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Abstract

In the recent paper by Dutt, Greengard and Rokhlin, a variant of deferred or defect correction methods is presented
which couples Gaussian quadrature with the Picard integral equation formulation of the initial value ordinary differential
equation. The resulting spectral deferred correction (SDC) methods have been shown to possess favorable accuracy and
stability properties even for versions with very high order of accuracy. In this paper, we show that for linear problems,
the iterations in the SDC algorithm are equivalent to constructing a preconditioned Neumann series expansion for the
solution of the standard collocation discretization of the ODE. This observation is used to accelerate the convergence
of SDC using the GMRES Krylov subspace method. For nonlinear problems, the GMRES acceleration is coupled with
a linear implicit approach. Stability and accuracy analyses show the accelerated scheme provides an improvement in the
accuracy, efficiency, and stability of the original SDC approach. Furthermore, preliminary numerical experiments show
that accelerating the convergence of SDC methods can effectively eliminate the order reduction previously observed for
stiff ODE systems.
� 2005 Elsevier Inc. All rights reserved.
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this paper, we discuss the numerical solution of the ordinary differential equation (ODE) initial value
em

u0ðtÞ ¼ F ðt;uðtÞÞ; t 2 ½0; T �; ð1Þ

uð0Þ ¼ u0; ð2Þ

where u ;uðtÞ 2 CN and F : R� CN ! CN . Many numerical techniques for approximating this type of equa-
0

ave been developed in the last century and the readers are referred to [3,4,10,15,16,23,32] for detailed
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discussions. In this paper, we present a technique which is designed to improve the performance of the spectral
deferred correction (SDC) methods introduced by Dutt, Greengard, and Rokhlin in 2000 [9]. The SDC strat-
egy introduced in [9] is a variation on the classical defect or deferred correction methods [5,25,28,31,34,35]
which allows for the construction of stable explicit and implicit methods with extremely high order of accu-
racy. As with classical deferred and defect correction methods cited above, a single time step of an SDC meth-
od begins by first dividing the time step [tn, tn+1] into a set of intermediate sub-steps defined by the points
~t ¼ ½t0; t1; . . . ; tp� with tn = t0 < t1 < . . . < tp 6 tn+1. For simplicity, we assume tn = t0 = 0 in the following dis-
cussions. Next, a provisional approximation ~u½0� ¼ ½u½0�ðt0Þ;u½0�ðt1Þ; � � � ;u½0�ðtpÞ� is computed at the intermedi-
ate points using a standard numerical method, e.g., the explicit Euler method for non-stiff problems or the
implicit Euler method for stiff problems as in [9]. Applying standard approximation or interpolation theory,
the continuous counter part of ~u½0� can be constructed and is represented as u[0](t). Using u[0](t), an equation
for the error d(t) = u(t)�u[0](t) is then constructed. This correction equation for d(t) can be approximated
using a similar low order method, and an improved numerical solution is constructed. This procedure can then
be repeated resulting in a sequence of approximate solutions.

To construct the correction equation, the classical methods cited above rely on differentiation of u[0](t) to
form an ODE for d(t), where u[0](t) is the interpolating polynomial of ~u½0�. On the other hand, SDC methods

634 J. Huang et al. / Journal of Computational Physics 214 (2006) 633–656
utiliz

to co

wher

verge
solut
e the Picard integral equation formulation of the ODEZ t
uðtÞ ¼ u0 þ
0

F ðs;uðsÞÞds ð3Þ
nstruct a corresponding integral equation for d(t). SpecificallyZ t
dðtÞ ¼
0

½F ðs;u½0�ðsÞ þ dðsÞÞ � F ðs;u½0�ðsÞÞ�dsþ �ðtÞ; ð4Þ
e Z t
�ðtÞ ¼ u0 þ
0

F ðs;u½0�ðsÞÞds� u½0�ðtÞ. ð5Þ

The discretizaton of these equations will be discussed in more detail in the following section, but for now note
that the discretization of �(t) is simply a numerical integration. It is for this reason that the points~t which de-
fine the sub-steps in SDC methods are chosen to be Gaussian quadrature nodes so the numerically stable spec-
tral integration technique can be applied [12]. The integral equation formulation for d(t) in Eq. (4) coupled
with spectral integration rules allows SDC methods to overcome the loss of stability of classical deferred/de-
fect correction methods as the order of the method increases. For a detailed discussion of the different choices
of quadrature nodes see [24].

