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Abstract

A semi-implicit form of the method of spectral deferred correc-
tions is applied to the solution of the incompressible Navier-Stokes
equations. A methodology for constructing semi-implicit projection
methods with arbitrarily high order of temporal accuracy in both
the velocity and pressure is presented. Three variations of projec-
tion methods are discussed which differ in the manner in which the
auxiliary velocity and the pressure are calculated. The presentation
will make clear that projection methods in general need not be viewed
as fractional step methods as is often the practice. Two simple numer-
ical examples are used to demonstrate fourth-order accuracy in time
for an implementation of each variation of projection method.



1 Introduction

A great deal of effort has been dedicated to the design of numerical
methods for the simulation of high Reynolds number flow, often in-
cluding techniques for incorporating turbulence models to represent
sub-grid scale effects. There are, however, many situations of interest
in which the Reynolds number is “moderate”, i.e. high enough so that
the Stokes equations are not a reasonable model, but low enough so
that the flow can be resolved on a computational grid and no subgrid
scale model is needed. The modeling of biological systems such as the
flow of blood in the heart or the swimming of organisms is just one
such example. Often in these examples, it is desirable to compute the
motion of the fluid with high accuracy since other components in the
system which depend on the fluid are of interest (e.g. the motion of
membranes or the passive transport of solutes). As the interest in nu-
merical modeling in many fields in the applied sciences and the speed
and memory capacity of computers continue to increase, the need for
accurate, efficient, and adaptable numerical methods for moderately
viscous flows should increase.

Numerical methods for viscous flows must treat viscous terms im-
plicitly in order to avoid a severe time step restriction. This paper
introduces semi-implicit projection methods with arbitrarily high tem-
poral accuracy for the integration of the equations governing viscous
incompressible flows. Furthermore, the methods require the solution
of only two linear implicit equations for which efficient high-order
solvers exist. Therefore the use of the current methods with com-
plex geometry as well as spatial and temporal adaptivity is possible
immediately.

The projection methods in this paper are based on a method of
lines approach coupled with a semi-implicit method for integrating
ordinary differential equations (ODEs) based on the method of spec-
tral deferred corrections (SDC) [DGR00, Min01]. These so-called
SISDC methods have several advantages over the more traditional
semi-implicit multi-step and Runge-Kutta methods. Higher-order semi-
implicit linear multi-step methods are not self starting, they typi-
cally require a severely restricted time step for stability, and they
present difficulties when variable time stepping is required (see e.g.
[ARW95, FHV97]). On the other hand, semi-implicit Runge-Kutta
methods are self starting and generally have good stability properties,



and efficient methods for orders up to five have been proposed. (See
e.g. [SZ96, ARS97, KC01, CdFNO01]). It has been well documented
however, that when combined with a method of lines approach for
PDEs, Runge-Kutta methods typically suffer from a loss of accuracy
when time dependent boundary conditions are prescribed, unless spe-
cial care is taken when imposing intermediate boundary conditions
[SSVH86, CGADY5]. Suggestions for restoring full accuracy in cer-
tain cases have been proposed (e.g. [AGC96, Pat97, CP01]), but at
present, no general strategy for semi-implicit Runge-Kutta methods
has been developed.

The SDC method has the advantage that a relatively simple nu-
merical method is used to compute a higher-order solution. This is
accomplished by using the simple method to solve a series of correction
equations during each time step, each of which increases the order of
accuracy of the solution. This makes SISDC methods particularly at-
tractive to problems possessing disparate time scales since a time-split
approach can be used without being limited to lower-order accuracy.
The method of spectral deferred corrections has been used already in
this manner in the context of unsteady combustion [HRZ98, HRSZ99].
Furthermore, imposing correct boundary conditions for a semi-implicit
method of lines approach for PDEs, although certainly not trivial, is
more transparent for SISDC methods because of the simplicity of the
underlying method. An overview of SISDC methods is presented in
Sect. 3.

The strategy for the construction of SISDC projection methods
relies on applying the method of lines approach to a non-standard
form of the equations of motion. The connection between this form
and projection methods is discussed in Sect. 2. Three variations of a
generalized projection method will be presented in Sect. 4. Numerical
examples set in an idealized geometry are presented in Sect. 5. Fourth-
order convergence for both pressure and velocity is demonstrated in
these examples.

