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Abstract. Chemistry transport models determine the evolving chemical state of the atmosphere by solving

the fundamental equations that govern physical and chemical transformations. Models are imperfect

and cannot capture completely the complex dynamics of the atmosphere. As a result there is always a

mismatch between model generated estimates and reality. Data assimilation is the procedure to combine

data from observations with model predictions to obtain a more accurate representation of the state of the5

atmosphere.

Two families of data assimilation methods are currently widely used: variational and Kalman filter (KF).

The variational approach is based on control theory, and formulates data assimilation as a minimization

problem of a cost functional that measures the model-observations mismatch. The Kalman filter approach

is rooted in statistical estimation theory and provides the analysis covariance together with the best state10

estimate. Suboptimal Kalman filters employ different approximations of the covariances in order to make

the computations feasible with large models. Each family of methods has both merits and drawbacks.

This paper compares several data assimilation methods used for global chemical data assimilation. Specif-

ically, we evaluate data assimilation approaches for improving estimates of the summertime global tropo-

spheric ozone distribution; the data is provided by retrievals from Tropospheric Emission Spectrometer15

(TES) and the model is GEOS-Chem. The resulting analyses are compared against an independent data

set provided by ozonesonde measurements to assess the effectiveness of each assimilation method. All

assimilation methods provide notable improvements over the free model run results, which differ from

the ozonesonde measurements by about 20% (below 200 hPa). Four dimensional variational data assim-
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ilation with window lengths between five days and two weeks is the most accurate method, with mean20

differences between analysis profiles and ozonesonde measurements of 1-5%. Two sequential assimilation

approaches (three dimensional variational and suboptimal KF), although derived from different theoretical

considerations, provide similar ozone estimates, with relative differences of 5-10% between the analyses

and ozonesonde measurements.

1 Introduction25

Understanding the distribution of tropospheric ozone is of considerable interest (Li et al., 2005; Cooper

et al., 2006, 2007; Hudman et al., 2007). Ozone is an integral constituent of the troposphere that plays

a significant role in determining the chemical and radiative state of the lower atmosphere. Ozone in

the stratosphere absorbs high energy radiation, thus preventing the disintegration of DNA molecules and

supporting the existence of life on the planet. In the upper troposphere ozone is a greenhouse gas through30

absorption of upwelling long wave radiation. In the mid-troposphere ozone is a precursor to OH radicals

which moderate pollution levels. At the surface ozone is a pollutant causing respiratory problems and

affecting crop yields.

Numerous attempts to quantify the amount of tropospheric ozone and characterizing its distribution

through chemical transport models and general circulation models have been made (Horowitz et al.,35

2003; Horowitz, 2006). The findings from these studies vary significantly due to the strong variability

in ozone lifetimes and uncertainties in determining the amount of ozone lost through dry deposition,

entered through upper troposphere-stratosphere exchanges, or evolved due to chemical reactions of trace

gas and emission precursors. The ozone lifetime varies from a few minutes at the surface, to a few days

in the lower troposphere, to months in the upper troposphere. In such situations, it is important to40

validate the accuracy of model predictions against observed state of the atmosphere. Studies of variations

in tropospheric ozone have been conducted through ozonesonde measurements and surface observations

(Logan, 1994, 1999; Tarasick et al., 2005; Oltmans et al., 2006), while through satellite measurements (Munro

et al., 1998; Tellmann et al., 2004).

Chemical data assimilation is a process of optimally combining imperfect observations of reality with45

imperfect model results to produce a better estimate of the chemical state of the atmosphere. Considerable

experience with data assimilation has been accumulated in the field of numerical weather prediction

(Daley, 1991; Courtier et al., 1998; Rabier et al., 2000; Kalnay, 2002; Navon, 2009). In this work we focus

on chemical data assimilation, i.e., on assimilation of observations of pollutant levels in the atmosphere.

Chemical data assimilation poses specific challenges related to the multiphysics nature of the system, the50

stiffness of chemical kinetic equations, the sparseness of chemical observations, and the uncertainty in the

levels of anthropogenic and natural pollutants emitted into the atmosphere. Throughout this paper we
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will refer to model results as model predictions or model forecasts even when a past period is simulated.

Previous studies have employed various approaches to assimilating observations of trace gases for im-

proved tropospheric chemistry representations. Data assimilation has been used to improve initial con-55

ditions, emissions, and boundary values, and has resulted in improved air quality forecasts. The base

concepts of the variational approach to chemical data assimilation, and the construction of adjoint chem-

ical transport models are discussed in detail in (Sandu et al., 2005; Carmichael et al., 2008). Early work

in chemical data assimilation using variational techniques has been reported in (Khattatov et al., 2000;

Elbern and Schmidt, 2001). Since then there is a growing body of literature with applications of 3D-Var60

and 4D-Var chemical data assimilations. 3D-Var was first used by (Derber et al., 1991; Parrish and Derber,

1992) and later applied by most of the meteorological centers (Courtier et al., 1998; Cohn et al., 1998;

Gauthier et al., 1999a). A study on ozone improvement using 3D-Var assimilation is presented in (Bei

et al., 2008). Adjustment of gas phase chemical tracer initial conditions has been studied in (Chai et al.,

2007; Zhang et al., 2008). Adjustment of pollutant emissions through 4D-Var chemical data assimilation65

has been discussed in (Chai et al., 2009). Data assimilation studies involving particle measurements to im-

prove aerosol fields have been performed in (Hakami et al., 2005; Henze et al., 2009). Suboptimal Kalman

filters have been employed successfully for chemical data assimilation (Khattatov et al., 2000; Menard et

al., 2000; Lamarque et al., 2002; Segers et al., 2005; Clark et al., 2006; Pierce et al., 2007; Parrington et al.,

2009). The use of the ensemble Kalman filter (EnKF) (Evensen, 1994) in chemical data assimilation has70

been studied in (Constantinescu et al., 2007b,c).

