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Abstract

The goal of this study is to assess the implications of the choice of correctors for semi-implicit Picard integral deferred correction
(SIPIDC) methods. The SIPIDC methods previously developed compute a high-order approximation by first computing a low-order
provisional solution using a semi-implicit method and then using a first-order semi-implicit method to solve a series of correction
equations, each of which raises the order of accuracy of the solution by one. In this study, we examine the efficiency of SIPIDC
methods that instead use standard second-order semi-implicit methods to solve the correction equations. The accuracy, efficiency,
and stability of the resulting methods are compared to previously developed methods, in the context of both nonstiff and stiff
problems.
© 2007 IMACS. Published by Elsevier B.V. All rights reserved.
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1. Introduction

In applications such as combustion and transport of air pollutants, the dynamics involve processes with widely
differing characteristic time scales. As a result, following the method-of-lines approach, with which the model partial
differential equations (PDEs) are discretized in space, the resulting system of ordinary differential equations (ODEs)
contain both stiff and nonstiff terms. Motivated by the need for an accurate and efficient time integrate of these ODEs,
we developed a new class of semi-implicit methods that are based on the Picard integral deferred correction approach
[11,8,3,12,9,10]. The semi-implicit Picard integral deferred correction (SIPIDC) methods are a generalization of the
explicit and implicit spectral deferred correction (SDC) methods introduced in [4]. SDC methods use a low-order
numerical method to compute an approximate solution with arbitrarily high order of accuracy. This is achieved by
using the low-order numerical method to solve a series of correction equations, each of which increases the order of
accuracy of the approximation. Recent works on the analysis of SDC methods can be found in [5,6].

The original SDC and SIPIDC methods [4,9] use a first-order method both to compute the provisional solution
and to approximate the correction equations. In [10], we developed SIPIDC methods that use standard second- and
third-order semi-implicit methods to compute the provisional solution, and showed that when BDF methods were
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used, the overall efficiency of the SIPIDC methods was improved. Thus, a reasonable question to ask is whether the
efficiency of SIPIDC methods can be further improved by using a second- or higher-order semi-implicit method to
approximate the correction equations. (Forward-backward Euler was used in the correction equation in [10].) Thus,
a goal of this study is to investigate whether using second-order methods such as semi-implicit BDF or RK as the
corrector1 in a SIPIDC method will lead to improvement in efficiency. Because the spirit of SDC and PIDC methods
is to generate high-order approximations using low-order standard methods, we restrict this investigation to second-
order correctors. For the same predictor, SIPIDC methods using a higher-order corrector require fewer iterations of
the correction equation to achieve the same overall order of accuracy relative to methods using a first-order corrector;
however, it is not clear if the lower computational cost comes at the expense of a more significant loss in accuracy or
if using such a higher-order corrector negatively affects the stability of PIDC methods. Thus, we aim to address these
questions using analytical and numerical tests.

Another goal of this study is to further address the issue of order reduction exhibited by SIPIDC methods when
applied to stiff problems. In a previous study [9], we showed that order reduction is alleviated, to some extent, via an
appropriate choice of quadrature nodes. (To be specific, order reduction begins at smaller time steps when uniformly-
spaced quadrature modes are used and when function values computed on the left-hand endpoint of the timestep
are omitted in approximating the Picard integral associated with the stiff process [9].) In a follow-up study [10], we
demonstrated, using both analytic and numerical tests, that the extent and character of order reduction depends criti-
cally on the order of the predictor. Specifically, when a kth-order semi-implicit BDF predictor is used, the convergence
rate in the region of order reduction is k − 1, compared to first-order convergence when an semi-implicit RK predictor
is used.

In this study, we show that the magnitude of the error in the order reduction regime also depends, in part, on
the choice of starting function values in advancing an approximation through a time step. The two choices that we
consider are whether at the kth iteration of the correction equation, the starting values are set to (1) the intermediate
solution values computed at the kth correction iteration of the previous time step, or (2) to solution values computed at
the final iteration of the previous time step. Numerical results suggest that, when applied to a stiff problem, the former
yields smaller errors in much of the order reduction regime.

2. Semi-implicit Picard integral deferred correction methods

In this section we present a short description of SIPIDC methods. A detailed derivation of the SIPIDC methods for
ODEs and for an advection–diffusion–reaction equation can be found in [11] and [3], respectively. The ODE that we
are interested in is given by

u′(t) = FE

(
t, u(t)

) + FI

(
t, u(t)

)
, t ∈ [a, b], (1)

u(a) = u0, (2)

where FI is assumed to be significantly stiffer than FE . Thus, SIPIDC methods compute u(t) by integrating FE

explicitly and FI implicitly.
Without loss of generality, a uniform time step �t > 0 is assumed in the numerical discretization. Let tn = n�t , for

n = 0,1,2, . . . , be the nth time-level. As discussed below, to generate high-order approximations SIPIDC methods
require the accurate approximation of a definite integral. To this end, quadrature nodes are chosen for each time
interval [tn, tn+1]. Thus, in the integration of the solution from tn to tn+1, the time interval [tn, tn+1] is divided into P

equally-spaced subintervals [tn,m, tn,m+1], where tn,m = tn + m�ts , for m = 0,1, . . . ,P − 1, where �ts ≡ �t/P . For
notational simplicity, the subscript n in tn,m is omitted and tn,m is written as tm where there is no ambiguity. The
interval [tm, tm+1] is referred to as a substep.

A SIPIDC method proceeds as follow: a typically low-order provisional solution ũ is computed at the tm’s. Then
the corrections δ ≡ u − ũ is estimated iteratively, progressively increasing the accuracy of the computed solution.

