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Many physical and biological systems involve the interactions of two or more processes
with widely-differing characteristic time scales. Previously, high-order semi-implicit and
multi-implicit formulations of the spectral deferred correction methods (denoted by SISDC
and MISDC methods, respectively) have been proposed for solving partial differential
equations arising in such model systems. These methods compute a temporally high-
order approximation by means of a first-order numerical method, which solves a series
of correction equations to increase the temporal order of accuracy of the approximation.
MISDC methods also allow several fast-evolving processes to be handled implicitly but
independently, allowing for different time steps for each process while avoiding the
splitting errors present in traditional operator-splitting methods. In this study, we propose
MISDC methods that use second- and third-order integration and splitting methods in
the prediction steps, and we assess the efficiency of SISDC and MISDC methods that are
based on those moderate-order integration methods. Numerical results indicate that SISDC
methods using third-order prediction steps are the most efficient, but the efficiency of
SISDC methods using first-order steps improves, particularly in higher spatial dimensions,
when combined with a “ladder approach” that uses a less refined spatial discretization
during the initial SDC iterations. Among the MISDC methods studied, the one with a third-
order prediction step is the most efficient for a mildly-stiff problem, but the method with
a first-order prediction step has the least splitting error and thus the highest efficiency
for a stiff problem. Furthermore, a MISDC method using a second-order prediction step
with Strang splitting generates approximations with large splitting errors, compared with
methods that use a different operator-splitting approach that orders the integration of
processes according to their relative stiffness.

© 2008 IMACS. Published by Elsevier B.V. All rights reserved.

1. Introduction

The dynamics of many physical and biological systems (e.g., combustion and transport of air pollutants) involve several
processes with differing characteristic time scales. When the time scales of the physical processes vary widely, efficient
solution of the partial differential equations (PDEs) that describe the dynamics may require specialized numerical methods.
Thus, in previous studies, high-order semi-implicit spectral deferred correction (SISDC) [7,12,14–16] and multi-implicit spec-
tral deferred correction (MISDC) [4,13] methods were proposed for computing solutions of such systems. SISDC and MISDC
methods are generalizations of the explicit and implicit spectral deferred correction (SDC) methods introduced in [6] and
further analyzed in [8,11]. SDC methods use a low-order numerical method to compute a high-order approximation. This is
achieved by using the low-order numerical method to solve a series of correction equations, each of which increases the
order of accuracy of the approximation.
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To integrate time-dependent PDEs using the SISDC or MISDC methods, one first discretizes the PDEs in space using the
method of lines (MOL) approach, which yields in a large coupled system of ordinary differential equations (ODEs). For sys-
tems involving processes with large disparity in time scales, the ODE system is stiff. By integrating non-stiff terms explicitly,
SISDC methods are more efficient than fully-implicit methods, which solve implicit equations that couple every term in
the system, some of which may be nonlinear. By incorporating the operator-splitting approach, MISDC methods provide an
even more affordable numerical solution, particularly for systems with multiple fast-moving processes: by decoupling pro-
cesses and integrating them sequentially, MISDC methods generate implicit equations that are even easier to solve than in
the semi-implicit approach. Moreover, different time steps may be used for different processes. Unlike traditional operator-
splitting approaches such as Strang splitting [17], the temporal order of accuracy of MISDC methods can be arbitrarily high
because both the integration and splitting errors are eliminated during the deferred correction process. Numerical results
in [4] demonstrate that one may improve the efficiency of a MISDC method by selectively reducing only the time step for
the fastest-moving process, and that MISDC methods compare favorably with semi-implicit Runge–Kutta methods in terms
of efficiency [10].

Most of the early formulations of SDC, SISDC, and MISDC methods use forward and backward Euler methods to compute
the provisional solutions and to solve the correction equations [4,6]. Provided that a sufficiently high level of accuracy is
desired, and/or the temporal interval is sufficiently long (owing to accumulation of numerical truncation errors), high-order
methods are more efficient than low-order methods. Thus, SISDC methods were developed based on moderate-order inte-
gration methods [7,12,15]. Numerical results in [15] suggest that using moderate-order BDF methods in the prediction step
gives rise to SISDC methods that are more efficient, compared to SISDC methods that use Euler methods, because the for-
mer require fewer correction steps to attain a given (high) order of accuracy. Moreover, the use of moderate-order predictor
changes the extent and characteristics of order reduction of the resulting SISDC methods when applied to stiff problems
[15]. However, the benefits of using second-order integration methods in the correction step are less clear [12]. Results in
[12,15] were obtained using ODE problems. Because the development of SDC methods was motivated, in part, by multiscale
PDE problems, in this study, we propose MISDC methods that use second- and third-order integration and splitting methods
in the prediction steps; in particular, Strang splitting is used to compute a temporally second-order provisional solution
of a MISDC method, and a novel operator-splitting approach is developed to compute a temporally third-order provisional
solution. We assess the accuracy and efficiency of SISDC and MISDC methods that are based on moderate-order integration
methods using PDE problems.

The computational cost of an SISDC or MISDC method may also be reduced by means of a ladder approach, which
takes advantage of the lower order of accuracy of the approximations computed by the initial SDC iterations and allows
larger temporal or spatial errors in those initial iterations. Another goal of this study is to examine the effectiveness of
different ladder approaches using PDE examples. Because the accuracy and efficiency of SISDC and MISDC methods have
been compared favorably to existing integration methods (e.g., implicit–explicit (IMEX) Runge–Kutta methods) [4,16], in this
study we focus on the comparison of efficiency among SISDC and MISDC methods.

2. SISDC methods

SISDC methods are suitable for solving ODEs and PDEs that involve two processes of differing time scales; see [16] for
a detailed derivation of the SISDC methods. Below we give a brief review in the context of a PDE problem. Let u(x, t) be a
function that satisfies the PDE

ut = f E + f I , (1)

where f E and f I are functions of x, t , u, and the spatial derivatives of u. The time scale of the process associated with f I is
assumed to be substantially shorter than f E . To complete the specification of the problem, boundary conditions and initial
conditions must be given.

