as well. This point is explored in the

context of a 4D-Var chemical box model in Hamer et al. [2011]. The strong sensitivity

of the atmospheric chemical state to boundary conditions differentiates the chemical

data assimilation problem from the traditional numerical weather prediction problem.

Consequently, even in condition where the 3D-Var solution may have similar perfor-

mance to the 4D-Var solution, the ability to assess the sensitivities of the innovations

in the 3D-Var to boundary and initial conditions through adjoint calculations pro-

vides important tools for a more detailed investigation of processes controlling that

distribution.

6.3.2. Direct comparison of 3D-Var and 4D-Var corrections
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Due to the different times when they incorporate observations, it is difficult to per-

form a direct comparison of the ways 3D-Var and 4D-Var use this information. An

assessment of the two analyses can be done at the end of the assimilation interval.

Comparison against ozonesonde data, presented in Figures 2 and 5, use analysis data

at different times throughout the assimilation window.

We propose a variational approach to compare the net effect of all corrections per-

formed by the 3D-Var, with the 4D-Var correction of the state. This comparison pro-

vides insight into how each method injects information from observations into the

state (at a specific time). We discuss three approaches, based on “pulling back” to

the initial time and adding all corrections performed by 3D-Var, pulling back and

adding all the differences between the 3D-Var and the 4D-Var analyses, and finding

an equivalent initial condition for 3D-Var.

To be specific, we first quantify the cumulative effect of all 3D-Var corrections, in

order to study how 3D-Var builds the analysis. Since the 3D-Var corrections take

place at different times, they need to first be brought to the same time. For example,

this can be done done by “propagating backwards” the 3D-Var correction at ti to the

initial time t0, through the adjoint MT
i of the tangent linear model Mi = ∂xi/∂x0. The

cumulative effect of all 3D-Var corrections at the initial time is

N

∑
i=0

MT
k · P

f (3)
i HT

i

(
Hi P f (3)

i HT
i + Ri

)−1 (
yi −H(x f (3)

i )
)

. (22)

Here x f (3)
i and P f (3)

i are the 3D-Var forecast state and the forecast covariance at ti,

respectively. This approach allows for the assessment of the cumulative effect of all

3D-Var corrections at the initial time, and to directly compare the 3D-Var and 4D-Var

via the corresponding changes in initial conditions.
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Next, we seek to estimate the discrepancy between the analyses generated by the

3D-Var and by the 4D-Var methods. Let the free model run (background), the 4D-Var,

and the 3D-Var analyses at ti be xb
i , xa(4)

i , xa(3)
i , respectively. Define the following

“discrepancy” cost function that measures the difference between the 4D-Var and the

3D-Var analyses at all times

D
(

xa(4)
0

)
=

1
2

N

∑
i=0

∥∥∥xa(4)
i − xa(3)

i

∥∥∥2

Q−1
i

. (23)

The gradient of the discrepancy function with respect to the initial conditions is given

by the adjoint model, using a linearization of the forward model about the 4D-Var

analysis trajectory

∇xa
0
D
(

xa(4)
0

)
=

N

∑
i=0

MT
i Q−1

i

(
xa(4)

i − xa(3)
i

)
, whereMi =

∂xa(4)
i

∂xa(4)
0

. (24)

Here Mi is the linearized model solution operator about the 4D-Var analysis trajectory.