For an arbitrary function ψ(t), let ψk and ψk
m denote numerical approximations to ψ(t) and ψ(tm), respectively,

after k iterations. To advance the solution from tn to tn+1, SIPIDC methods first compute in a predictor step a pro-

1 We will refer to the method used to compute the provisional solution and to approximate the correction equations in a given PIDC method as

the predictor and corrector, respectively.
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visional solution ũ(tm) ≡ u0
m, for m = 0,1, . . . ,P , by means of a semi-implicit method The accuracy of ũ can be

improved using an estimate of its error or correction: u(t) − ũ(t), denoted by δ(t). To estimate δ(t), one may itera-
tively approximate the solution to the correction equation

δ(t) =
t∫

a

(
FE

(
τ, ũ(τ ) + δ(τ )

) − FE

(
τ, ũ(τ )

) + FI

(
τ, ũ(τ ) + δ(τ )

) − FI

(
τ, ũ(τ )

))
dτ + E

(
t, ũ(t)

)
, (3)

where E is the residual function given by

E
(
t, ũ(t)

) = u0 +
t∫

a

(
FE

(
τ, ũ(τ )

) + FI

(
τ, ũ(τ )

))
dτ − ũ(t). (4)

A detailed derivation of (3) is given in [11]. If FE and FI are Lipschitz continuous in u, then (3) implies that ‖δ(t) −
E(t, ũ)‖ = O(�ts+1). Therefore, a (s + k)th order approximation for δ(t) can be computed from a (s + k)th order
approximation for E(t, ũ) and a kth-order approximation to the integral on the right side of (3).

We now present a semi-implicit discretization of (3) using forward-backward Euler method, which increases the
order of accuracy of u0

m+1 by one. In Section 2.1, we will derive second-order discretization of (3). For an arbitrary
function ψ(t), let ψk

m denote a numerical approximation to ψ(tm) after k deferred correction iterations. Furthermore,
for an arbitrary operator F(t, u(t)), let the numerical approximation F(tm,uk

m) be written as F(uk
m). Using this nota-

tion, the semi-implicit discretized form of (3) at the kth iteration is given by

δk
m+1 = δk

m + �ts
(
FE

(
uk+1

m

) − FE

(
uk

m

) + FI

(
uk+1

m+1

) − FI

(
uk

m+1

)) + Em+1
(
uk

) − Em

(
uk

)
. (5)

Using the definition of the residual function E (4), one obtains a direct update equation that can be used to improve
the accuracy of uk . Let Qm+1

m (F) be a numerical quadrature approximation to
∫ tm+1
tm

F (τ)dτ , i.e.,

Qm+1
m (F) = �ts

∑
l

qm
l Fl. (6)

Then at the kth iteration, one solves the following equation

uk+1
m = uk+1

m−1 + �ts
(
FE

(
τ,uk+1

m

) − FE

(
τ,uk

m

) + FI

(
τ,uk+1

m+1

) − FI

(
τ,uk

m+1

))
+Qm+1

n

(
FE

(
uk

) + FI

(
uk

))
. (7)

The quadrature Q should have at least the same order of accuracy as the updated approximation uk+1. As in
[3,9–11], the quadrature Qm+1

m is computed as the integral of an interpolating polynomial over the subinterval
[tm, tm+1].

In a previous study [9] we showed that an L(α)-stable SIPIDC method can be constructed by omitting function
values associated with the stiff component at tn in the quadrature rule. We also showed that the accuracy of the
quadrature associated with the explicit piece is improved, with no loss in stability, by including the left-hand endpoint
in the nonstiff quadrature rule. This choice of quadrature rules, which we referred to as LR (for “left-right”) in [9], is
adopted in this study. To compute a K th-order approximation, the quadrature Q should also have K th-order accuracy.
If P + 1 nodes (or P substeps) are used in the interval [tn, tn+1], uniform integration nodes yield order P accuracy
for the integral Qm+1

m over the subinterval [tm, tm+1]. Thus, to construct an K th-order SIPIDC method that uses the
LR quadrature rule (which excludes the left-hand endpoints in the stiff quadrature rule), K + 1 nodes or K substeps
are required.

In previous studies, SDC and SIPIDC methods were based on Euler methods [4,9]. In [10], we investigated the
stability and efficiency of SIPIDC method that use standard second- and third-order methods in the prediction step.
The methods studied include implicit–explicit (IMEX) backward difference formula (BDF) [2], IMEX Runge–Kutta
(RK) methods [1,7], and multistep methods. The multistep methods were shown to exhibit instability when applied to
sufficiently stiff problems. Thus, in this study, we limit our choice of predictors and correctors to forward-backward

Euler, IMEX BDF, and IMEX RK methods.



848 A.T. Layton / Applied Numerical Mathematics 58 (2008) 845–858
2.1. High-order corrections

The accuracy of uk can be increased by two, instead of one, by replacing the forward-backward Euler method
used in the discretization of the correction equation (5) by a second-order method. We consider two second-order
implementations of the correction steps: one based on the L-stable IMEX RK2 [1], and one based on IMEX BDF2 [2].