The solution to (1) is approximated by means of the MOL approach. To this end, one first discretizes (1) spatially to
obtain a system of ODEs

u′(t) = F E
(
t, u(t)

) + F I
(
t, u(t)

)
, (2)

u(a) = u0, (3)

for t ∈ [a,b]. The terms F E and F I are obtained from the spatial discretization of f E and f I , respectively. Because F I is
assumed to be much stiffer than F E , SISDC methods treat F E explicitly and F I implicitly.

Without loss of generality, a uniform time step �t > 0 is assumed in the numerical discretization. Let tn = n�t , for
n = 0,1,2, . . . , be the nth time-level. As discussed below, to generate high-order approximations SISDC methods require the
accurate approximation of a definite integral. To this end, quadrature nodes are chosen for each time interval [tn, tn+1]. Thus,
in the integration of the solution from tn to tn+1, the time interval [tn, tn+1] is divided into P equally-spaced subintervals
[tn,m, tn,m+1], where tn,m = tn + m�ts , for m = 0,1, . . . , P − 1, where �ts ≡ �t/P . For notational simplicity, the subscript n
in tn,m is omitted and tn,m is written as tm where there is no ambiguity. The interval [tm, tm+1] is referred to as a substep.

For an arbitrary function ψ(t), let ψk
m denote a numerical approximation to ψ(tm) after k deferred correction itera-

tions. Furthermore, for an arbitrary operator F (t, u(t)), let the numerical approximation F (tm, uk
m) be written as F (uk

m). Let
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E m+1
m (F ) and I m+1

m (F ) be explicit and implicit, respectively, numerical integration approximations to
∫ tm+1

tm
F (τ )dτ . Typi-

cally, E and I are obtained using low- or moderate-order methods, e.g., forward and backward Euler methods as in [4,14].
To advance the solution from tn to tn+1, SISDC methods first compute in a prediction step a provisional solution ũ(tm) ≡ u0

m ,
for m = 0,1, . . . , P , by means of an (s + 1)-step semi-implicit method:

u0
m+1 =

s∑
j=0

b ju
0
m− j + E m+1

m

(
F E

(
u0)) + I m+1

m

(
F I

(
u0)). (4)

We then seek to improve the accuracy of ũ by iteratively approximating the correction δ(t) ≡ u(t) − ũ(t) given by

δ(t) =
t∫

a

(
F E

(
τ , ũ(τ ) + δ(τ )

) − F E
(
τ , ũ(τ )

) + F I
(
τ , ũ(τ ) + δ(τ )

)

− F I
(
τ , ũ(τ )

))
dτ + E

(
t, ũ(t)

)
, (5)

where E is the residual function given by

E
(
t, ũ(t)

) = u0 +
t∫

a

F E
(
τ , ũ(τ )

) + F I
(
τ , ũ(τ )

)
dτ − ũ(t). (6)

See [16] for a detailed derivation of (5).
To use δ to improve the accuracy of ũ, one obtains an update equation by adding ũ to both sides of (5). Let Qm+1

m (F ) be
a numerical quadrature approximation to

∫ tm+1
tm

F (τ )dτ . Then at the kth iteration, one solves the following equation

uk+1
m+1 =

s∑
j=0

b ju
k+1
m− j + E m+1

m

(
F E

(
uk+1) − F E

(
uk))

+ I m+1
m

(
F I

(
uk+1) − F I

(
uk)) + Qm+1

m

(
F E

(
uk) + F I

(
uk)). (7)

The quadrature Q should have at least the same order of accuracy as the updated approximation uk+1. As in [4,16], the
quadrature Qm+1

m is computed as the integral of an interpolating polynomial over the subinterval [tm, tm+1].
In some implementations, the integration methods used to obtain E and I in (4) may differ from those used in the

correction equation (7), and different methods may also be used for each iteration of (7). For instance, one may compute the
provisional solution using a third-order IMEX method, and then solve the correction equation using forward and backward
Euler methods. Nonetheless, for notational simplicity, the same symbols E and I are used in (4) and (7).

2.1. Test problems

The accuracy and efficiency of SISDC methods using integration methods in the prediction and correction steps are
assessed using PDE examples. Specifically, we consider the Burgers equation and the Allen–Cahn equation:

Burgers equation

ut = −uux + εuxx, (8)

u(x,0) = 1

2
+ 1

2
sin(2πx), (9)

with periodic boundary conditions, for x ∈ [0,1] and t ∈ [0,0.25]. The diffusion coefficient ε is set to 0.01.
Allen–Cahn equation

ut = εuxx + u − u3, (10)

u(x,0) = 1

2
− 1

2
tanh(20x − 10), (11)

for x ∈ [0,1] and t ∈ [0,0.25], with Dirichlet boundary conditions u(−∞, t) = 1 and u(∞, t) = 0. Strictly speaking, the
boundary conditions hold only at x = ±∞ for finite t . Nevertheless, for the time and space intervals considered in this
example, u is sufficiently close to 1 and 0 at the left and right boundary points. The diffusion coefficient ε is set to 0.01.

These test problems were chosen because each involves two processes of significantly different time scales: the slow pro-
cesses arise from the advection and diffusion terms, for the Burgers equation and for the Allen–Cahn equation, respectively,
whereas the fast processes arise from the diffusion and reaction terms, for the Burgers equation and for the Allen–Cahn
equation, respectively.

In both examples, the equations are approximated using the MOL approach: first, the equations are discretized in space
using sixth-order centered differencing; the resulting ODEs are then integrated in time using third-, fourth-, and fifth-order
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SISDC methods. In the Burgers equation, the advection term −uux is integrated explicitly and the diffusion term εuxx

implicitly; whereas in the Allen–Cahn equation, the diffusion term εuxx is integrated explicitly and the reaction term u − u3

implicitly. The nonlinear equations associated with the reaction term in the Allen–Cahn equation are solved using Newton’s
method.