Each term in the discrepancy sum is weighed by the (covariance-like) matrix Qi, which

is assumed to be invertible. This adjoint considers the differences between the 4D-Var

and the 3D-Var analyses at different times, and pulls all these differences back to time

t0. The cumulative discrepancy between the two analyses, as given by this metric,

reads

diff
(

xa(4), xa(3)
)
= ∇xa

0
D
(

xa(4)
0

)
. (25)

Finally, we want to determine the “3D-Var equivalent initial condition” xe(3)
0 , such

that the resulting trajectory xe(3)
i , i ≥ 1, fits best the 3D-Var analysis at the final time

xa(3)
N , in a least squares sense:

xe(3)
0 = arg min

x0
B
(

xe(3)
0

)
=

1
2

∥∥∥xa(4)
N − xa(3)

N

∥∥∥2

Q−1
N

.
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To our knowledge, no attempt has been made to date to estimate the equivalent effect

of all 3D-Var corrections at the initial time. (Note that the 3D-Var analysis is not a

trajectory of the model). The methodology is explained in Appendix A. The least

squares solution to finding the 3D-Var equivalent initial condition is (A3)

xe(3)
0 = xa(4)

0 −
(

MT
N Q−1

N MN

)−1
·MT

N Q−1
N

(
xa(4)

0 − xa(3)
0

)
,

The 3D-Var solution incorporates all the observation information when it reaches tN,

the end of the assimilation window. For a direct comparison with the 4D-Var initial

condition, the 3D-Var equivalent initial condition match the 3D-Var analysis only at

the final time.

Similar to (23), a cost function that measures the discrepancy between the 3D-Var

and the free model forecast at all times can be defined. This gradient involves an

adjoint run, with a linearization performed about the free model run (background)

trajectory.

Figure 9 displays results for the metric (25), i.e., the sum of all analysis discrepancies

between the 3D-Var and the 4D-Var ozone analyses, projected to time t0 along with

differences between the free running model and the initial conditions inferred from

the 4D-Variational solution. All scaling covariances are taken to be identity matrix,

Qi = I, i = 0, . . . , N. It is interesting to note that, significant corrections to the initial

conditions in the 4D-Var solution are made poleward of 60◦N even though there is

no TES data used that directly covers that region. These positive corrections can be

explained by strong transport from higher latitudes into the mid-latitudes character-

ized by the transport adjoint sensitivities of the mid-latitude innovations with the TES
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data. Similar features are seen though in the opposite sign in Figure 9(d) through the

cumulative back projection in the 3D-Var solution.

7. Conclusions

This paper compares the performance of 3D-Var, 4D-Var, and suboptimal Kalman

filter data assimilation systems, applied to the estimation of global tropospheric ozone

distribution. The data is provided by TES ozone profile retrievals. The study uses the

3D-Var and 4D-Var data assimilation frameworks we have implemented into GEOS-

Chem v7. Two different assimilation window lengths (five days and two weeks) are

considered. The quality of the ozone analyses provided by different assimilation

schemes is verified against ozonesonde measurements, an independent data set.

The three approaches have different computational costs. The suboptimal Kalman

filter is the least expensive, followed closely by 3D-Var. 4D-Var has the highest mem-

ory and computational costs as it requires checkpointing dependent variables, and

performs both a forward and an adjoint model run for every iteration.

All three data assimilation systems are able to improve ozone estimates using TES

profile retrievals. For the five days assimilation window the sequential methods, 3D-

Var and suboptimal KF, perform similarly: they decrease the relative difference be-

tween mean analysis and ozonesonde measurements to about 5-20%. 4D-Var, on the

other hand, brings this error down to less than 4%, for up to 180 hPa. For the two

weeks assimilation window the performance of the sequential methods changes with

different height levels. In the lower and mid troposphere 3D-Var performs better,

while in the mid to upper troposphere the suboptimal Kalman filter analysis is more

accurate. The relative error (measured against ozonesonde data) is 4-16% for the se-
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quential analyses, and is less than 4% for up to 150 hPa for 4D-Var. The corrections of

ozone concentration performed by the sequential assimilation methods are localized

along the satellite orbit. On the other hand, the 4D-Var solution is physically and

chemically self-consistent over the assimilation window. The region between latitudes

30◦ N to 60◦ N has the greatest impact from all the assimilation systems. This re-

gion extends up to 90◦ N in case of 4D-Var, which accounts for the transport of high

latitude ozone into the mid-latitudes. However, we should caution that the IONS

datasets were primarily over North America. Therefore, we can not assess whether

the increased northern mid-latitude ozone concentrations lead to a more accurate

analysis.