We first consider the second-order corrector based on the IMEX RK2 [1]. After discretizing the correction equa-
tion (3) using RK2, one obtains the update equations given by:

RK2-based:

φ
(1)
m+c1

= uk
m + c1�ts

(
FE

(
uk+1

m

) − FE

(
uk

m

) + FI

(
φ

(1)
m+c1

) − FI

(
uk

m+c1

)) +Qm+c1
m

(
FE

(
uk

) + FI

(
uk

))
, (8)

φ
(2)
m+1 = uk

m + �ts
(
c2

(
FE

(
uk+1

m

) − FE

(
uk

m

)) + (1 − c2)
(
FE

(
φ

(1)
m+c1

) − FE

(
uk

m+c1

))
+ (1 − c1)

(
FI

(
φ

(1)
m+c1

) − FI

(
uk

m+c1

)) + c1
(
FE

(
φ

(2)
m+1

) − FE

(
uk

m+1

)))
+Qm+1

m

(
FE

(
uk

) + FI

(
uk

))
, (9)

uk+1
m+1 = uk+1

m + �ts
(
(1 − c1)

(
FE

(
φ

(1)
m+c1

) − FE

(
uk

m+c1

) + FI

(
φ

(1)
m+c1

) − FI

(
uk

m+c1

))
+ c1

(
FE

(
φ

(2)
m+1

) − FE

(
uk

m+1

) + FI

(
φ

(2)
m+1

) − FI

(
uk

m+1

))) +Qm+1
m

(
FE

(
uk

) + FI

(
uk

))
, (10)

where c1 = 1 − √
2/2, c2 = −2

√
2/3.

Note that quadrature rule in (8) approximates the integral
∫
(FE + FI )dτ from tm to tm + c1�ts rather than the

entire substep [tm, tm+1]. Because the correction equation (7) is derived from integral equations (3) and (4), and is
not an ODE, strictly speaking (8)–(10) do not correspond to a discretization using IMEX RK2 owing to the integral
term Q. It is for this reason that (8)–(10) is labeled as “RK2-based” rather than simply “RK2.”

To discretize the update equation arising from (3) using BDF2, we rewrite the equation as an ODE

u′(t) + q ′(t) = FE

(
t, uk+1) − FE

(
t, uk

) + FI

(
t, uk+1) − FI

(
t, uk

)
,

u(tm) = uk+1
m (11)

where

q(t) ≡
t∫

tm

(
FE

(
τ,uk

) + FI

(
τ,uk

))
dτ. (12)

Integrating (11) using BDF2, one obtains

3

2
uk+1

m+1 = 2uk+1
m − 1

2
uk+1

m−1 + �ts
(
2FE

(
uk+1

m

) − FE

(
uk+1

m−1

) − 2FE

(
uk

m

) + FE

(
uk

m−1

)
+ FI

(
uk+1

m+1

) − FI

(
uk

m+1

)) − 3

2
qm+1 + 2qm − 1

2
qm−1. (13)

Next, we approximate the q terms using the numerical quadrature (6), which yields

BDF2-based:

uk+1
m+1 = 2uk+1

m − 1

2
uk+1

m−1 + �ts
(
2FE

(
uk+1

m

) − FE

(
uk+1

m−1

) − 2FE

(
uk

m

) + FE

(
uk

m−1

) + FI

(
uk+1

m+1

) − FI

(
uk

m+1

))
+ 3

2
Qm+1

m

(
FE

(
uk

) + FI

(
uk

)) − 1

2
Qm

m−1

(
FE

(
uk

) + FI

(
uk

))
. (14)

We have previously shown that the choice of quadrature nodes has a significant impact on the characteristic of order
reduction of SIPIDC methods when applied to stiff problems [9]. In this study, we aim to show that the choice of the
starting value(s) for each time-step also plays a role. Consider advancing a solution u from tn to tn+1, using a SIPIDC
method that requires K deferred correction iterations and P substeps. In our previous work, the starting value(s) are
set to be those value(s) computed at the last deferred correction iteration of the previous time step. That is, to compute

u0

1 during the predictor step, the value uK(tn−1,P ) is used as the starting value of a single-step method (e.g., Euler
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or RK), and the values uK(tn−1,P ), . . . , uK(tn−1,P−(m−1)) are used as the starting values of a m-step method (e.g., an
mth-order BDF). This choice of starting values will be referred to as “fixed starting values”.

Fixed starting values were used in previously-applied SIPIDC methods [9,10]. Consider, for example, a K th-order
SIPIDC method that uses IMEX BDF2 as the predictor. To advance the provisional solution through the first substep
[tn,0, tn,1], one solves

3

2
u0

n,1 = 2uK
n−1,P − 1

2
uK

n−1,P−1 + �ts
(
2FE

(
uK

n−1,P

) − FE

(
uK

n−1,P−1

) + FI

(
u0

n,1

))
. (15)

Note that in (15) we set the two starting values u0
n,0 = uK

n−1,P and u0
n,−1 = uK

n−1,P−1. The forward-backward Euler
method was used in the correction steps of all previously applied SIPIDC methods [9,10]. At the kth iteration, the
following equation is solved to integrate the correction equation over the first substep [tn,0, tn,1]:

uk+1
n,1 = uK

n−1,P + �ts
(
FE

(
uK

n−1,P

) − FE

(
uK

n−1,P

) + FI

(
uk+1

n,1

) − FI

(
uk

n,1

)) +Qm+1
n

(
FE

(
uk

) + FI

(
uk

))
= uK

n−1,P + �ts
(
FI

(
uk+1

n,1

) − FI

(
uk

n,1

)) +Qm+1
n

(
FE

(
uk

) + FI

(
uk

))
. (16)

The starting value uk+1
n,0 is set in (16) to uK

n−1,P .
The BDF2-based corrector considered in this study is a two-step method. When a multi-step corrector is used,

care must be taken in computing uk+1
1 at the first substep during a deferred correction iteration. The derivation of

the correction equation (7) is based on the integration of the correction term δk+1 ≡ uk+1 − uk [11]. The correction
term δk+1 is continuous within the interval [tn, tn+1], but may be discontinuous at tn, where δk+1 vanishes. For the
first substep m = 0, tm−1 /∈ [tn, tn+1], and the lack of smoothness means that for m = 0, a second-order correction
step only improves the accuracy of ũ by one order instead of two. In other words, using final values computed in
the previous time step introduces unsmoothness into solutions computed using a BDF2-based corrector limits the
increase in order of accuracy during the correction steps to one. To maintain the expected second-order accuracy
of the corrector, the m starting values for an m-step method are set to different values at each deferred correction
iteration: at the (k − 1)th iteration, we use values computed at the corresponding kth iteration in the previous time
step, uk(tn−1,P ), uk(tn−1,P−1). This choice of starting values will be referred to as “variable starting values.”