2 The Equations for Incompressible Flow

In this Section, different formulations of the equations of motion of
an incompressible fluid are discussed. In an N-dimensional bounded
domain €2, the usual form of the equations of motion are given by



the incompressible Navier-Stokes equations in terms of the velocity
u and the pressure p. Denoting the kinematic viscosity by v, the
Navier-Stokes equations are

w+Vp = —(u-V)u+rvViu (1)
Vau = 0 (2)

with boundary conditions
ulon = wp. 3)

Numerous equivalent formulations of these equations have been devel-
oped to facilitate their numerical approximation.

Projection methods first introduced by Chorin [Cho68, Cho69] are
based on the observation that the left-hand side of Eq. (1) is a Hodge
decomposition. Hence an equivalent projection formulation is given
by

u; =P [—(u-V)u-Vp+rvV?u] (4)

where P is the operator which projects a vector field onto the space
of divergence-free vector fields with appropriate boundary conditions.
In general, the strategy employed for one time step in a generic pro-
jection method is to first approximate Eq. (1) without regard to the
divergence constraint (2) to yield an “auxiliary velocity” u*, and then
to project u* onto the space of divergence-free fields to give the new
velocity. For this reason, projection methods are often referred to as
fractional step methods.

Second order, semi-implicit projection methods in which the ad-
vective terms in the equation for u* are handled explicitly while the
viscous terms are handled implicitly have been developed in [KM85,
BCG89] and others. The most significant issue that must be resolved
in these methods is the imposition of boundary conditions for u* in
the implicit step. Since the projection of u* is usually implemented
by the solution of a Poisson problem for which only one boundary
condition can be prescribed, the boundary conditions for u* must be
chosen in such a way that the remaining velocity boundary conditions
are satisfied. The boundary conditions on u* also effect the accuracy
of the pressure gradient. An overview as well as a further analysis of
boundary conditions for second-order semi-implicit projection meth-
ods appears in [BCMO01].



In order to develop higher-order numerical methods based on the
projection method strategy, it is helpful to consider an alternative
formulation of the incompressible Navier-Stokes equations based on
an auxiliary variable equal to the fluid velocity plus the gradient of a
scalar. Such formulations were first introduced by Oseledets [Ose89]
and many variations have since been proposed for use in numerical
methods for various problems [But93, Cor95, Cor96, EL96, EL97,
RR98, SC96, CMO00].

Consider two new variables, m and y which are related to the fluid
velocity by

m=u-+ Vy. (5)

The vector field m and the potential x can be chosen to satisfy evo-
lution equations in such a way that the fluid velocity and pressure
derived from them satisfy the Navier-Stokes equations. One possibil-
ity which facilitates the development of accurate projection methods
is

m;+ (u-Vju = -Vg+vV’m (6)
ulge = w. (7)

where Vgq is an arbitrary gradient that will be discussed later and
u=P(m). (8)

In this formulation, the pressure has been eliminated from the
equations; however, it can be recovered from the potential x by en-
forcing the equivalence of equations (1) and (6) giving

p=q+x:— V. (9)

Initially, Vx can be zero, (i.e. m = u), or Vx can be non-zero so
long as the choice is consistent with Eq. (5). Note that the boundary
conditions are given in terms of u, which by Eq. (5), implies that there
is a coupling of the boundary conditions of m and Vy (See [BCMO01]).

Clearly if Vq is defined as the pressure gradient and m is given
initial and boundary values equal to u, then Eq. (6) reduces to Eq. (1).
If V¢ is identically zero, the resulting equations are equivalent to those
used as the basis of the numerical method in [EL96]. As discussed in
the next section, the key observation to make is that a single step of a
projection method can be thought of as approximating Eq. (6) rather
than Eq. (1).



3 Semi-Implicit Spectral Deferred Cor-
rections

In [DGROO0], the SDC method for the solution of ODEs is introduced.
The strategy within each time step of the method is to use a simple
numerical method (specifically forward or backward Euler) to calcu-
late a provisional solution at specific points within the interval of the
time step. Then, the same simple method is used to solve a series
of correction equations each of which increases by one the order of
accuracy of the provisional solution. The correction equation is cast
in a form similar to the Picard integral iteration, hence the points
at which the provisional solution and the corrections are calculated
correspond to quadrature nodes. A semi-implicit version of the SDC
method (SISDC) suitable for use with the Navier-Stokes equations will
be briefly described below. For more complete details see [DGR00] and
[Min01].
Consider the ODE

¢'(t) = F(t () = Fu(t, ¢(t)) + Fi(t, 6(t)) t € [a, 0]
pla) = ¢a

where Fg is a non-stiff term that will be handled explicitly, and F7 is
a stiff term that will be handled implicitly.