A method to directly compare the analyses provided different schemes is proposed,

based on “pulling back” differences to the initial time, as discussed in Section 6.3.2.

The calculations show that the 4D-Var corrections are larger than those provided by

3D-Var. The adjoint sensitivity analysis in section 6.3.1 reveals that 4D-Var has the

intrinsic capability of capturing mechanistic relationships between multiple chemical

species, and between emissions and concentrations fields. In a similar vein, this ad-

joint analysis can be used in conjunction with other assimilation schemes (3D-Var,

suboptimal KF) to interrogate what model parameters are driving the residual differ-

ences with the observations.

The comparison results presented here will guide the choice of the best assimila-

tion scheme for the problem at hand. The sub-optimal Kalman filter and the 3D-Var

solution provide useful solutions that do not require significant changes as the for-

ward model physics and chemistry are updated. By virtue of their simplicity, they
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make less model assumptions, e.g., all differences between observation and forecast

can be attributed to initial conditions, and therefore can be robust under a variety

of conditions. On the other hand, the 4D-Var approach provides a physically consis-

tent solution where uncertainties are ascribed to a combination of initial and bound-

ary conditions. This physical consistency makes it more straightforward to interpret

and make scientific inferences. We have introduced a new method that applies the

adjoint sensitivity to help interpret the 3D-Var solutions, which provides a kind of

middle ground between the more efficient 3D-Var approach and the more sophisti-

cated 4D-Var approaches. Interesting extensions of the GEOS-Chem data assimilation

framework, such as efficient information content estimation of observations and con-

struction of full rank covariance matrices, are discussed in companion papers Singh

et al. [2010a, b, c].
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Appendix A: The 3D-Var equivalent initial condition

Finally, we want to determine the “3D-Var equivalent initial condition” xe(3)
0 such

that the resulting trajectory fits best the 3D-Var analysis in a least squares sense. To

our knowledge, no attempt has been made to date to estimate the equivalent effect

of all 3D-Var corrections at the initial time. (Note that the 3D-Var analysis is not a

trajectory of the model). The dynamic equations for the 3D-Var trajectory, linearized

about the 4D-Var analysis, read:

xa(3)
i − xa(4)

i = Mi ·
(

xe(3)
0 − xa(4)

0

)
+ θi , i = 0, · · · , N . (A1)

The errors θi = xa(3)
i − xe(3)

i are assumed to be normally distributed with mean zero

and covariance Qi. We now seek the equivalent 3D-Var initial condition that solves

(A1) in a least squares sense. The scaled linearized dynamic equations are

Q−1/2
i Mi

(
xe(3)

0 − xa(4)
0

)
−Q−1/2

i

(
xa(3)

i − xa(4)
i

)
= Q−1/2

i θi , i = 0, · · · , N ,

and involve the scaled residuals Q−1/2
i θi which are standard normal random vec-

tors. Therefore the least squares solution is the one that minimizes the sum of scaled
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residual norms squared

xe(3)
0 = arg min

N

∑
i=0

∥∥∥Mi

(
xe(3)

0 − xa(4)
0

)
−
(

xa(3)
i − xa(4)

i

)∥∥∥2

Q−1
i

.

The minimum of this quadratic function is obtained by imposing that its gradient

equals zero. This leads to the following system of linear equations:(
N

∑
i=0

MT
i Q−1

i Mi

)
︸ ︷︷ ︸
∇2

xa
0,xa

0
D
(

xa(4)
0

)
(

xe(3)
0 − xa(4)

0

)
=

N

∑
i=0

MT
i Q−1

i

(
xa(3)

i − xa(4)
i

)
︸ ︷︷ ︸

∇xa
0
D
(

xa(4)
0

)
.