Variable starting values must be used in conjunction with a multi-step corrector, or a multi-step predictor that
is followed by a second-order corrector. For a single-step corrector, or a predictor that is followed by a first-order
corrector, one could use either fixed or variable starting values. The choice of fixed or variable starting values may
have an impact on the accuracy of the computed solution. This issue will be investigated below using analysis and
numerical tests.

We use the notation SIPIDCK[Pname,Cname] to denote a K th-order SIPIDC method using numerical methods
Pname and Cname as the predictor and corrector, respectively. If a pth-order predictor and a qth-order corrector is used
to construct a K th-order SIPIDC method, then the correction equation is solved in (K − p)/q iterations.

3. Numerical examples

Two numerical examples are used to study the stability and accuracy of SIPIDC methods. The first example is the
van der Pol’s equation, which is a popular nonlinear test problem for methods for stiff ODEs. The equation prescribes
the motion of a particle x(t) by

x′′(t) + μ
(
1 − x(t)2)x′(t) + x(t) = 0. (17)

After applying the transformation y1(t) = x(t), y2(t) = μx′(t), and t = t/μ one obtains the system

y1(t)
′ = y2(t), (18)

y2(t)
′ = 1

ε

(−y1(t) + (
1 − y1(t)

2)y2(t)
)

(19)

where ε = 1/μ2. As ε approaches zero, these equations become increasingly stiff. Initial conditions are shown in
Table 1. Eqs. (18) and (19) are integrated for t ∈ [0,0.5]. In the integration of (18) and (19), the first equation is
treated explicitly, whereas the second equation is treated implicitly. Because an exact solution is not known for this

problem, errors are computed using a reference solution computed using a 7th-order implicit PIDC method and a
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Table 1
Initial conditions for van der Pol’s equation

ε y1(0) y2(0)

10−3 2 −0.66654321
10−4 2 −0.666654321
10−5 2 −0.6666654321
10−6 2 −0.66666654321
10−7 2 −0.666666654321

very small time step, chosen so that the solutions computed using that PIDC method and using the ARK4(3)6L[2]SA
method [7] converge to the same solution.

The second example is the cosine test, which consists of the ODE

y(t)′ = −2π sin(2πt) − 1

ε

(
y − cos(2πt)

)
, (20)

y(0) = 0. (21)

for t ∈ [0,10]. The cosine test is a special case of the Prothero–Robinson model equation [13]. The exact solution
of (20) and (21) is y(t) = cos(2πt), and as ε → 0 this equation becomes increasingly stiff. In this implementation,
SIPIDC methods are used to integrate (20) and (21) for t ∈ [0,10] by treating the term −2π sin(2πt) explicitly and
the term −(y − cos(2πt))/ε implicitly. The cosine test is chosen because its simplicity allows an explicit examination
of dominant error terms in SIPIDC methods (see Appendix A).

All calculations reported below were performed using MATLAB programs. The error reported is the discrete
L2-norm of the error in time of the computed solution y(tn) at each time step.

3.1. Efficiency comparison

We first assess any potential efficiency improvement introduced by the use of a second-order corrector. This in-
vestigation is motivated by the observation that a higher-order corrector requires fewer deferred correction iterations
to achieve the same overall order of accuracy, and by the numerical results in a previous study [10] which indicate
that the use of a higher-order BDF method in the provisional step improves the overall efficiency of SIPIDC methods.
Recall that a K th-order SIPIDC method constructed using a P th-order predictor requires K − P deferred correction
iterations if forward-backward Euler is used in the correction steps, whereas half as many iterations are needed if a
second-order corrector is used. Thus, in the next set of tests we investigate the effects on overall computational costs,
accuracy, and efficiency when IMEX BDF2 and IMEX RK2 are used in the correction steps. The comparison is made
in the context of nonstiff problems.

In Fig. 1A we compare the efficiency among two SIPIDC6 methods, both using BDF2 predictor, while one uses
Euler and the other uses BDF2 in the correction steps; two SIPIDC5 methods, both using BDF3 predictor, and again
one uses Euler and the other uses BDF2 correctors; and BDF4. Results were obtained using the nonstiff cosine test
with ε = 0.1. In the estimation of computational costs, the solution of the implicit part of the system is assumed to
be much more expensive than the explicit part. This assumption can be justified by the observation that in practice,
the implicit part of a system is usually nonlinear, and to compute its solution requires the application of an iterative
nonlinear solver. For simplicity, we further assume that the implicit solves in all methods have similar computational
costs. With these assumptions, the computational costs of the above SIPIDC methods are compared in terms of the
numbers of implicit solves. Results in Fig. 1A show that, for a sufficiently high accuracy requirement, methods with
the highest order, i.e., the SIPIDC6 methods, is the most efficient; and both SIPIDC5 and SIPIDC6 methods are more
efficient than BDF4.