Different approaches to data assimilation are rooted in different theories (control, statistical estimation),

have different implementation and computational costs, and yield different performance on large scale

problems of practical interest, A discussion on relationship between optimality of variational data assimi-

lation and Kalman filters is presented in (Li and Navon, 2001). (Houtekamer, 2005) compared the quality75

of background statistics in 3D-Var and EnKF using radiance observations from satellite, while, (Laroche

et al., 2005) compared the characteristics 3D-Var and 4D-Var introduced in the operational suite of the

Canadian Meteorological Center (CMC). (Constantinescu et al., 2007c) and (Wu et al., 2008) compare the

performances of EnKF with 4D-Var for chemical transport models on a regional scale using ground-level

ozone measurements, while, (Geer et al., 2006) provides an intercomparison of tropospheric ozone esti-80

mates obtained through 3D-Var, 4D-Var and Kalman filter assimilation systems for both chemical transport

and global circulation models as part of the Assimilation of ENVISAT Data (ASSET) project.

The Tropospheric Emission Spectrometer (TES) (Beer et al., 2001) is the first dedicated infrared instrument

from which information of the global and vertical distribution of tropospheric ozone can be retrieved.

(Parrington et al., 2009) provided the first set of results from the assimilation of vertical profiles of ozone85

from TES into the GEOS-Chem using suboptimal Kalman filter. We have developed 3D-Var and 4D-Var

data assimilation capabilities for GEOS-Chem v7. The goal of this paper is to provide the first direct
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comparison of global tropospheric ozone distribution estimated through 3D-Var, 4D-Var and suboptimal

KF assimilation systems showcasing the potential of TES profile retrievals. The assessment of analyses

generated through different assimilation systems are on the similar lines of (Geer et al., 2006; Parrington90

et al., 2009).

This work differs from (Wu et al., 2008) in several aspects. First, we study the global ozone distribu-

tion assimilating satellite observations into GEOS-Chem as compared to the ozone forecasts over western

Europe through assimilation of observations from ground stations into Polair3D (Boutahar et al., 2004).

We evaluate the quality of tropospheric ozone analyses estimated by our assimilation systems through95

ozonesonde measurement data, an independent observation dataset not used in assimilation, while (Wu

et al., 2008) has a forecast scoring scheme, where the scores are calculated as root mean square of the

differences between analyses and assimilated observations. Not surprisingly, their optimal interpolation

(OI) scheme fetched the best overall score while 4D-Var performed average. Such a scoring scheme does

not provide a fair assessment of the performance of an assimilation system since there is no provision to100

adjudge whether observations are erroneous. In addition, the average performance of their 4D-Var as-

similation could be attributed to the limitations of their study as they adjusted only the initial conditions

while boundary conditions remained unchanged, making the assimilation ineffective especially for long

range simulations. We believe this plays a significant role in the decrease of their 4D-Var performance

with increase in assimilation window lengths, although they have attributed it solely to the model errors.105

Such a situation does not arise in our case as global assimilations are not restricted by any horizontal

boundaries.

This paper is structured as follows. Section 2 provides the mathematical overview of how observations are

integrated into the model in different data assimilation systems. Section 5.2 discusses the characteristics

of background error covariance matrices used in this study. Section 3 provides a brief overview of the110

global chemical transport model (GEOS-Chem) and its adjoint development. A description of the TES

instrument, its observation operator and profile retrieval formulation is provided in Section 4. Section

6 details the experimental settings, computational costs and assessment of tropospheric ozone estimates

through different assimilation systems. Summary and points of future work are discussed in Section 7.

2 Chemical data assimilation115

Variational methods solve the data assimilation problem in an optimal control framework (Sasaki, 1958;

Le Dimet and Talagrand, 1986; Courtier and Talagrand, 1987; Lions, 1971). Specifically, they attempt

to find the control variable values (e.g., initial conditions) by minimizing the discrepancy between the

model forecast and observations; the minimization is constrained by the governing dynamic equations.

In contrast, statistical estimation methods (generically known as Kalman filters/smoothers) solve the data120
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assimilation problem in a Bayesian framework by combining probability densities of errors from different

sources (Khattatov et al., 2000; Menard et al., 2000; Lamarque et al., 2002; Segers et al., 2005; Clark et al.,

2006; Pierce et al., 2007; Parrington et al., 2009; Constantinescu et al., 2007b,c). In the following discussion,

for simplicity of presentation, we focus on discrete models (in time and space) where the initial conditions

are the control variables.125

Data assimilation provides best estimates of the state of the atmosphere by combining the following three

sources of information.

1. The apriori, or background state xb represents the best estimate of the true state xt available before

any measurements are taken. This estimate is assumed unbiased, and the random background

(estimation) errors εb are typically assumed to have a normal probability density with a background

error covariance matrix B

εb = xb−xt ∈N (0,B). (1)

2. The model encapsulates our knowledge about physical and chemical laws that govern the evolution

of the system. The model evolves an initial state x0 ∈Rn at the initial time t0 to future state values

xi ∈Rn at future times ti,

xi =Mt0→ti (x0) . (2)

The size of the state space in realistic chemical transport models is very large. For example, a

GEOS-Chem simulation at the 2◦×2.5◦ horizontal resolution has n∈O
(
108) variables.

3. Observations xobs
i ∈Rm of the state are taken at times ti, 1= 1,··· ,N

xobs
i =H(xi)+ εobs

i . (3)

The observation operator H maps the state space onto the observation space. In many practical130

situations H is a highly nonlinear mapping (as is the case, e.g., with satellite observation operators).

The observations are characterized by measurement and representativeness errors εobs
i . The obser-

vation errors at each time are assumed to be independent of background errors, and independent of

the observation errors at other times. They are typically assumed to have a normal distribution with

mean zero and covariance Ri,

εobs
i ∈N (0,Ri). (4)

Based on these three sources of information data assimilation computes the posterior estimate xa of the

true state; xa is called the “analysis” state.
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2.1 Three dimensional variational (3D-Var) data assimilation

In the 3D-Var data assimilation the observations (3) are considered successively at times t1,··· ,tN . The

background state (i.e., the best state estimate at time ti) is given by the model forecast, starting from the

previous analysis (i.e., best estimate at time ti−1):

xb
i =Mti−1→ti

(
xa

i−1
)

.