For a given time step on the interval [¢,, t,41], the first step in the
SISDC method is to compute a provisional solution <;~S(tm) at the points
tm for m = 0...p with ¢, = t5 <t < ... <1ty = ty41. Assuming
that ¢(t,) is known and using the notation q;(tm) = ¢™. a first-order,
semi-implicit numerical method for computing <;~S is

ém+1 = (ng + Atm[FE (tma sz) + FI(tm‘H’ $m+1)]’ (10)

where At,, = tyy1 — tm and ¢° = @(t,). For clarity, the interval
[tm, tm+1] will be referred to as a substep as opposed to the time step
[tn, tnta]- -

Following [DGRO0], if one regards ¢ as a continuous function, a
measure of the error in the provisional solution can be written

t ~

E(t,d) = o + / F(r,3(r))dr — 3(1).

to



Defining the correction to the provisional solution 6(t) by ¢(t) = ¢(t)+
d(t), some elementary algebra yields

t
6(t) = /t F(r,¢(1) +6(7)) — F(7,¢(7))dT + E(t,¢).  (11)
0
The SISDC method proceeds by computing a sequence of corrections
&% (t), where each 0% is computed by first approximating E(t, ¢) with
an appropriate quadrature rule, and then using a semi-implicit method
to approximate Eq. (11). After each 6% is computed, it is added to ¢
to yield an updated provisional solution.
Specifically, (suppressing the &k index on §) a substep of the cor-
rection equation is

+ Fyltmi1, @™+ 0™ = Fr (i, ™)
+ITG) - g4 g (12)

where

m+1/ 7\ ~ bmt1
alw~/ F(r,§(r))dr.
tm

As in [Min01], the points ¢,, above are chosen to be the nodes of the
standard Gauss-Labatto quadrature. Since the quadrature must be
done for each subinterval [t,,, t,;,+1], there are actually p quadrature

rules of the form »

(g) = 3 g F(t, &) (13)
=0
form=0...p—1.

To summarize, a complete SISDC time step consists of the compu-
tation of the first provisional solution ¢ using p substeps of Eq. (10)
followed by K iterations of the correction Eq. (12), each of which
also involves p substeps. It can be shown that for K iterations of
the correction equation, the above procedure will produce an approx-
imate solution with overall error O(At¥*1), provided the integrals
in Eq. (13) have O(At**!) error as well. (See [Min01] for a further
discussion of accuracy and the choice of integration nodes.)



3.1 Stability of SISDC Methods

To study the stability of the SISDC method for ODEs, it is most useful
to consider the model problem

¢'(t) = A\p = aid + Bo.

For the SISDC method, Fg(t,¢) = ai¢ and Fy(t, $) = B¢. This is the
relevant model problem when studying the stability of finite difference
methods for advection-diffusion type PDEs with a corresponding to
the advection term and (8 corresponding to the stiff diffusion term.
For a given ), let ¢*()\) denote the result of taking one time step with
the SISDC method applied to the model problem with ¢(0) = 1 and
At = 1. The stability region is then defined as the set of A for which
S < 1.

Fig. 1 shows two stability regions for two different SISDC methods,
both of which use three iterations of the correction equation (i.e. K =
3). The larger region, however, corresponds to using four substeps
per time step while the smaller only three. Both versions are fourth-
order accurate but as explained in Sect. 4, projection methods based
on the SISDC method require that four substeps be completed in
order to compute the pressure to fourth-order accuracy. Although
the stability region for this version is larger, a total of 16 implicit
solves are required as opposed to only 12 for the version with only 3
substeps. The stability diagrams clearly show that the time step is
restricted solely by the explicit term in the equation. See [Min01] for
more information on the relative size of stability diagrams for SISDC
methods.

4 Projection Methods

To help set the stage for the introduction of the semi-implicit pro-
jection methods in the next section, a brief discussion of first-order
semi-implicit projection methods is now presented. For the moment,
assume that the velocity and pressure have been discretized in time
and denote by u” the approximation to the velocity at time ¢, (and
likewise p™). For further ease of presentation an unbounded domain
is considered. Boundary conditions are briefly discussed in Sect. 4.2.
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ure 1: Stability regions for fourth-order SISDC methods. The two regions
respond to versions with p = 3 substeps per time step and p = 4 substeps.