2.2. Moderate-order predictions and corrections

Let SISDCK [npPncC] denote a K th-order SISDC method having an npth-order prediction step and an ncth-order correction
step (np +nc � K ). Results in our previous study [15] indicate that moderate-order IMEX BDF, owing to their efficiency and to
their stability and accuracy when applied to stiff ODEs (desirable properties that have been revealed in other studies [1,3,9]),
are better methods to be used in the prediction step, compared to IMEX Runge–Kutta and other multi-step methods. Thus,
below we consider three implementations of the prediction steps: one based on forward and backward Euler methods, one
on a second-order IMEX BDF, and one on a third-order IMEX BDF. Specifically, these methods compute provisional solutions
as follows:

Euler: u0
m+1 = u0

m + �tm
(

F E
(
u0

m

) + F I
(
u0

m+1

))
, (12)

BDF2:
3

2
u0

m+1 = 2u0
m − u0

m−1 + �tm
(
2F E

(
u0

m

) − F E
(
u0

m−1

) + F I
(
u0

m+1

))
, (13)

BDF3:
11

6
u0

m+1 = 3u0
m − 3

2
u0

m−1 + 1

3
u0

m−2 + �tm
(
3F E

(
u0

m

) − 3F E
(
u0

m−1

) + F E
(
u0

m−2

) + F I
(
u0

m+1

))
. (14)

Two implementations of the correction steps are considered: one based on forward and backward Euler methods, and
the other on IMEX BDF2. The discretized correction equations are given by [12]:

Euler:

uk+1
m+1 = uk+1

m + �tm
(

F E
(
uk+1

m

) − F E
(
uk

m

) + F I
(
uk+1

m+1

) − F I
(
uk

m+1

)) + Qm+1
m

(
F E

(
uk) + F I

(
uk)), (15)

BDF2:

uk+1
m+1 = 2uk+1

m − 1

2
uk+1

m−1 + �ts
(
2F E

(
uk+1

m

) − F E
(
uk+1

m−1

) − 2F E
(
uk

m

)

+ F E
(
uk

m−1

) + F I
(
uk+1

m+1

) − F I
(
uk

m+1

)) + 3

2
Qm+1

m

(
F E

(
uk) + F I

(
uk))

− 1

2
Qm

m−1

(
F E

(
uk) + F I

(
uk)). (16)

2.3. Numerical results: Moderate-order predictors improve overall efficiency

Using the Burgers equation and Allen–Cahn equation, we compare the efficiency of SISDC methods using prediction and
correction steps of differing orders. We compare SISDCK [1P1C], SISDCK [2P1C], SISDCK [3P1C], and SISDCK [2P2C], where
K = 4 or 5. To compute a fifth-order approximation, the SISDC5[2P2C] first computes a second-order provisional solution,
then solves a second-order correction equation, followed by a first-order correction step.

Before reviewing the numerical results, we first estimate the computational costs of the SISDC methods under consider-
ation. To that end, we assume that the solution of the implicit part of the system is much more expensive than the explicit
part. For simplicity, we further assume that the implicit solves in all SISDC methods have similar computational costs. With
these assumptions, the computational costs of the above SISDC methods can be compared in terms of the numbers of im-
plicit solves. For the SISDCK [1P1C] method, K −1 solves are required (one for each of the K −1 substeps) for the provisional
step and for each of the K − 1 correction steps. Thus, a total of K (K − 1) implicit solves are required. For the SISDCK [2P1C]
and SISDCK [3P1C] methods, there are K − 2 and K − 3 correction steps, respectively; thus, these methods require (K − 1)2

and (K − 1)(K − 2) implicit solves, respectively. There are 1 and 2 correction steps in the SISDC4[2P2C] and SISDC5[2P2C]
methods, respectively, which implies that these methods require 6 and 12 (or (K − 1)(K − 2)) implicit solves. The above
analysis shows that, if the implicit solves require similar computational costs for all methods, then the SISDCK [3P1C] and
SISDCK [2P2C] methods are likely the most efficient.

In the numerical tests, a spatial grid of N = 512 subintervals was used when solving the Burgers equation, whereas
a less refined spatial grid N = 64 was used for the Allen–Cahn equation. For Burgers equation, time steps were set to
�t = 8,4,2,1 × �x for fourth-order SISDC methods and �t = 16,8,4,2 × �x for fifth-order SISDC methods; for Allen–
Cahn equation, �t = 1, 1

2 , 1
4 , 1

8 × �x. Results are shown in Figs. 1 and 2. (The approximations obtained for the Allen–

Cahn equation using fifth-order SISDC methods and �t = 1
8 �x are dominated by spatial errors and thus those results are

not shown.) These results suggest that for these problems, using moderate-order prediction and correction steps reduce
computation costs. For the same time step, SISDCK [1P1C] methods, which require the most correction steps to attain a
given order of accuracy, are likely to have the highest computational costs, whereas the SISDCK [3P1C] methods, which
require the least (or among the least) correction steps, are likely to have the lowest (or one of the lowest) costs. These



A.T. Layton / Applied Numerical Mathematics 59 (2009) 1629–1643 1633
Fig. 1. Efficiency comparison of fourth-order SISDC methods using prediction and correction steps of differing orders. Results obtained for Burgers equation
(top) and Allen–Cahn equation (bottom).

results are consistent with the analysis above. Nonetheless, it is noteworthy that the SISDCK [1P1C] methods considered
generate the most accurate approximations (at the same order) for these problems. The relative accuracy and efficiency of
these SISDC methods is likely to be problem dependent to some extent. Indeed, for the Burgers equation, SISDCK [3P1C]
and SISDCK [2P2C] methods are the most efficient, whereas for the Allen–Cahn equation, SISDCK [3P1C] and SISDCK [2P1C]
methods are the most efficient.

2.4. Ladder approaches

The approximations computed by the provisional step and by the initial correction steps have lower orders of accuracy
than the final solution. Ladder approaches make use of this fact to reduce the computational cost of a SISDC method without
compromising the overall order of the solution. This is achieved by allowing larger temporal or spatial errors in the initial
SDC iterations. Indeed, ladder approaches are similar to multigrid methods, which recursively compute provisional solutions
and corrections on coarser (space or time) grids.

An example of the ladder approaches—a multigrid method in time—was implemented in [16]. To obtain a K th order
solution, the quadrature Q in (7) must be approximated to K th order. When Gauss–Lobbato or uniformly-spaced nodes
are used, K nodes or K − 1 substeps are required. Based on the observation that the kth correction equation computes an
O(�tk+2) approximation, the number of substeps used to compute the solution during the initial SDC iterations was re-
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Fig. 2. Efficiency comparison of fifth-order SISDC methods using prediction and correction steps of differing orders. Results obtained for Burgers equation
(top) and Allen–Cahn equation (bottom).

duced, i.e., fewer substeps were used when k is small [16]. This approach will be referred to as “Ladder: substep”. When this
approach was applied to a linear problem [16], the reduction in computational cost was offset by a reduction in accuracy,
and no significant improvement in efficiency was observed. Nonetheless, below we further investigate the effectiveness of
the “Ladder: substep” approach using nonlinear PDE problems (8) and (10).