The discrepancy between the model state xi and observations at time ti, together with the departure of the

state from the model forecast xb
i , are measured by the 3D-Var cost function:

J(xi) =
1
2

(
xi−xb

i

)T
B
−1
(

xi−xb
i

)
+

1
2

(
H(xi)−xobs

i

)T
R
−1
i

(
H(xi)−xobs

i

)
(5)

While in principle a different background covariance matrix should be used at each time, in practice the

same matrix is re-used throughout the assimilation window. The 3D-Var analysis is computed as the state

which minimizes (5)

xa
i = argmin J(xi). (6)

Typically a gradient-based numerical optimization procedure is employed to solve (6). The gradient ∇J
of the cost function (5) is

∇J(xi) =B
−1
(

xi−xb
i

)
+
(
H′(xi)

)T
R
−1
i

(
H(xi)−xobs

i

)
(7)

Note that the gradient requires to computation of the linearized observation operator H′ about the current135

state.

Preconditioning is often used to improve convergence of the numerical optimization problem (6). A

change of variables is performed, for example, by shifting the state and scaling it with the square root of

covariance:

x̂i =B
1/2
(

xi−xb
i

)
, (8)

The optimization is then carried out on the new variables x̂i.

2.2 Four dimensional variational (4D-Var) data assimilation

In strongly-constrained 4D-Var data assimilation all observations (3) at all times t1,··· ,tN are simultane-

ously considered. The control parameters are the initial conditions x0; they uniquely determine the state140

of the system at all future times via the model equation (2).

The discrepancy between model predictions and observations at all future times t1,··· ,tN , together with

the departure of the initial state from the background state, are measured by the 4D-var cost function:

J(x0) =
1
2

(
x0−xb

0

)T
B
−1
(

x0−xb
0

)
+

1
2

N

∑
i=1

(
H(xi)−xobs

i

)T
R
−1
i

(
H(xi)−xobs

i

)
(9)
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Note that the departure of the initial conditions from the background is weighted by the inverse back-

ground covariance matrix, B−1, while the differences between the model predictions H(xi) and observa-

tions xobs
i are weighted by the inverse observation error covariances, R−1

i .

The 4D-Var analysis is computed as the initial condition which minimizes (9) subject to the model equation

constraints (2)

xa
0 = argmin J(x0) subject to(2). (10)

The model (2) propagates the optimal initial condition (9) forward in time to provide the analysis at future145

times, xa
i =Mt0→ti

(
xa

0
)
.

The optimization problem (10) is solved numerically using a gradient-based technique. The gradient of

(9) reads

∇J(x0) =B
−1
(

x0−xb
0

)
+

N

∑
i=1

(
∂xi
∂x0

)T (
H′(xi)

)T
R
−1
i

(
H(xi)−xobs

i

)
(11)

The 4D-Var gradient requires not only the linearized observation operator H′, but also the transposed

derivative of future states with respect to the initial conditions. The 4D-Var gradient can be obtained

effectively by forcing the adjoint model with observation increments, and running it backwards in time.

The construction of an adjoint model requires considerable effort, time, and know-how.150

2.3 Suboptimal Kalman filter

The suboptimal Kalman filter is a sequential data assimilation approach (Khattatov et al., 2000) in which

corrections in the concentration state vector are performed as soon as observations become available.

Similar to 3D-Var, for every observation time ti, this technique starts with the model forecast state (x f
i ) and

provides an expected analysis state (xa
i ) that reduces the discrepancy between the model forecast and the

observations xobs
i . The analysis state vector is obtained as

xa
i = x f

i +Ki

(
xobs

i −H
(

x f
i

))
(12)

where K is the Kalman gain matrix, H is the observation operator defined in equation (3), and xobs the

vector of observations at a given time. The Kalman gain matrix is defined as

Ki =P
f
i H

T
(

HiP
f
i HT

i +Ri

)−1
(13)

where P f
i is the forecast error covariance matrix, Ri is the observation error covariance matrix (4), and

Hi =H′(x
f
i ) is the linearized observation operator about the forecast state. If a diagonal or block-diagonal

approximation of the error covariance matrix P f is used in equation (13), the analysis state generated

through equation (12) is suboptimal. A description on the structure of P f is provided in Section 5.2.155
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At each observation time, along with the analysis state, the analysis error covariance matrix Pa
i is also

calculated as

P
a
i = (I−Ki Hi)P

f
i (14)

where I is the identity matrix. There are multiple ways in which this analysis covariance matrix is made

available to the next observation window; here we will transport variances as passive tracers following

(Menard et al., 2000).

3 GEOS-Chem

In this paper we specifically consider GEOS-Chem (http://geos-chem.org), a global three-dimensional160

chemical transport model (CTM) driven by assimilated meteorological fields from Goddard Earth Observ-

ing System(GEOS-4) at the NASA Global Modeling and Assimilation Ofice (GMAO). It is being widely

used by research groups world-wide for performing global atmospheric chemistry studies. The model

along with comparison of model predictions with observations was first described in (Bey et al., 2001).

GEOS-Chem accounts in detail for emissions from both natural and anthropogenic sources, for gas phase165

chemistry, aerosol processes, long range transport of pollutants, troposphere-stratosphere exchanges, etc.

Anthropogenic emissions are obtained from the Global Emissions Inventory Activity (GEIA) (Benkovitz et

al., 1996) while lightning NOx source emissions are estimated using (Price and Rind, 1992), based on deep

convective cloud top heights provided with the GMAO meteorological fields. Biomass burning emissions

are based on (Duncan et al., 2003) while biofuel emissions are from (Yevich and Logan, 2003). The meteo-170

rological fields have a horizontal resolution of 1◦ along latitude and 1.25◦ along longitude with 55 vertical

levels, and a temporal resolution of 6 hrs (3 hrs for surface fields).

The GEOS-Chem Adjoint system (http://wiki.seas.harvard.edu/geos-chem/index.php/GEOS-Chem_Adjoint)

has been developed through a joint effort of groups at Virginia Tech, University of Colorado, Caltech, Jet

Propulsion Laboratory, and Harvard (Henze et al., 2007; Singh et al., 2009a,b; Eller et al., 2009). The system175

can perform adjoint sensitivity analyses and 4D-Var chemical data assimilation. Inverse modeling studies

with GEOS-Chem-Adjoint are exemplified in (Henze et al., 2009; Kopacz et al., 2007; Zhang et al., 2009).