Therefore the least squares solution to finding the 3D-Var equivalent initial condition

is

xe(3)
0 = xa(4)

0 −
(
∇2

xa
0,xa

0
D
(

xa(4)
0

))−1
· ∇xa

0
D
(

xa(4)
0

)
. (A2)

Consider a standard normal random perturbation is applied at t0 to the 4D-Var op-

timal initial condition. This perturbation is propagated through the linearized model,

and its covariance at ti is MiMT
i . Let Qi = ρi MiMT

i in (23) in order to account for an

increasing error with the model evolution. The scalar weights ρi decrease with i, to

account for the reduction in uncertainty through 3D-Var assimilation, and are chosen

such that ∑N
i=0 ρi = 1. Using the fact that MT

i Q−1
i Mi = I for all i we have that the

equivalent 3D-Var initial solution is

xe(3)
0 = xa(4)

0 −
N

∑
k=0

MT
i Q−1

i

(
xa(4)

0 − xa(3)
0

)
= xa(4)

0 −∇xa
0
D
(

xa(4)
0

)
.

The 3D-Var solution has incorporated all the observation information when it

reaches tN, the end of the assimilation window. Therefore it makes sense to choose

ρ0 = · · · = ρN−1 = 0 and ρN = 1 in order to have the equivalent initial condition

match the 3D-Var analysis only at the final time. In this case

xe(3)
0 = xa(4)

0 −
(

MT
N Q−1

N MN

)−1
MT

N Q−1
N

(
xa(4)

0 − xa(3)
0

)
. (A3)
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Table 1. Timing results for GEOS-Chem free model runs using SMVGEAR and

KPP chemistry, suboptimal Kalman filter, 3D-Var and 4D-Var data assimilations with

diagonal background error covariance matrix for a 24 hour simulation starting 00:00

GMT August 1, 2006.

Experiment Description CPU Time

Free model run, SMVGEAR chemistry solver 2 min 50 sec

Free model run, KPP chemistry solver 3 min 18 sec

Suboptimal Kalman filter with diagonal P f 3 min 08 sec

3D-Var with diagonal B 3 min 57 sec

4D-Var with diagonal B (per model run) 16 min 51 sec
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Figure 1. Ozonesonde sounding stations (triangles) used during IONS06 campaign

and AURA/TES satellite trajectory snapshots (dots) plotted over the global ozone

distribution on August 1st, 2006.
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Figure 2. The impact of ozone profile retrievals from TES on data assimilation sys-

tems for GEOS-Chem. Left panel: mean ozone concentrations sampled at ozonesonde

locations and times for 3D-Var, 4D-Var, suboptimal KF analyses and free model tra-

jectories. Center panel: relative mean errors of predicted ozone concentrations with

respect to ozonesonde measurements. Right panel: standard deviation of absolute

values of errors with respect to ozonesonde measurements. The data is averaged

over all ozonesonde launches. These plots were generated from 5 days simulation

from 00:00 GMT August 1, 2006 to 00:00 GMT August 6, 2006 and compared against

ozonesonde data available for the month of August.
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(a) Ozone forecast through free model run (b) Ozone estimates through 3D-Var assimilation

(c) Ozone estimates through suboptimal Kalman filter (d) Ozone estimates through 4D-Var assimilation

Figure 3. Global ozone distribution at 00:00 GMT on August 6, 2006 averaged over

the first 10 GEOS-Chem vertical levels. Panels (a)-(d): Global tropospheric ozone

estimates provided by free model run and suboptimal KF, 3D-Var, and 4D-Var data

assimilation systems from a 5-day simulation.