Alternatively, one may use a less refined spatial grid or a lower-order spatial discretization method when k is small;
these two approaches, which are examples of multigrid methods in space, will be referred to as “Ladder: space-res” and
“Ladder: space-order”, respectively. A justification that the “Ladder: space-order” approach preserves the overall order of a
SISDC method and a lower bound for the orders of the spatial methods is given in Appendix A.

The lower the expected accuracy of the solution of an intermediate SDC iteration, the lower the accuracy—and lower
the computational cost—of the temporal and spatial discretization needed for that iteration (i.e., fewer substeps or spatial
grid points, or a lower-order spatial discretization method, are needed to generate an approximation of the required order).
Thus, ladder approaches are likely to be more effective when used in conjunction with a SISDC method that uses a low-
order prediction step. Another issue is that, although the ladder approaches preserve the overall order of the SISDC methods,
the accuracy of the methods will likely be affected [16]. Thus, the question is whether the gain in speed is outweighed by
the reduction in accuracy. Below we conduct numerical tests to assess the efficiency gain, if any, that may be obtained
by combining the above ladder approaches with SISDC methods, and to determine whether the SISDC[1P1C] method using
ladder approaches may be more efficient than the SISDC methods using high-order prediction steps.
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2.5. Numerical results: “Ladder: space-res” greatly improves efficiency

We compare the efficiency of four implementations of the SISDC4[1P1C] methods by means of the Burgers equation:
(i) base case without ladder approach, (ii) with “Ladder: substep”, (iii) with “Ladder: space-res”, and (iv) with “Ladder:
space-order”. A spatial grid of N = 512 subintervals was used, except in the initial SDC iterations with “Ladder: space-res”
approach. In the computations of the prediction and correction steps, the “Ladder: substep” approach used 1, 2, 2, and 3
substeps; the “Ladder: space-res” approach used spatial grids of N = 64, 128, 256, and 512; and the “Ladder: space-order”
approach used third-, fourth-, fifth-, and sixth-order centered differencing. The time steps were set to �t = 8,4,2,1 × �x,
where in the “Ladder: space-res” approach the time steps were chosen using the smallest �x.

Before reviewing the numerical results, we first estimate the computational saving of the ladder approaches under con-
sideration. Given a spatial grid of N subintervals, it takes O(N) or ∼cN floating-point operations to advance the solution
by one substep. Assume that the number of operations does not vary substantially by the applications of ladder approaches,
c can be assumed to be the same for all four SISDC4[1P1C] methods for each substep. Then for the base case, the total
number of operations required for each time step is 12cN (4 SDC iterations, each with 3 substeps). The “Ladder: substep”
approach requires 8cN operations. With the “Ladder: space-res” approach, each substep in the prediction step requires cN/8
operations, the first, second, and third SDC iteration requires cN/4, cN/2, and cN operations, respectively; thus the total
number of operations required is 45/8cN . With the “Ladder: space-order” approach, each substep in the prediction step
requires cN(3/6) operations, the first, second, and third SDC iteration requires cN(4/6), cN(5/6), and cN operations, re-
spectively; thus the total number of operations required is 9cN . Thus, one expects the “Ladder: space-res” approach to yield
the largest reduction in computational cost.

Fig. 3, top, shows the L∞ errors and computational times for the four SISDC4[1P1C] methods. For sufficiently large �t , all
four methods generate approximations that exhibit approximately fourth-order convergence in time. For a given time step,
the base-case approximation, in which no ladder approach was used, is the most accurate. However, the computational cost
associated with the base case is also highest. For this problem, the “Ladder: space-res” approach is the most effective, a
result that is consistent with the analysis above.

In the next set of numerical tests, we study the accuracy and efficiency of SISDC methods that combine the “Ladder:
space-res” approach with moderate-order predictors and correctors. In particular, we compare the efficiency of the
SISDC4[1P1C], SISDC4[2P1C], SISDC4[3P1C], and SISDC4[2P2C] methods. For a method that requires K prediction and cor-
rection steps, a spatial grid of N0/2K−k was used in the kth SDC iteration, where N0 denotes the number of spatial intervals
used to compute the final solution. The results are shown in Fig. 3, bottom. As previously mentioned, ladder approaches are
likely to be more effective when applied to SISDC methods that use low-order prediction and correction steps. Indeed, com-
pared to the base-case (no ladder approach) results in Fig. 1, top, the relative efficiency of SISDC4[1P1C] and SISDC4[2P1C]
methods improved with the use of the “Ladder: space-res” approach, and for this problem, SISDC4[1P1C], SISDC4[2P1C],
and SISDC4[3P1C] show comparable efficiency. The SISDC4[2P2C] method is substantially less efficient than other methods.
This may be attributable to a reduction in the smoothness of the correction δ by the spatial errors that are different for
each iteration. This results in larger errors when a second-order method (rather than a first-order method) is used in the
correction step.

The above results are obtained for one-dimensional (spatial) problems. In two dimensions, reducing the spatial resolution
by a half reduces the computational cost by three-fourth, compared to the cost reduction of a half in one dimension.
Thus, the “Ladder: space-res” approach is likely to be more effective in higher spatial dimensions. To demonstrate that, the
efficiency of the SISDC4[1P1C], SISDC4[2P1C], SISDC4[3P1C], and SISDC4[2P2C] methods, applied in conjunction with the
“Ladder: space-res” approach, is compared in the solution of the following two-dimensional problem:

ut = −uux − u y + ε(uxx + u yy), (17)

u(x, y,0) = 1

2
+ 1

2
sin(2πx) sin(2π y), (18)

for x ∈ [0,1], y ∈ [0,1], and t ∈ [0,0.25]. The diffusion coefficient ε is set to 0.01. Bi-periodic boundary conditions are
assumed.