4 Tropospheric Emission Spectrometer (TES) observations

TES (Beer et al., 2001), one of four science instruments aboard NASA’s Aura satellite, measures the

infrared-light energy (radiance) emitted by Earth’s surface, and by the chemical tracers in the atmosphere180

(http://tes.jpl.nasa.gov). Vertical profiles of chemical concentrations are retrieved from the radiance mea-

surements using an off-line inversion process. In this work we assimilate the retrieved ozone vertical

profiles. Figure 1 shows the location of TES profiles for two days.
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A-priori information about the vertical concentration profile of the species of interest is needed to solve

the retrieval inverse problem (the prior information does not come from the measurement). Let xprior be185

the prior vertical ozone concentration profile (in volume mixing ratio units), and let zprior = logxprior. Let

zradiance (=logxtrue) be the atmospheric profile as resulting directly from the radiances.

The vertical ozone profile retrieval can be expressed according to the formula

ẑ= zprior+A
(

zradiance−zprior
)
+Gη, x̂= exp(ẑ). (15)

Here A is the averaging kernel matrix, G is the gain matrix, and η is the spectral measurement error

(assumed to have mean zero and covariance Sη). More details can be found in (Bowman et al., 2002; Jones

et al., 2003; Worden et al., 2004).190

The corresponding TES observation operator 3 is linear with respect to the logarithm of the concentrations,

but nonlinear with respect to the concentration profile:

H(x) = zprior+A
(

log(L(x))−zprior
)

(16)

where L is an interpolation operator that transforms x from the GEOS-Chem N-level vertical grid to the

TES profile retrieval P-level grid.

For this reason several chemical data assimilation studies based on TES retrieved profiles (Jones et al.,

2003; Bowmann et al., 2006; Parrington et al., 2009) have opted to perform the suboptimal Kalman filtering

step (12) in the logarithm of the concentrations:

logxa = logx f +K
(

ẑ−H
(

x f
))

Here K is the Kalman gain matrix, H is the observation operator defined in equation (??), and ẑ is the

ozone profile retrievals from TES as described in equation (15). The analysis state is calculated in natural

logarithm of volume mixing ratio (log VMR) at each observation grid point since the TES profile retrievals195

are in log VMR. An exponential operator and a linear interpolation operator based on pressure is then

applied to this logarithm of analysis state in succession to regain the actual analysis state in GEOS-Chem

grid domain. The points which do not lie on the observation grid remain unaffected by the assimilation.

The observation operator H that transforms higher resolution model state to the TES profile vertical grid

(observation grid) domain is expressed by equation (16). The Kalman gain matrix K is defined by equation200

(13), particularized to the case where the state is the logarithm of volume mixing ratio.

For variational data assimilation the forcing calculation is carried out in concentrations. For this reason, an

adjoint of the observation operator needs to be derived to update the gradients as described in equations
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(7) and (11)

(H′(x))T ·v=
(

∂

∂x
(
A log(L(x))

))T
·v=

(
∂L
∂x

)T
·


(Lx)−1

0 0 ··· 0

0 (Lx)−1
1 ··· 0

...
...

. . .
...

0 0 ··· (Lx)−1
P

 ·AT ·v

Here, (H′(x))T is a matrix and v =R−1
(
H(x)−xobs

)
. The TES averaging kernel A is usually a non-

symmetric matrix, and the result of AT · v is fed to the interpolation operator to construct the diagonal

matrix with the i-th element being 1/(Lx)i. The term (∂L/∂x)T is the adjoint of the interpolation operator

and brings entities from the TES profile retrieval domain back to the GEOS-Chem model domain.205

Note that the TES data can be biased by as much as 10% (Nassar et al., 2008). We have estimated the bias

using the technique proposed in (Nassar et al., 2008) and have removed it before assimilating the data.

5 Experimental setting for data assimilation

For numerical experiments, we employ GEOS-Chem v7-04-10 adjoint code package (Singh et al., 2009b),

capable of performing both 3D-Var and 4D-Var data assimilations with real data. It also incorporates sub-210

optimal Kalman filter approach of data assimilation developed in Parrington et al. (2009). We assimilate

Tropospheric Emission Spectrometer (TES) satellite ozone profile retrievals into the GEOS-Chem model

and validate the generated analyses against an independent observation dataset provided by direct ozone

profile measurements from ozonesondes. The numerical optimization method used in all variational ex-

periments is the limited memory bound-constrained BFGS (Zhu et al., 1997). This quasi-Newton approach215

has become the “gold standard” in solving large scale chemical data assimilation problems (Sandu et al.,

2005).

Simulations with GEOS-Chem v7 adjoint can be carried out at 4◦×5◦ and 2◦×2.5◦ resolutions. We have

used 4◦× 5◦ resolution in all our experiments. There are 46 x 72 latitude-longitude grid boxes at this

resolution, and 55 vertical levels; near the equator and at ground level each grid box covers an area of220

about 400 km × 500 km. The current GEOS-Chem model does not capture well the dynamics of ozone

distribution in the upper troposphere and in the stratosphere. Therefore, we performed data assimilation

for only the first 23 model levels (for up to about 50 hPa). The model has been modified to use the

linearized ozone (linoz) scheme (McLinden et al., 2000) for a better estimation of ozone exchanges at

troposphere-stratosphere boundary. This scheme is going to be used in the next release of the standard225

GEOS-Chem model.
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5.1 Data assimilation schemes

The 3D-Var data assimilation experiments were performed for a period of two weeks in the month of

August 2006, starting at 00:00(GMT) on August 1st. The TES data was read once every four simulation

hours; the observation operator called at model time t (hours) reads in all the measurements collected230

within the interval t−2 (hours) to t+2 (hours). 3D-Var data assimilation treats all observations in this in-

terval as instantaneous, and assimilates them in the same optimization run. In all our 3D-Var experiments,

we performed 8 iterations per analysis since the cost function decreased significantly within the first few

iterations. It is important to note that 3D-Var does not involve any model adjoint calculations; gradients

require only the adjoint of the observation operator. The optimization adjusts ozone concentrations. The235

generated analysis profile at the end of each observation window is evolved through the forward model

that becomes the initial condition for the next observation window. It is also important to mention here

that a new background error covariance matrix (17) is constructed for every observation window.