A first-order semi-implicit temporal discretization of Eq. (4) is
un—|—1 —u”
At

Under many circumstances (depending on the boundary conditions
that projected fields are required to satisfy), the pressure gradient
term is annihilated by the projection and Eq. (14) is equivalent to

=P[—(u"-V)u" - Vp" + 1/V2u"+1]. (14)

n+1 n

u"t —u
At
Because of the difficulty in solving either of the above equations di-

rectly, usually an approximate two-step procedure is used instead.
Specifically for Eq. (14), let u* and u™*! be defined by

=P[—(u"-V)u" + vVt (15)

u —u” n n n 2 %
BN —(u" - V)u" - Vp" +vV-u (16)

u"tt = P(u*). (17)
For Eq. (15), the first of these two equations becomes
u* —u”
—
The term fractional step method is often used interchangeably with
the term projection method to describe such a two step procedure.
Note however, that by equating u* with m™*! where m is defined by
Eq. (6), Egs. (16) and (17) are also a first-order semi-implicit temporal
discretization of Egs. (6) and (8). To approximate Eq. (16), V¢ should
be set to Vp". while on the other hand, Vq = 0 for Eq. (18). In this
sense, the projection methods above are not fractional step methods,
and higher order semi-implicit projection methods can be constructed
by considering the equations for m directly. Furthermore, the question
of imposing boundary conditions for the intermediate quantity u* is
reduced to the question of imposing boundary conditions for m. As
mentioned above, there is a coupling between the boundary conditions
for m and Vy which must be respected in a numerical implementation
in order to enforce the specified boundary conditions on u.

= —(u" - V)u" 4+ vV3u*. (18)

4.1 SISDC Projection Methods

To construct fourth-order SISDC methods for the equations of incom-
pressible flow, a method of lines approach is applied to Eq. (6). In the
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notation from Sect. 3, ¢ = m while

Fgp = —(u-V)u—Vyg
FI = I/Vzm.

To be more specific, the complete forward-backward Euler substep for
computing the provisional solution in the SISDC method is

Mt = W™ 4 Al(—[(@ - V)a]™ — Vg + vVEam ) (19)
amtl = Pt (20)

All spatial derivatives are approximated with standard fourth-order
centered-difference stencils. For each method below, m and u are
evolved according to Egs. (19-20) to yield the first approximate solu-
tion in the SISDC method. Three variants of this approach will be
presented which differ in the choice of m, Vx and Vgq. For all the
methods, the term Vg is held constant during the entire time step.
One effect of this is that Vg does not appear in the analog to Eq. (11).
Letting rh = m + dm and @ = a + du, and rearranging Eq. (11) gives

m”™ = ™ At (0™ - V)a" + (@ V)a™
+ Uv2ﬁ1m+l o Uv2n~1m+1] + ITTZLI+1 (l’h
ﬁm—|—1 — P(Ii’lm+1),

where It is defined in Eq. (13). In each variation, the new pressure
term is computed by a finite-difference approximation of Eq. (9) after
the full time step is completed. Since the temporal derivative term in
Eq. (9) is not centered in time, five values of x,, are needed to achieve
fourth-order accuracy (i.e. p = 4). However, since three iterations
of the correction equation are performed, the overall accuracy of the
method is still order four.

The first variation of the SISDC projection method will be referred
to as the “BCM” method since it is similar in spirit to the projection
method introduced in [BCMO01]. At the beginning of each time step in
this variation, m® is reset to u”, and Vq is set to Vp™. As mentioned
above, Vg is held constant during the time step, so the pressure term
does not appear in the correction equation.

The second method will be referred to as the “KM” method since it
is similar in spirit to the projection method introduced in [KM85]. As
before, m® is reset to u” at the beginning of each time step, however

11



Vg is identically zero throughout the time step. Hence the KM method
is a so-called pressure free method. This also eliminates the Vg term
in the computation of the pressure by Eq. (9).

The last method will be referred to as the “EL” method since it is
similar in spirit to the methods introduced in [EL96, EL97]. In this
variation, m is never reset to u, hence in time the difference between
m and u (i.e. Vy) can grow to have magnitude O(1). As in the KM
method Vg is identically zero throughout the time step.