To assess the effect of BDF2 corrector on overall efficiency compared to a first-order corrector, we first consider the
two SIPIDC6 methods, where one uses an Euler corrector and the other uses a BDF corrector. As argued previously,
using BDF2 corrector reduces the total number of iterations and thus lowers the overall computational costs. Specif-
ically, SIPIDC6[BDF2,Euler] needs 4 deferred correction iterations, whereas SIPIDC6[BDF2,BDF2] needs only 2.
Unfortunately, the computed solution for the cosine test using the BDF2 corrector, although of the same order in

both cases, is also less accurate than with the Euler corrector. These two competing factors yield little gain (in fact,
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Fig. 1. Efficiency comparison among SIPIDC methods using differing predictors and correctors, obtained using the cosine test. A, Comparison
between BDF4 and SIPIDC methods demonstrates the superior efficiency of higher-order methods at a sufficiently high accuracy requirement.
Nonetheless, comparison among SIPIDC6 methods and among SIPIDC5 methods suggests that BDF2 correctors reduce computational cost but
increase errors, resulting in little gain in overall efficiency. B, SIPIDC methods using RK2 instead of Euler corrector need fewer correction steps,
but the two stages involved increased computational costs. The net effect is the almost indistinguishable error and costs for SIPIDC6 methods using
RK2 and Euler correctors.

some loss) in overall efficiency for SIPIDC6[BDF2,BDF2]. When comparing the two error curves corresponding to
SIPIDC5[BDF3,BDF2] and SIPIDC5[BDF3,Euler], one also observes that the increase in error when BDF2 corrector
is used is sufficiently large that its use again results in a decrease in overall efficiency. Test results obtained for the
nonstiff van der Pol problem (ε = 0.1) also fail to identify any efficiency improvement introduced by a BDF2-based
corrector.

In the next set of tests, we compare the efficiency of RK2 and Euler correctors. Fig. 1B shows efficiency results for
SIPIDC6[RK2,RK2] and SIPIDC6[RK2,Euler]. Replacing the Euler corrector by RK2 reduces the number of deferred
correction iterations by 2. However, each RK2 corrector, which has two stages, also requires two function evaluations
whereas Euler requires only one. Consequently, RK2 corrector reduces the number of correction steps but not the

number of function evaluations. Results in Fig. 1B show that accuracy and efficiency of these two SIPIDC6 methods
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are practically indistinguishable. Similar results (not shown) were also obtained for SIPIDC methods of other orders,
and for the van der Pol problem.

3.2. Order reduction

In a previous study [9], we show that the characteristics of order reduction of SIPIDC methods depend critically
on the choice of quadrature nodes: when uniform nodes are used and when the left-hand endpoint is not used in
the quadrature rule associated with the implicit piece, order reduction begins at smaller �t’s, compared to SIPIDC
methods using nonuniform nodes (e.g., Gauss quadrature nodes) or those including the left-hand endpoint in the
quadrature rules. Results in another study [10] show that BDF predictors also change the characteristics of order
reduction of SIPIDC methods on stiff problems. The convergence rate in the region of order reduction is k − 1 for a
kth-order BDF predictor, with errors of O(ε2) magnitude, where ε is the stiffness parameter such that as ε → 0 the
problem becomes increasingly stiff.

Fixed starting values and Euler correctors were used in all previous implementations of SIPIDC methods. Below
we examine convergence behavior of SIPIDC methods that use second-order methods in the correction steps and use
variable starting values, when applied to stiff problems.

We first investigate the effect of the choice of the starting value uk(tn) on the order reduction behavior of SIPIDC
methods using a Euler corrector. The difference in order reduction behavior of SIPIDC methods using the two choices
of starting values, fixed and variable, are considered. (Recall that at the kth deferred correction iterations of a SIPIDC
method that requires a total of K iterations and P substeps, uk(tn,1) is set to be uK(tn−1,P ) and uk(tn−1,P ) of the previ-
ous time-step in the fixed and variable starting values approaches, respectively.) We computed solutions for the cosine
problem for increasingly stiff values of ε using SIPIDC6[BDF2,Euler] and SIPIDC6[BDF3,Euler] and the two choices
of starting values. Error curves are shown in Fig. 2. In panels A and C, we show error versus the number of implicit
function evaluations for approximations obtained by means of SIPIDC6[BDF2,Euler] and SIPIDC6[BDF3,Euler]
methods using variable starting values; analogous results obtained using fixed starting values are shown in panels B
and D. For a first-order Euler corrector, the two choices of starting values yield the same order of convergence outside
of the order reduction regime, i.e., for �t’s that are sufficiently large or small. In the order reduction regime, which can
be observed for ε < 10−3, the SIPIDC6[BDF2,Euler] and SIPIDC6[BDF3,Euler] methods using fixed starting values
generated (panels B and D) approximations with errors that scale like ε2�t and ε2�t2, a result that is consistent with
results in [10]. When variable starting values are used (panels A and C), the same error scaling (ε2�t and ε2�t2 for
SIPIDC6[BDF2,Euler] and SIPIDC6[BDF3,Euler], respectively) is found at the early portion of the order reduction
regime, but the magnitude of the error is smaller than the corresponding values obtained using fixed starting values.
As �t decreases, the convergence rate of the approximations decreases, but error magnitude remains smaller than the
corresponding values in panels B and D.

The reduction in error magnitude in the order reduction regime introduced by the use of variable starting values
can be attributed to the smoothness maintained in the correction term δk . That increased smoothness is achieved via
the use of starting values that have the same order of accuracy as the intermediate values within the time step. With a
smoother δk , the correction equation can be integrated more accurately, although the overall order of accuracy remains
the same for the two choices of starting values.