The setup for data assimilation using the suboptimal Kalman filter is quite similar to 3D-Var where we

assimilated TES profile retrievals into GEOS-Chem over a two week period from 00:00 GMT on August 1,240

2006 to 00:00 GMT on August 15, 2006. Observations were read every 4 hours and analysis states were

generated for each observation window through the sequential update formula (12).

The 4D-Var data assimilation experiments were performed for two different assimilation window lengths

to adjudge if model errors hamper the quality of assimilations in GEOS-Chem involving longer assimila-

tion windows; 4D-Var is strongly constrained by the forward model equation (10). Starting at 00:00 GMT245

on August 1, 2006, the first assimilation window is considered to be of five days while the second window

is of two weeks. All the three assimilation systems had the same initial conditions to start with and were

generated through a free GEOS-Chem model run. There were 12 optimization iterations performed in

order to improve the ozone initial condition. Each iteration during 4D-Var assimilation includes a forward

model and a backward model adjoint run. TES profile retrievals were read every 4 hours during the model250

adjoint run, and the cost function and adjoint gradients accumulated the impact of all 4 hour data sets

throughout the assimilation window. Contrary to 3D-Var and suboptimal KF, where analysis states are

generated sequentially every observation window, in 4D-Var the analysis is generated only at the initial

time and accounts for the mismatch between observations and model predictions over all the observations

in the assimilation window.255

5.2 Specification of error variances

We consider a diagonal background error covariance matrix (B) in all our variational data assimilation

experiments for simplicity. The initial variances (the diagonal entries of the B matrix) are constructed
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from the average background concentrations xB
0 on each of the Nlev model vertical layers

B=


B(0) 0... 0

0 B(1) . . . 0
...

. . .
...

0 0... B(Nlev)

 (17)

where

B
(`) =


σ2
` 0... 0

0 σ2
` . . . 0

...
. . .

...

0 0... σ2
`


dim×dim

, dim= Nlon ·Nlat , (18)

with

σ` =
αrel
dim

Nlon

∑
i=1

Nlat

∑
j=1

xB
0 (i, j,`,sO3) , `= 1,··· ,Nlev , sO3 = index of ozone (19)

The relative uncertainty level in the background initial conditions is taken to be 50%, i.e., αrel = 0.5.

The forecast error covariance matrix P f used in our suboptimal Kalman filter approach is diagonal. The

initial forecast error is assumed to be 50% of the initial forecast field that is supposed to capture the

representativeness error as well. In matrix form, P f
0 is represented as

P
f
0 =


P

f (0)
0 0... 0

0 P
f (1)
0 . . . 0

...
. . .

...

0 0... P
f (Nobs)

0

 (20)

where Nobs is the number of observation points (in our case, the number of grid points in the TES retrieval

domain). The initial forecast error covariance matrix block corresponding to each observation grid point

is given as

P
f (i)
0 = αrel ·


x f

0(i,1,sO3) 0 ... 0

0 x f
0(i,2,sO3) . . . 0

...
. . .

...

0 0 ... x f
0(i,Nret,sO3)


Nret×Nret

, i = 1,2,.. .,Nobs (21)

where Nret is the number of vertical TES profile retrieval levels. Although the initial forecast error co-

variance matrix P f and all analysis Pas henceforth are diagonal and there are no horizontal correlations

being accounted for, the averaging kernels in the observation operator of TES as defined in equation (16)260

provide vertical correlations when operated on P f through equation (13). A detailed discussion on how

to efficiently extend the background error covariance matrices to non-diagonal forms that capture spatial

error correlations is provided in Singh et al. (2010a).
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6 Data assimilation results

6.1 Computational costs265

The 3D-Var and suboptimal KF frameworks are built on top of GEOS-Chem v7 package which uses Sparse

Matrix Vectorized GEAR (SMVGEAR) solver for chemistry. However, to construct the adjoint of chemistry

required by the 4D-Var, we implemented Kinetic PreProcessor (KPP) solver (Damian et al., 2002) into

GEOS-Chem which not only provides a suite of high performance chemical solvers to choose from but

also generates automatically the continuous and discrete adjoint codes (Daescu, 2000, 2003; Sandu et al.,270

2003). A detailed discussion on interfacing KPP with GEOS-Chem and comparison with native SMVGEAR

solver for accuracy and computational performance is presented in Eller et al. (2009). As pointed out in

(Henze et al., 2007), the computational cost of Rosenbrock solver increases significantly with the tolerance

levels; higher tolerances use smaller internal time steps requiring more computation. In our experiments,

we have set RTOL=10−3 and ATOL=10−2 to achieve moderate to high accuracy.275

The suboptimal Kalman filter is less expensive than 3D-Var since it generates the analysis through the

single update formula (12), while 3D-Var requires a few iterations before the optimization routine could

generate a stable optimal analysis field. This is true however as long as the forecast error covariance matrix

is diagonal. Once we move to non-diagonal matrices, the cost of calculating Kalman gain matrix (13) can

be high, although this can be parameterized following, for example, Khattatov et al. (2000). In the case280

of 3D-Var and 4D-Var, using even full B matrix adds a minimal cost to the overall simulation since the

complete matrix is never constructed; at each step only a matrix vector product is required and efficient

techniques are employed to derive the inverse and other powers of B matrix (Singh et al., 2010a). The

4D-Var assimilation is the most expensive of all the assimilation systems under consideration. The reason

is attributed to the fact that a single 4D-Var iteration performs both the forward and adjoint model runs,285

where, several variables on which the adjoint equation depends on, are written in checkpoint files in the

forward model run.

Table 1 provides a comparison of the computational costs of the different data assimilation systems and

the cost of free running model for a 24 hour simulation. All the simulations are performed on a Dell

Precision T5400 workstation with 2 quadcore Intel(R) Xeon(R) processors with clock speed 2.33GHz and290

a RAM of 16GB shared between the two processors.