Fig. 4 shows the L∞ errors and computational times for the four methods. With the “Ladder: space-res” approach,
the SISDC4[1P1C] method is only slightly more expensive than methods using moderate-order prediction/correction steps.
The relative difference in computational costs among these methods is smaller in two dimensions, because, as mentioned
previously, a reduction in spatial resolution results in a larger reduction in cost. Because the SISDC4[1P1C] method is most
accurate for this problem, it is also the most efficient method among the four. Thus, these results suggest that in higher
spatial dimensions, the benefit of the “Ladder: space-res” approach may outweigh that of moderate-order prediction and
correction methods.

3. MISDC methods

For PDEs that involve multiple fast processes of differing time scales, MISDC methods provide a flexible and efficient time
integration. In this section, we introduce high-order MISDC methods that use a second- or third-order method to compute
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Fig. 3. Top: efficiency comparison of fourth-order SISDC methods using differing ladder approaches (base case, no ladder approach). Bottom: efficiency
comparison of fourth-order SISDC methods using “Ladder: Spatial Resolution” approach, and prediction and correction steps of differing orders.

provisional solutions, and we compare these methods to the high-order MISDC methods presented in [4], which is based
on forward and backward Euler method. Moderate-order correction steps, similar to those developed for SISDC methods in
Section 2.2, can also be constructed, but because the effectiveness of such correctors is unclear, we will restrict our focus to
the prediction step. The performance of moderate-order prediction steps will indicate whether the development of methods
with moderate-order correction steps is a worthwhile pursuit.

The methods are applied to the advection–diffusion–reaction (A-D-R) equation given by

ut = f A ux + νuxx + f R , (19)

where f A(x, t, u(x, t))ux(x, t) is the (possibly nonlinear) advection term, ν is the diffusivity, and f R(x, t, u(x, t)) is the re-
action term. In general, the diffusion term is given by (ν(x, t)ux(x, t))x , but for simplicity, ν is assumed to be constant.
Boundary conditions and initial conditions must be given to complete the specification of the problem.

When MISDC methods are used in conjunction with MOL to approximate the solution to (19), the equation is first
discretized spatially, resulting in a system of ODEs,

u′(t) = F A
(
t, u(t)

) + F D
(
t, u(t)

) + F R
(
t, u(t)

)
, (20)

u(a) = u0, (21)
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Fig. 4. Efficiency comparison of fourth-order SISDC methods using “Ladder: space-res” approach, and prediction and correction steps of differing orders, for
the two-dimensional Burgers problem.

for t ∈ [a,b]. The terms F A , F D , and F R are obtained from the spatial discretization of f Aux , νuxx , and f R , respectively,
and hence do not depend on the spatial derivatives of u. Therefore, F D is simply a linear operator, as is F A in the linear
case where f A does not depend on u. Eqs. (20) and (21) are then integrated using MISDC methods, in which the non-
stiff advection term F A is treated explicitly and the stiff diffusion and reaction terms F D and F R are integrated implicitly.
Moreover, like the operating-splitting approach, processes are decoupled and integrated sequentially, possibly using different
time steps.

The MISDC methods developed in [4] are based on forward and backward Euler methods and on a first-order operator-
splitting approach. Results in Section 2 suggest that one may construct a more efficient SISDC method by using a second- or
third-order method to compute the provisional solution; numerical tests will be conducted to determine whether analogous
results hold for MISDC methods.

3.1. Second-order prediction step

A multi-implicit, operator-splitting procedure is described here for obtaining a provisional solution of the spatially dis-
cretized A-D-R equation (19) with second-order temporal accuracy. The procedure is based on Strang splitting [17]. In the
integration of the solution from tn to tn+1, the time interval [tn, tn+1] is divided into N A subintervals by choosing points tm

for m = 0,1, . . . , N A . Assume for now that all three processes are integrated using the same time step �tm ≡ tm+1 − tm . To
advance the solution from tm to tm+1, one solves following equations sequentially

u A

(
tm + �tm

2

)
= u(tm) +

tm+ �tm
2∫

tm

F A
(
u(τ )

)
dτ , (22)

uD

(
tm + �tm

2

)
= u A

(
tm + �tm

2

)
+

tm+ �tm
2∫

tm

F D
(
uD(τ )

)
dτ , (23)

uR(tm + �tm) = uD

(
tm + �tm

2

)
+

tm+�tm∫
tm

F R
(
uR(τ )

)
dτ , (24)

uD(tm + �tm) = uR(tm + �tm) +
tm+1∫

t + �tm

F D
(
uD(τ )

)
dτ , (25)
m 2
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Fig. 5. Illustration of three levels of time-step subdivision: [tn, tn+1] into [tm, tm+1], [tm, tm+1] into [tp , tp+1], and [tp , tp+1] into [tq, tq+1]. In this example,
N A = 3, ND = 4, NR = 3, m = 1, p = 2, and q = 1.

u(tm + �tm) = uD(tm + �tm) +
tm+1∫

tm+ �tm
2

F A
(
uD(τ )

)
dτ . (26)

Note that Eq. (26) is an advection step, but because it yields the full solution, the result is denoted by u rather than u A .
To attain overall O(�t2) accuracy, the integrals on the right must be approximated to O(�t2). To reduce overall com-

putational cost with little loss in accuracy, one may integrate slower processes using larger time steps. To use smaller
time steps for the diffusion process and yet smaller ones for the reaction process, the substep [tm, tm+1] is subdivided
into ND subintervals by choosing points tm,p for p = 0,1, . . . , ND such that tm,p = tm + p�tp where �tp = �tm/ND .
Then [tm,p, tm,p+1] is further subdivided into NR subintervals by choosing points tm,p,q for q = 0,1, . . . , NR such that
tm,p,q = tm,p + q�tq where �tq = �tp/NR . Where there is no ambiguity, the subscript m is omitted in tm,p , and m and
p omitted in tm,p,q for notational simplicity; i.e., tm,p and tm,p,q are written as tp and tq , respectively. Fig. 5 shows an
example of time-step subdivision.