Deferred correction methods based on the Picard integral formulation and spectral integration are of inter-
est for several reasons, most notably because of the relative ease with which one can theoretically construct
methods with arbitrarily high order of accuracy. Preliminary numerical tests presented in [9] suggest that
SDC methods are competitive with the best existing ODE initial value problem solvers, especially for stiff
problems or where high accuracy is required. Furthermore the stability regions of the implicit methods are
close to optimal and do not degrade with increased orders of accuracy [24]. Semi-implicit and multi-implicit
variations of SDC methods have also been presented which enable the construction of very high order meth-
ods for equations with both stiff and non-stiff components [6,26,27]. Also noted in these papers, however, is
the fact that when SDC methods are applied to very stiff equations, the effective order of accuracy of the
method is reduced for values of the time step above a certain threshold. This type of order reduction (which
is also present in many popular types of Runge–Kutta methods [7,8,30]) means that, although the methods are
stable for larger time steps, one must use a very small time step for the method to converge with full order.

The main results in this paper stem from considering the limit of the correction iterations for an SDC
method for a fixed step of size Dt = tn+1 � tn. Observe that, if the correction iteration in the SDC method con-

~
s, then �(t) given in Eq. (5) will approach zero at the Gaussian nodes t 2 ½t ; t �. Hence the resulting limit
n nþ1

ion will satisfy the collocation (or pseudo-spectral) approximation of the Picard equation (3) given by
~u ¼ ~u0 þ DtS~F ; ð6Þ
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~F ¼ ½F ðt0;uðt0ÞÞ; F ðt1;uðt1ÞÞ; . . . ; F ðtp;uðtpÞÞ�T;

a vector of initial conditions
~u0 ¼ ½uðt0Þ;uðt0Þ; . . . ;uðt0Þ�T

and S is the spectral integration matrix [11,12] corresponding to the Gaussian nodes~t discussed in detail in
Section 2.3.

Since Eq. (6) couples the solution values at each of the sub-steps defined by~t, a direct solution of this equa-
tion requires a system of size Np be solved, as opposed to a system of size N which arises from a single sub-step
of an SDC method (or in other typical methods like BDF). However, since the limit of the SDC iterations
(when it converges) is the collocation solution, then one iteration of the correction step in an SDC method
can also be thought of as one step in an iterative procedure for solving Eq. (6) directly. Once this observation
is made, it is natural to attempt to accelerate this convergence if possible.

In Section 3, we show that for linear problems, the SDC method is equivalent to solving a particular pre-

tioned equation for the error corresponding to Eq. (6). Moreover, an explicit form for the provisional
on after the kth SDC iteration ~u½k� in terms of a Neumann series expansion is derived. Specifically,
~u½k� �~u½0� �~bþ C~bþ C2~bþ � � � þ Ck~b ð7Þ
for a specific matrix C and vector ~b. A consequence of the derivation of Eq. (7) is that it provides a precise
statement of when and how rapidly the correction iterations in the SDC method converge. This observation
can also be used to accelerate the convergence of the original SDC methods by searching for the optimal solu-
tion in the Krylov subspace KðC;~bÞ ¼ spanf~b;C~b;C2~b; . . . ;Ck~bg using the generalized minimum residual
(GMRES) or other Krylov subspace based iterative methods. For nonlinear problems, the above acceleration
can be coupled with a linear implicit approach to improve the performance of SDC methods.

In this paper, the new class of accelerated methods is studied analytically and numerical comparisons with
the original SDC methods for both linear and nonlinear problems are presented. Stability and accuracy anal-
yses for the accelerated schemes are given. We observe that for non-stiff problems, GMRES accelerated SDC
methods improve both the accuracy and stability of the original SDC methods. In fact, in several numerical
examples we tested, for a given time step of size Dt, the accelerated methods quickly converge to the colloca-
tion solution while the correction iterations of the original SDC are divergent. For stiff problems [20], we show
the accelerated methods improve the accuracy of the original SDC, and under certain assumptions, remove the
order reduction phenomenon observed in the original SDC.

The structure of this paper is as follows. In Section 2, we briefly describe the original spectral deferred cor-
rection methods. In Section 3, we show that for linear problems, the original SDC is equivalent to the precon-
ditioned Neumann series expansion given in Eq. (7). In Section 4, we describe how the convergence of the
original SDC can be accelerated for both linear and non-linear problems. In Section 5, we present the stability
and accuracy analyses for the GMRES accelerated SDC methods. In Section 6, we demonstrate the improved
acy and stability of the accelerated methods using several linear and nonlinear examples. Finally in Sec-

tion 7, we discuss possible extensions and further generalizations of the approach.