6.2 Comparison with ozonesonde measurements

In order to assess the quality of analysis fields generated through different assimilation systems, we use

ozonesonde profiles measured by the INTEX Ozonesonde Network Study 2006 (IONS-6) (http://croc.

gsfc.nasa.gov/intexb/ions06.html (Thompson et al., 2007a, 2007b)) for the month of August, assuming295
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Table 1. Timing results for GEOS-Chem free model runs using SMVGEAR and KPP chemistry, suboptimal Kalman

filter, 3D-Var and 4D-Var data assimilations with diagonal background error covariance matrix for a 24 hour simulation

starting 00:00 GMT August 1, 2006.

Experiment Description CPU Time

Free model run, SMVGEAR chemistry solver 2 min 50 sec

Free model run, KPP chemistry solver 3 min 18 sec

Suboptimal Kalman filter with diagonal P f 3 min 08 sec

3D-Var with diagonal B 3 min 57 sec

4D-Var with diagonal B (per model run) 16 min 51 sec

that these measurements provide values close to the true state of the atmosphere. There are 418 ozoneson-

des launched from 22 stations across North America as shown in the Figure 1. A detailed description of

the number of ozonesondes launched per station with longitude and latitude information can be found

in (Parrington et al., 2008). The ozonesonde observations are not used in data assimilation, and therefore

provide an independent data set against which the analysis results are validated. Forecast scoring tech-300

niques using assimilated data as described in (Wu et al., 2008; Constantinescu et al., 2007c) do not provide

a fair assessment of the quality of assimilation if the observation measurements involved high observation

errors.

Fig. 1. Ozonesonde sounding stations (triangles) used during IONS06 campaign and AURA/TES satellite trajectory

snapshots (dots) plotted over the global ozone distribution on August 1st, 2006.
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We first consider the case where the assimilation window length is five days. As per the property of

sequential data assimilation algorithms, the model forecast is corrected as soon as an observation is avail-305

able. Ingesting observations every four simulation hours, we obtain an analysis field every four hours that

accounts for the mismatch between the model prediction and the observations within that observation

window. However, it is important to note that the model prediction at any observation window incor-

porates implicitly the corrections from all previous observations. Thus, as we move forward in time, the

analysis field agrees better with the true state of the atmosphere. 4D-Var on the other hand accumulates310

the forcing due to mismatch between model forecast and observations throughout the assimilation win-

dow to produce an initial condition that, when evolved forward in time through the model, will best fit

the observations. Therefore, in the case of sequential assimilation approaches, to obtain a stable analysis

state that resembles the true chemical state of the atmosphere at a particular instant, we need to start the

simulation days or months prior to that instant to benefit from earlier observations. 4D-Var is advanta-315

geous in situations where past observations are not available, as it provides the best estimate using only

the observations available in the assimilation window under consideration.

We present in Figure 2, a comparison of analysis profiles obtained from different assimilation systems, and

free GEOS-Chem model run against ozonesonde measurement data. The left panel shows vertical ozone

profiles (concentrations against pressure levels); the model predictions are sampled at the locations and320

times of ozonesonde measurements available in the 5-day assimilation window. The differences between

model results and ozonesonde data reflect model prediction errors; one error vertical profile is obtained

for each ozonesonde launch. The center and right panels show the mean and the standard deviation of

these errors. The plots provide an assessment of the quality of tropospheric ozone estimates given by the

free model run, and by data assimilation systems based on suboptimal Kalman filter, 3D-Var and 4D-Var325

approaches. The errors also reflect the impact of TES profile retrievals on these assimilation systems.

It is evident from the plots in Figure 2 that 4D-Var provided the best estimate for lower and mid tro-

posphere ozone concentrations. The relative difference between the mean ozone analysis field and the

ozonesonde measurements were decreased to less than 4% up to 180 hPa as compared to 5-20% in cases

of suboptimal KF and 3D-Var. The overestimation of ozone in the upper troposphere by 4D-Var is intrigu-330

ing and could be attributed to the fact that the TES averaging kernels are bringing stratospheric ozone

values into the analysis at these altitudes. A detailed analysis on the information brought in by TES pro-

file retrievals into the 4D-Var assimilation system at different pressure levels is provided in (Singh et al.,

2010b).

Figure 3 provides the global tropospheric ozone distribution as estimated by GEOS-Chem free model run335

and different assimilation systems. The ozone concentration values are averaged over 10 GEOS-Chem

levels (from the surface to about 370 hPa) for each longitude-latitude grid point on the horizontal domain.

As seen in Figure 3, all the assimilation systems seem to have caused an increase in the tropospheric
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Fig. 2. The impact of ozone profile retrievals from TES on data assimilation systems for GEOS-Chem. Left panel:

mean ozone concentrations sampled at ozonesonde locations and times for 3D-Var, 4D-Var, suboptimal KF analyses

and free model trajectories. Center panel: relative mean errors of predicted ozone concentrations with respect to

ozonesonde measurements. Right panel: standard deviation of absolute values of errors with respect to ozonesonde

measurements. The data is averaged over all ozonesonde launches. These plots were generated from 5 days simulation

from 00:00 GMT August 1, 2006 to 00:00 GMT August 6, 2006 and compared against ozonesonde data available for

the month of August.

ozone as compared to the model forecast with 4D-Var bringing the highest amount. The gain seems to be

prominent in the 30◦ N to 60◦ N latitude region in case of suboptimal KF and 3D-Var, while it is extended340

up to 90◦ N in case of 4D-Var. For a clear demonstration of these changes, we provide in Figure 4, the

plots of differences in the tropospheric ozone estimates through free model run and different assimilation

systems.