If one adopts a slightly different definition of what constitutes a
projection method, i.e. a numerical method in which the velocity
is obtained by the projection of an auxiliary variable, then all three
of the preceding numerical methods can be thought of as projection
methods. The only difference then between the three is the procedure
used to advance the auxiliary variable. In this remainder of this paper,
the term projection method will be used in this somewhat looser sense.

4.2 Boundary conditions for semi-implicit pro-
jection methods

The emphasis in the current work is on the construction of higher-
order semi-implicit time marching schemes and the relationship be-
tween the form of the evolution equation for the velocity and the
pressure update equation. For the most part, the subject of numerical
boundary conditions has been deferred.

It is important to point out that accurately imposing prescribed
slip or in-flow boundary conditions for these methods is by no means
a trivial matter. In [Min01] it is shown that even for a simple PDE
such as the heat equation, using the prescribed boundary conditions
for the PDE as the boundary conditions for the implicit step in the
SISDC method will cause a degradation of accuracy similar to that
which occurs with Runge-Kutta methods [SSVH86, CGAD95].

The situation is more complicated for projection methods where
boundary conditions for m cannot be fully prescribed a priori. As
is the case with the second-order semi-implicit methods described in
[BCMO1], the form of the evolution equation for m has a direct impli-
cation on how accurately the coupling of the boundary conditions for
m and u must be approximated. In the present context, the impli-
cation is that the closer V¢ approximates the pressure gradient, the
closer the boundary conditions for m will be to the prescribed condi-
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tions on u. A paper presenting specific details of imposing accurate
boundary conditions for SISDC projection methods is in preparation.

5 Convergence Studies

To demonstrate the temporal accuracy of the SISDC projection meth-
ods, two numerical examples set in the simplified domain of the doubly-
periodic unit square are considered. This removes the issue of impos-
ing boundary conditions and allows the solution of the implicit equa-
tions by using the FFT. In the first example, the initial conditions are
chosen so that the exact solution is known and convergence rates are
calculated to corroborate the expected values. In the second exam-
ple, the SISDC method is applied to the well studied problem of the
roll-up of shear layers in a doubly-periodic geometry.

5.1 Exact Solution

For the first example, the projection methods are tested on the well-
known travelling wave solution to the Navier-Stokes equations. Specif-
ically,

u(z,y,t) = 0.7540.25cos(2m(z — t)) sin(27(y — t))e*8W2Vt
v(z,y,t) = 0.75 —0.25sin(27(x —t)) cos(2m(y — t))e—&rzut
p(z,y,t) = —6i4(cos(47r(x —t)) — cos(4n(y — t)))e—167r2ut_

The viscosity is set to v = 0.1, and the time step is chosen to be
At = 8.0Az. For each method, errors are computed at time 0.5 in
the L., norm for the pressure and u-component of the velocity for
runs on grids of size N x N for N = 64,128, and 256. Note that for
the 256 x 256 runs, vAt/Az® = 204.8. Convergence rates calculated
from the finest two runs are listed in Table 1 and are indicative of
fourth-order convergence.

To be certain that the convergence rates in the above numerical
result reflect temporal accuracy as opposed to spatial accuracy, the
same example is repeated using a slightly different SISDC method.
In this case, only 3 sub-steps are taken within each iteration, but
3 iterations of the correction equation are performed. This means
that only 4 values of x are available at the end of each time-step

13



Errors for exact solution problem

64 x 64 | 128 x 128 | 256 x 256 | rate

BCM | u | 3.349e-5 | 1.966e-6 1.384e-7 | 3.83
p | 6.508e-7 | 2.037e-8 | 9.266e-10 | 4.46

KM | u | 3.349-5 | 1.966e-6 1.384e-7 | 3.83
p | 6.970e-7 | 2.092e-8 | 9.031e-10 | 4.53

EL u | 3.349¢-5 | 1.966e-6 1.384e-7 | 3.83
p | 4.097e-7 | 1.946e-8 1.084e-9 | 4.16

le 1: L, errors for the u-component of velocity and the pressure for the
ct solution test problem. The rates are computed from the errors in the
x 128 and 256 x 256 grids.