To improve accuracy, we couple the intermediate solutions of (22) and (23), and of (25) and (26). The diffusion and
reaction processes are integrated using time steps �tp and �tq , respectively, (23)–(25) become

uD(tp + �tp) = uD(tp) +
tp+�tp∫

tp

F A
(
u(τ )

) + F D
(
uD(τ )

)
dτ , (27)

uR(tq + �tq) = uR(tq) +
tq+�tq∫

tq

F R
(
uR(τ )

)
dτ , (28)

uD(tp + 2�tp) = uR(tp + �tp) +
tp+2�tp∫

tp+�tp

F A
(
u(τ )

) + F D
(
uD(τ )

)
dτ . (29)

In (28), uR(tq) = uD(tp + �tp) for q = 0. Eq. (28) is solved for two diffusion time steps, i.e., q = 0,1, . . . ,2NR − 1. Eqs. (27)–
(29) are repeatedly solved in sequence for one advection time step, i.e., for p = 0,2,4, . . . , ND − 2.

To compute a second-order provisional solution, the advection term is extrapolated to second order, and the diffusion
and reaction terms are averaged in time. Eqs. (27), (28), and (29) are approximated to second order by

uD p+1 = uD p + �tp

((
N A + p − 1

2

N A

)
F A(um) −

(
p − 1

2

N A

)
F A(um−1) + 1

2
F D(uD p ) + 1

2
F D(uD p+1)

)
, (30)

uRq+1 = uRq + �tq

2

(
F R(uRq ) + F R(uRq+1 )

)
. (31)

The procedures for computing a second-order provisional solution are summarized below:

For m = 0, . . . , N A − 1
For p = 0,2,4, . . . , ND − 2

u0
D p+1

= u0
D p

+ �tp

((
N A + p − 1

2

N A

)
F A

(
u0

m

) −
(

p − 1
2

N A

)
F A

(
u0

m−1

) + 1

2
F D

(
u0

D p

) + 1

2
F D

(
u0

D p+1

))
, (32)

u0
R0

= u0
D p+1

For q = 0, . . . ,2NR − 1

u0
Rq+1

= u0
Rq

+ 1

2
�tq

(
F R

(
u0

Rq

) + F R
(
u0

Rq+1

))
(33)

End

u0
p+2 = uR

0
2NR

+ �tp

((
N A + p + 1

2

N A

)
F A

(
u0

m

) −
(

p + 1
2

N A

)
F A

(
u0

m−1

) + 1

2
F D

(
u0

R2NR

) + 1

2
F D

(
u0

D p+2

))
(34)
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Compute F D(u0
p+2), F R(u0

p+2)
End
Compute F A(u0

m+1).
End

The above algorithm generates second-order approximations at every other diffusion node, i.e., at tp where p =
0,2,4, . . . , ND − 2. Second-order approximations are obtained at other locations by means of second-order Lagrange in-
terpolations.

3.2. Third-order prediction step

We now present a MISDC method that uses a third-order prediction step. Because a limitation of Strang’s splitting is that
its generalization to higher than second order in time is not straightforward, our approach is not based on Strang splitting.
The strategy for approximating the solution in the subinterval [tp, tp+1]

u(tp + �tp) = u(tp) +
tp+�tp∫

tp

(
F A

(
τ , u(τ )

) + F D
(
τ , u(τ )

) + F R
(
τ , u(τ )

))
dτ (35)

is as follows: first an approximation uR p+1 is computed by treating both advection and diffusion explicitly, and by integrating
reaction implicitly, using the diffusion time step �tp , i.e.,

uR p+1 =
s∑

j=0

b jup− j + E p+1
p

(
F A(τ , u) + F D(τ , u)

) + I p+1
p

(
F R(τ , u)

)
. (36)

In this first step, diffusion is treated explicitly to avoid coupling it with reaction, which would require the solution of a
system of coupled nonlinear equations. The error in uR p+1 is likely to be large because of the stiffness in the diffusion term.
Thus, a more accurate approximation uD p+1 is then computed by treating advection explicitly, and by integrating reaction
and diffusion implicitly. Again, we want to avoid the coupling of the global diffusion and nonlinear reaction terms. To that
end, F R is evaluated using known uR values at tp+1 as follows:

uD p+1 =
s∑

j=0

b jup− j + E p+1
p

(
F A(τ , u)

) + I p+1
p

(
F D(τ , uD) + F R(τ , uR)

)
. (37)

Although uD is likely more accurate than uR because of the implicit treatment of F D in (37), the error in uD may still be
large because the stiffness in F R may require the use of a smaller time step. Thus, uD is used only indirectly in the com-
putation of the provisional solution. Specifically, F D(tp+1, uD p+1 ) is computed and assumed known in [tp, tp+1]. Then the
provisional solution u is computed by treating advection explicitly, diffusion implicitly (but known), and reaction implicitly,
using the small reaction time step �tq , i.e., one solves

uq+1 =
s∑

j=0

b juq− j + E q+1
q

(
F A(τ , u)

) + I q+1
q

(
F D(τ , uD) + F R(τ , u)

)
. (38)

The integrals in (36)–(38) are approximated using a third-order IMEX BDF method. Standard IMEX methods (e.g., [2]) are
formulated for uniform time steps. Although tm , tp , and tq are uniformly spaced, �tm , �tp , and �tq are different. Thus,
in the IMEX approximation of (36) and (37), F A may not be known at every diffusion node, and, similarly in (38), F A and
F D may not be known at every reaction node. To avoid the need of computing non-standard IMEX coefficients for variable
time steps (indeed, a different set of IMEX coefficients would be required for each diffusion step in (36) and (37), and for
each reaction step in (38)), third-order Lagrange interpolation and extrapolation are used to approximate F A at diffusion
and reaction nodes and F D values at reaction nodes.

The procedures for computing a third-order provisional solution are summarized below:

For m = 0, . . . , N A − 1
Approximate F A values at diffusion nodes tp ’s in [tm, tm+1].
For p = 0, . . . , ND − 1

11

6
u0

R p+1
= 3u0

p − 3

2
u0

p−1 + 1

3
u0

p−2 + �tp
(
3F A

(
u0

p

) − 3F A
(
u0

p−1

) + F A
(
u0

p−2

)
+ 3F D

(
u0

p

) − 3F D
(
u0

p−1

) + F D
(
u0

p−2

) + F R
(
uR

0
p+1

))
11

6
u0

D p+1
= 3u0

p − 3

2
u0

p−1 + 1

3
u0

p−2 + �tp
(
3F A

(
u0

p

) − 3F A
(
u0

p−1

) + F A
(
u0

p−2

)
( 0 ) ( 0 ))
+ F D uD p+1 + F R uR p+1
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Approximate F A and F D values at reaction nodes tq ’s in [tp, tp+1].
u0

0 = uD
0
p+1

For q = 0, . . . , NR − 1

11

6
u0

q+1 = 3u0
q − 3

2 u0
q−1 + 1

3 u0
q−2 + �tq

(
3F A

(
u0

q

) − 3F A
(
u0

q−1

) + F A
(
u0

q−2

)
+ F D

(
uD

0
q+1

) + F R
(
u0

q+1

))
Compute F R

(
u0

q+1

)
,

End
Compute F D

(
u0

p+2

)
,

End
Compute F A

(
u0

m+1

)
.