In Figure 4, panels (a) and (b) show that the structure of corrections in the ozone concentrations through

3D-Var and suboptimal KF data assimilation are quite similar. The reason behind such a structure is that345

these sequential algorithms bring in instantaneous corrections based solely on the mismatch between the

model predictions and the observations in an observation window (analysis cycle). The localized correc-

tions here are mostly along the Aura satellite orbit. Panel (c) on the other hand showcases the smoother

correction profile of 4D-Var. In each 4D-Var optimization iteration, the cost function and gradients are

accumulated for all the observation windows where the adjoint variable (gradient) is flown backwards in350

time as governed by the model adjoint equation. The corrections brought in by the optimization routine
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(a) Ozone forecast through free model run (b) Ozone estimates through 3D-Var assimilation

(c) Ozone estimates through suboptimal Kalman filter (d) Ozone estimates through 4D-Var assimilation

Fig. 3. Global ozone distribution at 00:00 GMT on August 6, 2006 averaged over the first 10 GEOS-Chem vertical

levels. Panels (a)-(d): Global tropospheric ozone estimates provided by free model run and suboptimal KF, 3D-Var,

and 4D-Var data assimilation systems from a 5-day simulation.

therefore are no more localized. We also plot the difference in the analysis fields obtained by 3D-Var and

suboptimal KF showcasing their close resemblance (panel (d)). Interestingly, there seems to be a localized

overcorrection in the mid west Australian region by the suboptimal Kalman filter.

We next consider simulations with assimilation window length of 2 weeks. A longer assimilation window355

provides an insight into how ozone estimates due to assimilation evolve with time and if the corrections

maintain structures similar to 5-day case. It also helps adjudge if model errors in GEOS-Chem cause any

degradation in the assimilation systems, especially the strongly constrained 4D-Var. Similar to Figure 2, we

present in Figure 5, a comparison of analysis profiles obtained from different assimilation systems against

ozonesonde measurement data. The plots reflect that the accuracy of suboptimal Kalman filter and 3D-Var360

assimilations start to differ with longer assimilation window. While suboptimal KF underestimates ozone

concentrations in the lower and mid troposphere, it performs better than 3D-Var in the mid and upper

tropospheric region. 4D-Var still provided the best ozone estimate of all the assimilation systems, and,
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(a) Absolute difference between 3D-Var analysis and the free

model run

(b) Absolute difference between suboptimal Kalman filter

analysis and the free model run

(c) Absolute difference between 4D-Var analysis and the free

model run

(d) Absolute difference between suboptimal Kalman filter and

the 3D-Var analyses

Fig. 4. Differences in global ozone concentrations at 00:00 GMT on August 6, 2006, the end of 5-day simulation,

averaged over first 10 GEOS-Chem vertical levels. Panels (a)-(c): Differences between suboptimal KF, 3D-Var, and

4D-Var analysis fields and the model forecast (solution without data assimilation). Panel (d): Difference between

suboptimal KF and 3D-Var analysis fields.

unlike the 5 days assimilation window length case, it performed well in the upper tropospheric region as

well except near the tropopause. Panel (c) suggests that the standard deviation of 4D-Var analysis from365

the ozonesonde measurements stayed the least among all the assimilation systems. The relative difference

between the mean ozone analysis field and the ozonesonde measurements were decreased to less than

4% up to 150 hPa as compared to 4-16% in cases of suboptimal KF and 3D-Var. With longer assimilation

window, all the assimilation systems seem to have benefited from more observations being assimilated.

Figure 6 provides the global tropospheric ozone distribution as estimated by GEOS-Chem free model run370

and different assimilation systems. Similar to the 5 days assimilation window case, 4D-Var leads to the

maximum increase in the tropospheric ozone.
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Fig. 5. The impact of ozone profile retrievals from TES on data assimilation systems for GEOS-Chem. Left panel: mean

ozone concentrations at ozonesonde locations for 3D-Var, 4D-Var, suboptimal KF analyses and free model trajectories.

Center panel: relative mean errors of predicted ozone concentrations with respect to ozonesonde measurements.

Right panel: standard deviation of absolute values of errors with respect to ozonesonde measurements. The data is

averaged over all ozonesonde launches. These plots were generated from 2 weeks simulation from 00:00 GMT August

1, 2006 to 00:00 GMT August 15, 2006 and compared against ozonesonde data available for the month of August.

Figure 7 showcases the structure of corrections in model predicted ozone through different assimila-

tion systems. The ozone corrections are up to 20 ppbv, and are consistent among the three assimilation

schemes. The localized correction structure in 3D-Var and suboptimal KF cases still persists with longer as-375

similation window. 4D-Var provides larger corrections with a significant increase in ozone concentrations

in the 30◦ N to 90◦ N latitude region. Interestingly, the localized correction in the mid west Australian re-

gion which was not visible in the 3D-Var case for 5 days assimilation window case, seems to be prominent

in longer assimilation, while, in the case of suboptimal KF, it has been accentuated.

Contrary to what was observed in (Wu et al., 2008) for the 4D-Var assimilation in Polair3D case where the380

accuracy of the ozone estimates decreased with increase in the assimilation window length, our findings

show that the performance of the 4D-Var system improves with increase of the assimilation window. It

seems that assimilating more meaningful observations keeps the effect of model errors from compromis-

ing the quality of assimilation. There is however one case where the accuracy of ozone estimates decrease

with increase in assimilation window length for 4D-Var and that is when the model adjoints are inaccu-385

rate. We have studied this case in detail in (Singh et al., 2010c) and have utilized inaccurate gradients
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(a) Ozone forecast through free model run (b) Ozone estimates through 3D-Var assimilation

(c) Ozone estimates through suboptimal Kalman filter (d) Ozone estimates through 4D-Var assimilation

Fig. 6. Global ozone distribution at 00:00 GMT on August 15, 2006 averaged over the first 10 GEOS-Chem vertical

levels. Panels (a)-(d): Global tropospheric ozone estimates provided by free model run and suboptimal KF, 3D-Var,

and 4D-Var data assimilation systems from a 2-week simulation.

to work towards our benefit in terms of reducing significantly the memory and computational costs, still

maintaining the quality of the analysis.