2. The spectral deferred correction methods

In this section, we summarize the details of the spectral deferred correction methods from [9] which are nec-
essary to present the derivation of the accelerated methods in Sections 3 and 4.

2.1. The Picard integral equation and error equation
nsider the Picard integral equation representation of the ODE initial value problem given in Eq. (3).
ose an approximate solution u[0](t) to Eqs. (1) and (2) is given, and define the error d(t) as before
dðtÞ ¼ uðtÞ � u½0�ðtÞ. ð8Þ
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ituting (8) into (3) yieldsZ t
u½0�ðtÞ þ dðtÞ ¼ u0 þ
0

F ðs;u½0�ðsÞ þ dðsÞÞds. ð9Þ

To reduce notational clutter here and in the following the time dependence of the second argument of F will be

citly assumed, e.g., F(t,u[0](t)) is written simply as F(t,u[0]). Now consider the residual functionZ t
�ðtÞ ¼ u0 þ
0

F ðs;u½0�Þds� u½0�ðtÞ; ð10Þ
simply gives the error in the Picard equation (3). Rearranging Eq. (9) and using Eq. (10) gives a Picard-

integral equation for the errorZ t
dðtÞ ¼
0

½F ðs;u½0� þ dÞ � F ðs;u½0�Þ�dsþ �ðtÞ. ð11Þ

Note that unlike the classical deferred or defect correction methods in [28,34,35], the equation for d(t) is not
written here as an ODE.

2.2. Euler methods on Gaussian quadrature nodes

Deferred correction methods proceed by iteratively solving the error Eq. (11) using a low order method to
½0�
ve the provisional solution ~u . To describe the time stepping procedure, suppose as before that the time
nterval [tn, tn+1] has been subdivided using the points t0,t1,t2, . . ., tp such that
tn ¼ t0 < t1 < t2 � � � < tp 6 tnþ1. ð12Þ

that Eq. (11) gives the identityZ tmþ1
½0� ½0�
dðtmþ1Þ ¼ dðtmÞ þ
tm

½F ðs;u þ dÞ � F ðs;u Þ�dsþ �ðtmþ1Þ � �ðtmÞ. ð13Þ

½0�
g dm denote the numerical approximation to d(tm) (and likewise for um and �m), a simple discretization
. (13) similar to the explicit Euler (forward Euler) method for ODEs is
dmþ1 ¼ dm þ DtmðF ðtm;u
½0�
m þ dmÞ � F ðtm;u

½0�
m ÞÞ þ �mþ1 � �m; ð14Þ
e Dtm = tm+1�tm. Similarly, an implicit scheme for the solution based on the backward Euler method is� �

dmþ1 ¼ dm þ Dtm F ðtmþ1;u

½0�
mþ1 þ dmþ1Þ � F ðtmþ1;u

½0�
mþ1Þ þ �mþ1 � �m. ð15Þ

Denoting the ‘‘low order’’ approximation of d(t) by ~d
½1�
¼ ½d1; d2; . . . ; dp�, a refined solution is given by

~u½1� ¼ ~u½0� þ~d
½1�

. In order to complete the discretization, we must specify how the terms �m are computed.

2.3. The spectral integration matrix

First note that there are various ways to choose the points t0,t1,t2, . . ., tp to define the sub-steps in the SDC
method. When Gaussian quadrature nodes are used, {t1, . . .tp} are interior points in [tn, tn+1] and the endpoints
are not used. On the other hand the Radau Ia quadrature nodes t0,t1,t2, . . ., tp use the left end point while the
Radau IIa nodes t1,t2, . . ., tp have tp = tn+1. Finally, the Lobatto quadrature rule requires the use of both end
points.

Using the Gaussian nodes as an example, suppose we are given the scalar function values
~u ¼ fu1;u2; . . . ;upg at the nodes, then the Legendre polynomial expansion Lpð~u; tÞ can be constructed to
approximate ~u where the coefficients are computed using Gaussian quadrature rules. This gives a numerically
stable and efficient way to find the equivalent interpolating polynomial of degree p � 1. Integrating this inter-
ing polynomial analytically from t0 to tm, a linear mapping Q is derived which maps the function values ~u
e integral of the interpolating polynomial
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½~u�m ¼
t0

Lpð~u; sÞds.
can be written in matrix form
This

Q~u ¼ DtS~u; ð16Þ
where S will be referred to as the integration matrix, and is independent of Dt. Note that in the more general

N ~ ~
here uðtÞ 2 C , Eq. (16) must be interpreted as being applied component-wise to u, i.e., u is a vector of
Np and
Q~u ¼ DtðIp � SÞ~u; ð17Þ
where Ip is the identity matrix of size p · p. In the following, we use script font to denote this tensor product,
i.e. S denotes the Np · Np block diagonal matrix Ip � S.