End

3.3. Numerical results

The efficiency of MISDC methods is assessed using the Burgers’ equation with reaction

ut + uux = εuxx + cR u(u − 1)2, (39)

for x ∈ [−2,2] and t ∈ [0,0.5], where ε > 0 and cR > 0 are the diffusion and reaction coefficients, respectively. The initial
conditions are given by

u(x,0) = 1

2
− 1

2
tanh

(
x

δ

)
. (40)

The system (39) and (40) are completed with Dirichlet boundary conditions u(−2, t) = 1 and u(2, t) = 0.
If the diffusion coefficient and reaction coefficient are set to ε = δ(1 − γ )/2 and cR = 2(2γ − 1)/δ, then given initial

conditions (40) on the spatial domain x ∈ [−∞,∞] and with boundary conditions u(−∞, t) = 1 and u(∞, t) = 0, the
analytic solution for (39) is given by

u(x, t) = 1

2
− 1

2
tanh

(
x − γ t

δ

)
. (41)

Technically speaking, u(x, t) = 1 and u(x, t) = 0 only as x → −∞ and x → ∞ for finite t . Nevertheless, for the time interval
considered in this example, u is practically indistinguishable from 1 and 0 at the left and right boundary points (x = −2
and 2), respectively, within double-precision machine accuracy. Thus, (41) is used as the reference solution even though the
simulations are done using a finite spatial domain. The parameters γ and δ are chosen to be 0.75 and 0.05, respectively,
which gives ε = 0.0125 and cR = 20.

Fig. 6 shows L∞ errors versus computational times for approximations obtained by means of fourth-order MISDC meth-
ods using first-, second-, and third-order prediction steps and using first-order correction steps. A spatial grid of N = 512
was used. Time steps for each method were chosen to fall within the region where the method is stable and where tem-
poral truncation errors dominate spatial errors. For the MISDC4[1P1C] method, �t = 8,4,2,1 × �x; for MISDC4[2P1C],
�t = 2,1,0.5,0.25×�x; for MISDC4[3P1C], �t = 4,2,1,0.5×�x. The errors are computed using the reference solution (41).

In all cases, the computed solutions exhibit approximately O(�t4) convergence. These results also indicate that the
MISDC4[3P1C] method is the most efficient among the three, whereas the MISDC4[2P1C] method is the least efficient.
Indeed, owing to the ordering of the diffusion and reaction steps in the second-order prediction step, approximations com-
puted using the MISDC4[2P1C] method has the largest splitting errors. By assumption, and by our choice of parameter
values, the reaction term is stiffer than the diffusion term. It follows that |∂ F R/∂u| � |∂ F D/∂u|. Thus, to minimize splitting
errors, F R , rather than F D , should be evaluated at uk+1

q+1, as done in the first- and third-order prediction steps (but not the
second-order step).

Splitting errors in the MISDC[3P1C] methods increase with the stiffness of the diffusion and reaction terms; thus, the
stiffer F D and F R are, the less accurate the approximations uR and uD , and consequently u are. In another set of experi-
ments, the efficiency of the methods is compared using a stiff problem, in which the diffusion coefficient ε and reaction
coefficients cR were set to 0.01 and 2000, respectively. The initial conditions were set to

u(x,0) = 1

2
− 1

2
tanh

(
x

20

)
. (42)

With this set of ε , cR , and initial conditions, however, an analytic solution is not known.
Eqs. (39) and (42) were integrated using the MISDC4[1P1C], MISDC4[2P1C], and MISDC4[3P1C] methods using a spa-

tial grid of N = 512 and time steps of �t = 0.32, 0.16, 0.08, and 0.04 × �x. The approximation computed using the
MISDC4[1P1C] method with �t = 0.01 × �x was used as the reference solution.
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Fig. 6. Efficiency comparison of fourth-order MISDC methods using first-, second-, and third-order prediction steps.

Fig. 7. Efficiency comparison of fourth-order MISDC methods using first-, second-, and third-order prediction steps for stiff parameters.

Fig. 7 shows L∞ errors versus computational times. For the same time step, the MISDC4[3P1C] method is the least
computationally expensive, whereas the MISDC4[1P1C] method is the most expensive. However, owing to larger splitting
errors, the solution computed by MISDC4[3P1C] method is less accurate (but still more accurate than the MISDC4[2P1C]
method), and thus, for this stiff problem, the MISDC4[1P1C] method is the most efficient. These results suggest that while
moderate-order predictors reduce computational costs, the effects of splitting errors must be taken into account when
evaluating the efficiency of the overall methods.

4. Discussion

The goal of this study is to assess the efficiency of a number of implementations of SISDC and MISDC methods for
the temporal integration of PDEs with multiple time scales. In these implementations, second- and third-order integration
methods are used in the prediction steps of SISDC and MISDC methods, and also in the correction steps of SISDC methods.
Strang splitting is used to compute a temporally second-order provisional solution of a MISDC method, and a novel operator-
splitting approach is developed to compute a temporally third-order provisional solution. Using time-dependent PDE test



1642 A.T. Layton / Applied Numerical Mathematics 59 (2009) 1629–1643
problems, we assess the accuracy and efficiency of the resulting SISDC and MISDC methods and compare their performance
to the traditional implementation [4,16], which is based on forward and backward Euler methods.