When forward-backward Euler corrector is used, the overall convergence rate of the SIPIDC method in the or-
der reduction regime is determined solely by the predictor and is independent of the number of deferred correction
iterations. In the next set of numerical tests, we investigate whether the overall order of accuracy can be improved
by applying second-order correctors. Fig. 3 shows convergence results for SIPIDC6 methods using differing predic-
tors and correctors: SIPIDC6[BDF2,BDF2], SIPIDC5[BDF3,BDF2], and SIPIDC6[RK2,RK2]. Results in panel A
indicate that SIPIDC6[BDF2,BDF2] yields O(ε2�t) approximations in the order reduction regime. A comparison
between the error curves for SIPIDC6[BDF2,Euler] in Fig. 2A and for SIPIDC6[BDF2,BDF2] in Fig. 3A reveals only
minute differences. Results in panels B show that SIPIDC6[BDF3,BDF2] yields O(ε2�t2) approximations.

To explain the above convergence behavior, we derived in the Appendices in [10] and in the present work error
formulae for the approximations computed in the first correction step. For a SIPIDC method using a kth-order BDF
predictor and fixed starting value, the low-order terms in the local truncation error have the form

2 k k+1
e ≈ c1ε �t + c2ε�t . (22)
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Fig. 2. Error curves obtained for the cosine test, for differing degrees of stiffness, computed using the SIPIDC6[BDF2,Euler] and
SIPIDC6[BDF3,Euler] methods. Results in panels A and C were obtained using intermediate starting values, and panels B and D using final
starting values. For the time steps used in these simulations, intermediate starting values yielded smaller errors for stiff problems.

The order of the error remains the same whether a Euler corrector is used, or a kth-order BDF corrector is used,
and remains the same regardless of the number of correction steps. Also, although the error formulae are derived for
a simple equation of the same form as the cosine test, they are consistent with results obtained for the van der Pol
problem (not shown). That is, although the error formulae in the Appendices in [10] and in the present work were
derived for a linear problem, errors for the nonlinear van der Pol problem also have the form (22).

Numerical results in a previous study [10] show that, when applied to a sufficiently stiff problem, SIPIDC methods
using ARK predictors and Euler corrector suffer from order reduction and generate only first-order approximations.
Similar results were also obtained for SIPIDC methods using RK-based methods in both the prediction and correction
steps: results in Fig. 3C show that SIPIDC6[RK2,RK2] yields O(ε�t) approximations.

4. Discussion

The goal of this work is to develop new formulations of SIPIDC methods for the temporal integration of ODEs
involving both stiff and nonstiff components. The target SIPIDC methods use various types of first-, second-, and
third-order methods in the predictor step and second-order BDF and RK methods in the correction step. We focus on
two issues: the overall efficiency of SIPIDC methods using BDF2- and RK2-based correctors, and the impact of the

choice of starting values on accuracy.
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Fig. 3. Error curves obtained for the cosine test, for differing degrees of stiffness, computed using the SIPIDC6[BDF2,BDF2],
SIPIDC5[BDF3,BDF2], and SIPIDC6[RK2,RK2] methods. The region of order reduction shows a reduction in the order of convergence in A
and B, but shows a first-order reduction (but larger error magnitude) in C.

In terms of efficiency, the benefit that one may gain by using a second-order corrector is not clear. Compared to a
first-order corrector, a second-order BDF corrector requires fewer deferred correction iterations to achieve the same

overall order of accuracy, and thus lower computational costs. However, our numerical results indicate that owing
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to a reduction in the accuracy of the computed solution, the efficiency of SIPIDC methods does not appear to be
significantly improved via the use of the BDF2 corrector. In some cases, efficiency actually worsens. Similarly, the
RK2-based corrector does not improve efficiency because of the multiple implicit solves required at the stages. It must
be noted that the accuracy and efficiency that a given method can achieve is likely problem dependent. Nonetheless,
because we have failed to identify, in the numerical examples considered in this study, any efficiency improvement
that can be introduced via the use of a second-order corrector, it is not obvious that second-order correctors offer any
significant advantage over the simple Euler corrector.

It may seem somewhat paradoxical that BDF2 and BDF3 predictors were shown to improve efficiency, by reducing
the number of correction steps without a significant reduction in accuracy [10], whereas the BDF2 corrector fails to
achieve an analogous improvement. We believe that the failure of the BDF2 can be attributed to the form of the
correction equation (7), which is not an ODE. To obtain an update equation by discretizing (7) using BDF2, one needs
to approximate not only the time derivative for the target function u, but also the time derivative for the integral q .
The approximation for q ′, which is not required in the prediction step, may have contributed to the larger overall error
when BDF2 corrector is used.

One observation that we made is that the starting values for a multi-step predictor must be carefully chosen if that
predictor is to be used in conjunction with a second-order corrector. In our previous work [10], the starting values
were set to be the final approximations computed in the previous time step. However, the accuracy of these starting
values is of higher order than the approximations computed in the prediction step. The consequence of this mismatch
in error is that the smoothness of the provisional solution is reduced, and its accuracy can only be increased by one in
the subsequent correction steps, regardless of the order of the corrector used. This issue was irrelevant in [10] where
only the Euler corrector was considered. In the present work, in order for the BDF2 and RK2 correctors to yield
the expected second-order improvement in solution accuracy, the starting values are set to values computed at the
corresponding iteration in the previous time step.

It is noteworthy that when using a multi-step second-order corrector, one could avoid using starting values from
the previous time-step by using a single-step second-order method such as the midpoint rule for the first substep only.
However, the use of two different methods (mid-point rule in the first substep and BDF2 in the remainder, for example)
may render the correction term δk+1 unsmooth at tm for m = 1, owing to the difference in the truncation errors of the
two methods. Consequently, although the current correction step improves the accuracy of the solution by two orders,
the next correction step can at most be first order, because δk+1 is no longer smooth within [tn, tn+1]. This observation
has been verified numerically.