Errors in the pressure
64 x 64 | 128 x 128 | 256 x 256 | rate
BCM | 1.963e-6 | 2.036e-7 | 2.246e-8 | 3.18
KM | 2.816e-6 | 2.483e-7 | 2.624e-8 | 3.24
EL 2.704e-6 | 2.714e-7 | 2.848e-8 | 3.25

le 2: L, errors for the pressure for the exact solution test problem with
y 3 substeps per time step. The rates are computed from the errors in the
x 128 and 256 x 256 grids and reflect the fact that the temporal part of
pressure equation is being computed with only third-order accuracy.

with which to calculate the time derivative piece of the pressure in
Eq. (9). Therefore, if temporal error is significant the accuracy of
the pressure should drop to third order. The errors and convergence
rates for this example are shown in Table 2 and demonstrate third-
order accuracy. The errors for the velocity are not shown but remain
O(At?) as expected.

5.2 Double Shear Layer

The second numerical example is performed on an unsteady flow
within the same geometry and given by the perturbed shear layer
initial conditions

tanh(30(y — 0.25)),
tanh(30(0.75 — y)),

for y < 0.5
for y > 0.5

14



Errors for the shear layer problem

64 x 64 | 128 x 128 | 256 x 256 | rate

BCM | u | 8.311e-4 | 5.544e-5 3.477e-6 | 4.00
p | 3.887e-4 | 2.576e-5 1.628e-6 | 3.98

KM | u | 1.158e-3 | 8.000e-5 4.296e-6 | 4.22
p | 1.185e-3 | 5.395e-5 2.662e-6 | 4.34

EL u | 3.816e-3 | 2.520e-4 1.574e-5 | 4.00
p | 3.892e-3 | 2.543e-4 1.588e-5 | 4.00

le 3: Errors for the pressure and u-component of the velocity for the shear
r test problem. The rates are computed from the errors in the 128 x 128
| 256 x 256 grids by comparison with the reference solutions.

v = 0.05sin(27(z + 0.25)).

The viscosity is set to v = 0.002 for all runs. The exact solution
for this problem is not known, therefore for each method, a reference
solution on a 768 x 768 grid using At = 2Az is used as an exact
solution. Three numerical runs using grids of size 64 x 64, 128 x 128,
and 256 x 256 and with At = 4Ax are used to estimate convergence
rates. Errors are calculated in the Ly, norm at ¢ = 1.0 by comparison
with the reference solution. Convergence results for the velocity and
the pressure shown in Table 3 again indicate fourth-order convergence.

The parameters for this example are the same as those used in
a convergence study in [MB97] where the velocity computed by a
spectral collocation method was used as a reference solution. (The
spectral method does not compute the pressure.) The velocities from
the reference solutions computed by the SISDC differ from this refer-
ence solution by an amount that is at least two orders of magnitude
smaller than the errors used to compute the convergence rates in Table
3. This direct comparison leaves little doubt that the projection meth-
ods above are indeed converging to the exact solution at a fourth-order
rate.

6 Conclusion

In this paper, a general strategy for constructing semi-implicit pro-
jection methods for the incompressible Navier-Stokes equations with

15



higher-order temporal accuracy is presented. The strategy utilizes
recently introduced semi-implicit methods for ODEs based on spec-
tral deferred corrections. Three variations of a generalized projection
method are presented and fourth-order accuracy is demonstrated on
flows in a two-dimensional doubly-periodic domain.

In terms of implicit equations that need to be solved, the projection
methods in this paper require only the solution of the Poisson equation
associated with the projection and the implicit equation in each time-
step which takes the form

(I — vAtV?)u = f. (21)

Both of these equations are linear, and higher-order solvers have been
developed for each based on using the Fast Multipole Method to effi-
ciently compute the convolution integral solution to the equation. For
the two-dimensional Poisson equation, adaptive methods suitable for
use with irregular domains have recently been implemented [EG00]
that incorporate standard block rectangular mesh refinement (see e.g.
[BO84]) and classical layer potentials for imposing boundary condi-
tions. Versions with up to eighth-order spatial accuracy have been
developed, and the computational cost per grid point of these meth-
ods is only a small factor times that for a uniform grid FFT-based
solver. The analogous algorithms for Eq. (21) in a two-dimensional
rectangular geometry have also been implemented [HGEO1], and the
complex geometry versions are currently being developed. A project to
incorporate these solvers into projection methods for two-dimensional
incompressible flow in complex geometry is also underway. Three di-
mensional versions of all the algorithms have been described, but the
implementation is still in the future.

It is worth reiterating that despite the similarities of the three
methods described in this paper and the comparable performance on
the test problems presented, the issues concerning accurately imposing
prescribed slip or in-flow boundary conditions differ in a significant
way between variations. A paper describing in detail these issues is in
preparation.
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