Because of the computational costs associated with the deferred correction steps, a SISDC method is likely computa-
tionally more expensive than a BDF method of the same order. However, at sufficiently high orders of accuracy (e.g., higher
than 6th order), BDF methods become unstable, whereas stable SISDC methods can be constructed at arbitrarily high orders.
Thus, as shown in our previous study [15], a stable and high-order method can be constructed using a moderate-order BDF
method in the prediction step of a SISDC method, and then the overall order of the resulting method increased via de-
ferred correction steps. In addition, numerical results in this study suggest that, taken in isolation, using a moderate-order
BDF method in the prediction step of a SISDC method can improve efficiency, compared to using an Euler method in the
prediction step, by reducing the number of correction steps needed to attain a given overall order of accuracy. In terms of
efficiency, the benefit that one may gain by using BDF2 in the correction steps is not clear. These results are consistent with
the results in [12,15] obtained using ODE problems.

For time-dependent PDE problems, the benefits of moderate-order predictors and correctors should be re-evaluated in
the context of the cost-saving ladder approaches. With ladder approaches, one typically allows larger solution errors in
the initial deferred correction iterations, either by using a less refined temporal or spatial grid, or a lower-order spatial
discretization method. Among the ladder approaches considered, our numerical results indicate that the “Ladder: space-
res” approach, in which less refined spatial resolutions are used in the initial iterations, gives rise to the most efficient
SISDC methods. Indeed, the reduction in computational costs generated by the “Ladder: space-res” approach exceeds that
of moderate-order predictors, particularly in sufficiently high spatial dimensions. The “Ladder: space-res” approach, which
is an example of a multigrid approach, can be effectively implemented in a massively-parallel environment using parallel
multigrid techniques [5,18]. When applied to a two-dimensional problem, the SISDC4[1P1C] method, together with the
“Ladder: space-res” approach, is the most efficient among the four fourth-order SISDC methods considered. Nonetheless,
for applications with large spatial variations, an insufficiently refined spatial resolution may generate solutions with large
errors. For such applications, other Ladder approaches or methods using higher-order steps may be more effective.

MISDC methods allow implicit treatment of multiple fast-scale processes using differing time steps. Through the deferred
correction procedure, during which both integration and splitting errors are reduced, MISDC methods can compute approx-
imations of arbitrarily high orders of accuracy while using operator-splitting. Thus, unlike SISDC methods, the benefits of
which become clear over IMEX BDF methods only at sufficiently high orders of accuracy, MISDC methods are appealing in
problems which involves multiple fast-scale processes, at moderate and high orders, owing to its flexibility and accuracy.

For MISDC methods, a third-order predictor gives rise to the most efficient method, compared to MISDC methods with
second- or first-order predictor, when applied to the Burgers equation with mildly-stiff parameters. However, the accuracy
of the MISDC[3P1C] method, and, consequently, its efficiency are reduced when stiff parameters are used. This is attributable
to the larger splitting errors present in the intermediate solution. Such splitting errors may be reduced by iterating on (38):
uD is set to u, then (38) is solved again, and the procedure is repeated if needed. This reduction in splitting errors comes
at the expense of increased computational cost, thus it is not clear that the above procedure will lead to an improvement
in efficiency. Thus, for problems that are sufficiently stiff, the MISDC[1P1C] methods are likely more efficient. The advantage
of MISDC[1P1C] methods can likely be augmented by incorporating the “Ladder: space-res” approach.

We conclude with a comparison among SISDC, MISDC, and IMEX BDF methods. As previously noted, at moderate or-
ders of accuracy, a IMEX BDF method is expected to be computationally more efficient than a SISDC method of the same
order. While BDF methods of sufficiently high orders of accuracy suffer from numerical instability, SISDC methods can be
constructed at arbitrarily high orders. Comparing SISDC and MISDC methods, one can consider SISDC methods a simplifica-
tion of MISDC methods that involves only two processes, that does not include operator-splitting, and that uses the same
time-step for both processes. That is, SISDC methods do not allow splitting of multiple stiff processes or the use of different
time-steps for different processes. Nonetheless, their simplicity renders them easier to analyze and to understand.
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Appendix A. “Ladder: Space-Order” approach

The integral form of the solution to (2)–(3) is given by

u(t) = u0 +
t∫

a

(
F E

(
τ , u(τ )

) + F I
(
τ , u(τ )

))
dτ . (A.1)

Let ũ(t) be an approximation to u(t). Suppose in the computation of ũ(t) a less accurate spatial discretization method is
used such that

u′(t) = F̃ E
(
t, u(t)

) + F̃ I
(
t, u(t)

) + O
(
�xp)

, (A.2)
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where p is smaller than the overall order of the SISDC method. The integral form of the solution to (A.2) and (3) is given
by

ũ(t) = u0 +
t∫

a

(
F̃ E

(
τ , u(τ )

) + F̃ I
(
τ , u(τ )

) + O
(
�xp))

dτ . (A.3)

To derive an expression for the correction δ(t) ≡ u(t) − ũ(t), define the residual function by

E
(
t, ũ(t)

) = u0 +
t∫

a

(
F̃ E

(
τ , ũ(τ )

) + F̃ I
(
τ , ũ(τ )

) + O
(
�xp))

dτ − ũ(t). (A.4)

The definition of δ(t) and the integral equation (A.1) can be combined to give

ũ(t) + δ(t) = u0 +
t∫

a

(
F E

(
τ , ũ(τ ) + δ(τ )

) + F I
(
τ , ũ(τ ) + δ(τ )

))
dτ . (A.5)

From (A.4) and (A.5), one obtains the correction equation

δ(t) =
t∫

a

(
F E

(
τ , ũ(τ ) + δ(τ )

) − F̃ E
(
τ , ũ(τ )

) + F I
(
τ , ũ(τ ) + δ(τ )

))

− F̃ I
(
τ , ũ(τ ) − O

(
�xp))

dτ + E
(
t, ũ(t)

)
. (A.6)

Given a sth-order approximate solution ũ (i.e., ‖u − ũ‖ = O(�ts+1)) on the time interval [tn, tn+1], a (s + 1)th-order
approximation can be computed by estimating the correction δ(t) in (A.6) to (s + 1)th order. If F E and F I are Lipschitz
continuous in u, then (A.6) implies that ‖δ(t) − E(t, ũ)‖ = O(�ts+1).

Therefore, provided that p � s + 1 and that �x scales with �t , a (s + 1)th order approximation for δ(t) can be computed
from a (s + 1)th order approximation for E(t, ũ) and a simple first-order rectangle rule approximation to the integral on the
right side of (A.6) ignoring the O(�xp) term.
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