Numerical results suggest that the extent and characteristics of order reduction behavior of SIPIDC methods when
applied to stiff problems may depend on the choice of starting values. Indeed, when variable starting values are used,
the magnitude of the error in the order reduction regime is smaller compared to the same SIPIDC method using
fixed starting values. In contrast, using a second-order corrector appears to have little impact on the accuracy of the
approximation. When the BDF2-based corrector is used, SIPIDC methods generate approximations that have similar
accuracy of those obtained using the Euler corrector. Also, additional correction steps do not improve or reduce the
accuracy.

The principal conclusion that can be drawn from this study is that SIPIDC methods using Euler and BDF2 correc-
tors have comparable efficiency and stability behaviors. That results has implications in partial differential equation
(PDE) applications. Indeed, the development of PIDC methods were originally motivated by PDEs arising in mathe-
matical models of physical systems that involve processes of widely-differing characteristic time-scales [3]. The time
integration of those multi-scale PDEs can be greatly benefited from operator splitting, which allows the use of differ-
ent time steps for differing processes. The splitting errors thus introduced can be reduced via the deferred correction
procedure [3]. Because in such PDE applications, a higher-order corrector must be used in conjunction with an equally
high-order splitting method to achieve the expected accuracy in the correction steps, the simplicity of using the Euler
corrector with a simple first-order splitting, as in [3], is particularly appealing—especially given the results in this
study.

Appendix A

In this appendix we develop an analytical formulation for the truncation error for SIPIDC methods applied to a

simple stiff equation.
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Given a smooth function p(t), consider the ODE with exact solution y(t) = p(t) given by

y′ = p′(t) − 1

ε

(
y − p(t)

)
,

y(0) = p(0). (23)

Here ε is the stiffness parameter where the equation becomes increasingly stiff as ε → 0. We integrate (23) by treating
the first term explicitly and the second term implicitly. The following analysis applies to the stiff case where ε 	 �t .

We seek to derive a formula for the truncation error of a SIPIDC method using BDF2 as both its predictor and
corrector. To that end, we first consider a provisional solution computed using the BDF2 method. Let pm ≡ p(tm)

and yk
m ≡ yk(tm). Given a previously computed value y0

m with error e0
m = pm − y0

m, BDF2 advances the solution of
Eq. (23) by one substep given by

y0
m+1 = 2y0

m − 1
2y0

m−1 + �ts(2p′
m − p′

m−1 + 1
ε
pm+1)

3/2 + �ts/ε
. (24)

When ε < �ts , the quantity 1/(3/2 + �ts/ε) can be expanded into the series

1

3/2 + �ts/ε
= ε

�ts

(
1 − 3

2

ε

�ts
+

(
3

2

ε

�ts

)2

− · · ·
)

. (25)

Substituting (25) into (24) yields

y0
m+1 = pm+1 +

(
2p′

m − p′
m−1 + 2y0

m − 1
2y0

m−1 − 3
2pm+1

�ts

)(
ε − 3

2

ε2

�ts
+

(
3

2

ε

�ts

)2

ε − · · ·
)

. (26)

To simplify (26), we make use of the following relations derived using Taylor’s expansion:

2p′
m − p′

m−1 = p′
m+1 − �t2

mp
(3)
m+1 + �t3

mp
(4)
m+1 +O

(
�t4

m

)
, (27)

− 3

2�ts
spm+1 = −p′

m+1 − 1

�ts

(
2pm − 1

2
pm−1

)
+ �t2

m

3
p

(3)
m+1 + 3

4
�t3

mp
(4)
m+1 +O

(
�t4

s

)
. (28)

From (27) and (28), one obtains that

2p′
m − p′

m−1 + 2ym − 1
2ym−1 − 3

2pm+1

�ts
= 2em − 1

2em−1

�ts
− 2

3
�t2

mp
(3)
m+1 + 3

4
�t2

mp
(4)
m+1. (29)

Thus,

ym+1 = pm+1 +
(

2em − 1
2em−1

�ts
− 2

3
�t2

mp
(3)
m+1 + 3

4
�t3

mp
(4)
m+1

)(
ε − 3

2

ε2

�ts
+

(
3

2

ε

�ts

)2

ε − · · ·
)

. (30)

Substituting (29) into (26) and making use of the definition of e0
m ≡ pm − y0

m,

e0
m+1 = 2e0

m − 1
2e0

m−1

�ts

(
ε − 3

2

ε2

�ts
+

(
3

2

ε

�ts

)2

ε

)
− 2

3
�t2

mp
(3)
m+1

(
ε − 3

2

ε2

�ts
+

(
3

2

ε

�ts

)2

ε

)
+O

(
ε�t3) +O

(
ε2�t2) +O

(
ε3). (31)

Now consider the correction equation given a provisional solution y0
m. Note that f (y0

m, tm) = p′
m − 1

ε
e0
m. When a

BDF2-based corrector is used, the direct form of the correction equation for (23) is given by

3

2
y1
m+1 = 2y1

m − 1

2
y1
m−1 + �ts

(
2p′

m − p′
m−1 − 2p′

m + p′
m−1

− 1

ε

(
y1
m+1 − pm+1

) − y0
m+1 + pm+1

)
+ 3

2
Qm+1

m

(
y0) − 1

2
Qm

m−1

(
y0) (32)