6.3 Comparison of 3D-Var and 4D-Var

As described in section 2, 3D-Var considers observations at successive intervals and a new analysis vector390

is generated every such interval. These 3D-Var corrections are forward in direction similar to the model

flow and become closer to the reality with more sets of observations being considered. This behavior is

well depicted in Figures 2 and 5. Up to authors knowledge, no such attempt has been made to measure

the net effect of 3D-Var corrections at the initial time. Such a measurement would provide an opportunity

to assess the impacts of 3D and 4D-Var assimilations on the initial conditions. Provided below are the first395

set of formulations to calculate directly the difference of 3D and 4D-Var analyses, and 3D-Var analysis and

20



(a) Absolute difference between 3D-Var analysis and the free

model run

(b) Absolute difference between suboptimal Kalman filter

analysis and the free model run

(c) Absolute difference between 4D-Var analysis and the free

model run

(d) Absolute difference between suboptimal Kalman filter and

the 3D-Var analyses

Fig. 7. Differences in global ozone concentrations at 00:00 GMT on August 15, 2006, the end of 2-week simulation,

averaged over first 10 GEOS-Chem vertical levels. Panels (a)-(c): Differences between suboptimal KF, 3D-Var, and

4D-Var analysis fields and the model forecast (solution without data assimilation). Panel (d): Difference between

suboptimal KF and 3D-Var analysis fields.

initial condition at the start of an assimilation.

Let the background, the 3D-Var, and the 4D-Var solutions at tk be

xB
k , xa(3D−Var)

k , xa(4D−Var)
k ,

respectively.

Define the cost function that measures the discrepancy between the 3D-Var and the 4D-Var solutions at all

times

J
(

xa(4D−Var)
0

)
=

1
2

N

∑
k=0

∥∥∥xa(4D−Var)
k −xa(3D−Var)

k

∥∥∥2
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The gradient is

∇
xa(4D−Var)

0
J
(

xa(4D−Var)
0

)
=

N

∑
k=0

(
∂xa(4D−Var)

k

∂xa(4D−Var)
0

)T

·
(

xa(4D−Var)
k −xa(3D−Var)

k

)
Therefore the gradient w.r.t. the initial conditions is given by the adjoint model forced by the differences

between the 4D-Var and the 3D-Var solutions. The forward solution along which this adjoint is computed400

starts with the 4D-Var optimal initial condition.

We compute the adjoint sensitivities with respect to initial conditions and emissions

∇
xa(4D−Var)

0
J
(

xa(4D−Var)
0

)
and ∇EmissionsJ

(
xa(4D−Var)

0

)
both of which are implemented in Geos Chem v7.

In a similar fashion, the cost function that measures the discrepancy between the 3D-Var and the model

forecast at all times could be defined as

J
(

xB
0

)
=

1
2

N

∑
k=0

∥∥∥xB
k −xa(3D−Var)

k

∥∥∥2

The respective gradient is

∇xB
0
J
(

xB
0

)
=

N

∑
k=0

(
∂xB

k
∂xB

0

)T

·
(

xB
k −xa(3D−Var)

k

)
Therefore the gradient w.r.t. the initial conditions is given by the adjoint model forced by the differences

between the model forecast and the 3D-Var. The forward solution along which this adjoint is computed

starts with the model initial condition.405

Figure 8 represents ****

Discuss why 4D-Var is better than 3D-Var and Multispecies****

7 Conclusions

We have successfully implemented 3D-Var and 4D-Var data assimilation frameworks into GEOS-Chem v7

adjoint package to carry out assimilations of TES ozone profiles. The current study involved estimation410

of global tropospheric ozone distribution. We provide the first set of results of direct comparison between

3D-Var, 4D-Var and suboptimal Kalman filter data assimilation systems. If using diagonal background

error covariance matrix, suboptimal KF is computationally least expensive followed by 3D-Var. Memory

and computational costs for 4D-Var is highest as it requires checkpointing dependent variables and an

additional adjoint model run every iteration. The quality of estimated ozone from different assimilation415

systems were verified using ozonesonde measurements, an independent data set.
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(a) Absolute Difference 3D-Var and Free model initial condi-

tions

(b) Absolute Difference 4D-Var and Free model initial condi-

tions

(c) Absolute Difference 4D-Var and 3D-Var optimal initial con-

ditions

Fig. 8. Global ozone distribution at 00:00 GMT on August 15, 2006 averaged over the first 10 GEOS-Chem vertical

levels. Panels (a)-(d): Global tropospheric ozone estimates provided by free model run and suboptimal KF, 3D-Var,

and 4D-Var data assimilation systems from a 2-week simulation.

Two different assimilation window lengths were considered. Ozone estimates with all three assimilation

systems have benefited from TES profile retrievals. Sequential assimilation methods, 3D-Var and subop-

timal KF, perform similarly for smaller assimilation window decreasing the relative difference between

mean analysis and ozonesonde measurements to about 5-20%. 4D-Var on the other hand brought down420

this difference to less than 4% for up to 180 hPa. For larger assimilation window length, the sequential ap-

proaches seem to differ a bit with suboptimal KF underestimating the ozone concentrations in the lower

and mid troposphere, however performing better than 3D-Var in the mid and upper troposphere. The

relative difference was brought down to 4-16% by sequential approaches while to less than 4% up to 150

hPa by 4D-Var. The structure of corrections in ozone concentration due to sequential assimiation methods425

seem to be localized along the satellite orbit, while smoother and well distributed in case of 4D-Var. The

latitude region 30◦ N to 60◦ N seem to have gained maximum from all the assimilation systems extending
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(a) Adjoint sensitivity of Ox with respect to CO (b) Adjoint sensitivity of Ox with respect to NOx

(c) Adjoint sensitivity of Ox with respect to PAN (d) Adjoint sensitivity of Ox with respect to ENOx

Fig. 9. Global ozone distribution at 00:00 GMT on August 1, 2006 averaged over the first 10 GEOS-Chem vertical

levels. Panels (a)-(d): Global tropospheric ozone estimates provided by free model run and suboptimal KF, 3D-Var,

and 4D-Var data assimilation systems from a 2-week simulation.

up to 90◦ N in case of 4D-Var.

The developed data assimilation frameworks and comparison results would enable users of GEOS-Chem

to obtain better estimates for all available trace gases at surface, tropospheric and stratospheric levels, de-430

pending on the memory and computational requirements. The framework is currently built to assimilate

TES profile retrievals, however, it could easily be extended to use data from any instrument. Another

interesting idea is to carry out assimilation with respect to surface emissions; a good estimate of emission

rates is significantly important for policy making. Interesting and completely new applications such as

efficient information content estimation of observations and construction of full rank covariance matrices435

for variational data assimilation methods are studied in companion papers (Singh et al., 2010a,b,c).
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