D R A F T March 10, 2013, 12:42pm D R A F T



K. SINGH ET AL.: COMPARISON OF CHEMICAL DATA ASSIMILATION SCHEMES X - 59

(a) Absolute difference between 3D-Var analysis and the free

model run

(b) Absolute difference between suboptimal Kalman filter anal-

ysis and the free model run

(c) Absolute difference between 4D-Var analysis and the free

model run

(d) Absolute difference between suboptimal Kalman filter and

the 3D-Var analyses

Figure 4. Differences in global ozone concentrations at 00:00 GMT on August 6, 2006,

the end of 5-day simulation, averaged over first 10 GEOS-Chem vertical levels. Panels

(a)-(c): Differences between suboptimal KF, 3D-Var, and 4D-Var analysis fields and

the model forecast (solution without data assimilation). Panel (d): Difference between

suboptimal KF and 3D-Var analysis fields.
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Figure 5. The impact of ozone profile retrievals from TES on data assimilation sys-

tems for GEOS-Chem. Left panel: mean ozone concentrations at ozonesonde locations

for 3D-Var, 4D-Var, suboptimal KF analyses and free model trajectories. Center panel:

relative mean errors of predicted ozone concentrations with respect to ozonesonde

measurements. Right panel: standard deviation of absolute values of errors with

respect to ozonesonde measurements. The data is averaged over all ozonesonde

launches. These plots were generated from 2 weeks simulation from 00:00 GMT Au-

gust 1, 2006 to 00:00 GMT August 15, 2006 and compared against ozonesonde data

available for the month of August.
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(a) Ozone forecast through free model run (b) Ozone estimates through 3D-Var assimilation

(c) Ozone estimates through suboptimal Kalman filter (d) Ozone estimates through 4D-Var assimilation

Figure 6. Global ozone distribution at 00:00 GMT on August 15, 2006 averaged

over the first 10 GEOS-Chem vertical levels. Panels (a)-(d): Global tropospheric ozone

estimates provided by free model run and suboptimal KF, 3D-Var, and 4D-Var data

assimilation systems from a 2-week simulation.
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(a) Absolute difference between 3D-Var analysis and the free

model run

(b) Absolute difference between suboptimal Kalman filter anal-

ysis and the free model run

(c) Absolute difference between 4D-Var analysis and the free

model run

(d) Absolute difference between suboptimal Kalman filter and

the 3D-Var analyses

Figure 7. Differences in global ozone concentrations at 00:00 GMT on August 15,

2006, the end of 2-week simulation, averaged over first 10 GEOS-Chem vertical levels.

Panels (a)-(c): Differences between suboptimal KF, 3D-Var, and 4D-Var analysis fields

and the model forecast (solution without data assimilation). Panel (d): Difference

between suboptimal KF and 3D-Var analysis fields.
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(a) Scaled gradient with respect to CO initial conditions (b) Scaled gradient with respect to NOX initial conditions

(c) Scaled gradient with respect to PAN initial conditions (d) Scaled gradient with respect to NOX emissions

Figure 8. Scaled adjoint sensitivities of the 4D-Var cost function (9) with respect to

different model parameters. The calculations correspond to the optimal initial ozone

concentration. The 4D-Var cost function involves differences between simulated and

observed OX. Panels (a),(b),(c) show sensitivities with respect to initial conditions

of other chemical species (at 00:00 GMT on August 1, 2006). The sensitivities with

respect to NOX emissions in panel (d) correspond to emissions over the entire two-

week assimilation window. All scaled sensitivity fields are averaged over the first 10

GEOS-Chem vertical levels.
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(a) Free model ozone concentration at the beginning of the as-

similation window

(b) 4D-Var ozone analysis at the beginning of the assimilation

window

(c) Absolute difference between the 4D-Var optimal initial con-

dition, and the background initial condition

(d) Cumulative difference between the 4D-Var and 3D-Var

analyses throughout the assimilation window

Figure 9. The cumulative difference (25) between the 4D-Var and the 3D-Var ozone

analyses, projected at the beginning of the five days assimilation window, and aver-

aged over the first 10 GEOS-Chem vertical levels. A two-week long data assimilation

window is used, starting at 00:00 GMT on August 1, 2006.
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