1 1 1
(

1( 1 0 )) 3 m+1( 0) 1 m
( 0)
= 2ym −

2
ym−1 + �ts −

ε
ym+1 − ym+1 +

2
Qm y −

2
Qm−1 y . (33)
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Solving for y1
m+1 yields

y1
m+1 = 2y1

m − 1
2y1

m−1 + (�ts/ε)y
0
m+1 + 3

2Qm+1
m (p′(t) + 1

ε
e0(t)) − 1

2Qm+1
m (p′(t) + 1

ε
e0(t))

3/2 + �ts/ε
. (34)

To derive an error formula for y1
m+1, we first consider the last quadrature term in the numerator. The integration

rule given by Eq. (6) defines

Qm+1
m

(
p′(t) − 1

ε
e0(t)

)
= �ts

p∑
l=0

ql
m

(
p′

l − 1

ε
e0
l

)
. (35)

Since the integration rule is assumed to be O(�tq), the first term can be integrated to give

Qm+1
m

(
p′(t) − 1

ε
ẽ(t)

)
= pm+1 − pm +O

(
�tq

) + �ts

ε

p∑
l=0

ql
me0

l . (36)

Similarly,

Qm
m−1

(
p′(t) − 1

ε
ẽ(t)

)
= pm − pm−1 +O

(
�tq

) + �tm−1

ε

p∑
l=0

ql
m−1e

0
l . (37)

Substituting expressions (36) and (37) into Eq. (34) gives

y1
m+1 = 2y1

m − 1
2y1

m−1 + 3
2pm+1 − 2pm + 1

2pm−1 + (�ts/ε)(y
0
m+1 + ∑p

l=0 q̄ l
me0

l ) + O(�tq)

3/2 + �ts/ε
, (38)

where q̄ l
m ≡ 3

2ql
m − 1

2ql
m−1.

Applying the expansion (25), one obtains that

y1
m+1 = y0

m+1

(
1 − 3

2

ε

�ts
+

(
3

2

ε

�ts

)2

· · ·
)

+
(

2y1
m − 1

2
y1
m−1 + 3

2
pm+1 − 2pm + 1

2
pm−1

)(
ε

�ts
− 3

2

(
ε

�ts

)2

+
(

3

2

)2(
ε

�ts

)3

· · ·
)

+
(

p∑
l=0

q̄ l
me0

l

)(
1 − 3

2

ε

�ts
+

(
3

2

ε

�ts

)2

· · ·
)

+ O
(
ε�tq−1) + O

(
ε2�tq−2) + O

(
ε3�tq−3) · · · . (39)

Finally, define the error in the updated solution e1
m = y1

m −pm. Then subtracting pm+1 from both sides of the equation
and manipulating yields

e1
m+1 =

(
2e1

m − 1

2
e1
m−1 +O

(
�t2))(

ε

�ts
− 3

2

(
ε

�ts

)2

+
(

3

2

)2(
ε

�ts

)3

· · ·
)

×
(

e0
m+1 −

p∑
l=0

q̄ l
me0

l

)(
1 − 3

2

ε

�ts
+

(
3

2

ε

�ts

)2

· · ·
)

+ O
(
ε�tq−1) + O

(
ε2�tq−2) + O

(
ε3�tq−3) + · · · . (40)

Consider now the first time step of a SIPIDC method for Eq. (23). Ignoring in (31) terms with second or higher powers
of ε, the dominant error terms in the provisional solution (i.e., terms with lowest power of ε) are found to be

e0
m+1 = −2

3
ε�t2

mp
(3)
m+1 + ε

�ts

(
2e0

m − 1

2
e0
m−1

)
2 2 (3) 2 2

(
(3) 1 (3)

)

= −

3
ε�tmpm+1 −

3
ε �ts 2pm −

2
pm−1 . (41)
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By assumption ε/�ts 	 1, thus the second term on the right side of (41) is much smaller than the first term. Likewise,
the dominant pieces of the correction equation error (40) comes from the term

e1
m+1 = e0

m+1 −
p∑

l=0

q̄ l
me0

l + ε

�ts

(
2e1

m − 1

2
e1
m−1

)
. (42)

Substituting the dominant provisional error (41) into the dominant correction error (42) gives

e1
m+1 = −2

3
ε�t2

mp
(3)
m+1 − 2

3
ε2�ts

(
2p(3)

m − 1

2
p

(3)
m−1

)

−
p∑

l=1

q̄ l
m

(
−2

3
ε�t2

mp
(3)
l − 2

3
ε2�ts

(
2p

(3)
l−1 − 1

2
p

(3)
l−2

))
+ ε

�ts

(
2e1

m − 1

2
e1
m−1

)
. (43)

The summation term can be further expanded in Taylor series

−
p∑

l=1

q̄ l
m

(
−2

3
ε�t2

mp
(3)
l − 2

3
ε2�ts

(
2p

(3)
l−1 − 1

2
p

(3)
l−2

))

=
p∑

l=1

q̄ l
m

(
2

3
ε�t2

mp
(3)
m+1 +O

(
ε�t3) + 2

3
ε2�ts

(
2p(3)

m − 1

2
p

(3)
m−1

)
+O

(
ε2�t2)). (44)

Substituting (44) into (43) and simplifying gives

e1
m+1 = ε

�ts

(
2e1

m − 1

2
e1
m−1

)
+O

(
ε2�t2 + ε�t3 + �tq

)
. (45)

This error formula suggests that in the order reduction region, the error scales like O(ε2�t2 + ε�t3), for sufficiently
large �t . As �t decreases, while still satisfying ε 	 �t , the factor ε/�ts in the first term becomes increasingly
important, and the convergence rate decreases.
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