For traditional deferred/defect correction methods, there are two factors which prevent the use of extremely
high order methods: The first problem relates to the instability of interpolation at equispaced nodes where the
Runge phenomenon can be observed when the number of interpolation points p is large. The second problem
is that numerical differentiation in the original ODE formulation (Eqs. (1) and (2)) introduces instabilities [33].
Spectral deferred correction methods avoid both of these difficulties by introducing Gaussian-type nodes and
using the Picard integral equation. The procedure is explained in next section. In the current numerical imple-
mentation, the Legendre polynomial based Radau IIa quadrature nodes are used and the matrix S is precom-
puted using Mathematica requesting more than 20 digits in accuracy. Detailed comparisons of different
es of nodes will be reported in the future (see also [24]).
2.4. The spectral deferred correction algorithm

Given an approximate solution ~u½0� ¼ ½u½0�; . . . ;u½0��, consider the error equation given by (11). Discretizing
1 p

tegral in (10) in the same manner as in (6) using the spectral integration matrix yields
~� ¼ ~u0 þ DtS~F �~u½0�; ð18Þ
where~� ¼ ½�ðt1Þ; . . . ; �ðtpÞ� is the residual at the intermediate points. Once the residual is calculated, an approx-

imation~d
½1�

to the error Eq. (11) is computed using p steps of the Eq. (14) for non-stiff problems or Eq. (15) for

stiff problems. The provisional solution is then updated with ~u½1� ¼ ~u½0� þ~d
½1�

, and this procedure can be re-
peated. The algorithm for SDC is given by the following:

Pseudo-code: spectral deferred correction method

Comment [Compute initial approximation]
For non-stiff/stiff problems, use the forward/backward Euler method to compute an approximate solu-

tion u½0� � uðt Þ at the sub-steps t , . . ., t on the interval [t , t ].
m m 1 p n n+1

mment [Compute successive corrections.]

do j =

rk 2.

lso be
1, . . .,J

(1) Compute the approximate residual function~� using ~u½j�1� and Eq. (18).

(2a) For non-stiff problems, compute ~d
½j�

using p steps of Eq. (14).

(2b) For stiff problems, compute ~d
½j�

using p steps of Eq. (15).

(3) Update the approximate solution ~u½j� ¼ ~u½j�1� þ~d
½j�

.

endo
It can be shown that each correction procedure in this algorithm can improve the order of the method by one,
as long as such improvement has not gone beyond the degree of the underlying interpolating polynomial and
the quadrature rules [13,18,19]. For linear ODE problems, a proof is provided in Section 3.2 utilizing the Neu-
mann series expansion.
1. For the initial approximation, an alternative method is to use a constant approximation. This
en implemented and tested. Detailed analysis and comparisons will be reported in the future.



2.5. The collocation formulation limit of SDC
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nsider the iterative correction procedure detailed in the last section. If the SDC procedure is convergent,
by Eq. (18) the limit satisfies~� ¼ 0, which is equivalent to
~u ¼ ~u0 þ DtS~F . ð19Þ
This is identical to the collocation formula given in Eq. (6). Conditions specifying precisely when the SDC
converges to this limit for linear systems are presented in Section 3.

It is possible to solve this equation directly using, for example, Newton�s method [16,17]. However, for
uðtÞ 2 CN and assuming p interior points are used in each time step, the total number of unknowns in the col-
location formula is M = pN. Therefore each iteration of Newton�s method (or a direct solution if the problem
is linear) requires inverting a matrix of size M · M. In contrast, each correction iteration of the SDC method
requires solving p linear or nonlinear systems with N unknowns. When the number of iterative corrections is
small, SDC methods will be more efficient compared with the direct Newton�s method approach, especially
when the order p is high.

3. Spectral deferred corrections in matrix form

In the previous section, we show that the SDC method can be considered as an iterative scheme for solving
the implicit equation arising from a direct discretization of the Picard integral equation in (19). In this section,
we derive an explicit representation of the iteration in matrix form for the linear case which proves that the
SDC iterations converge for linear systems and aids in analyzing and accelerating the convergence.
r the present, let F(t,u(t)) = Lu(t) + f(t) where L is a constant matrix. Given an approximate solution
), the discretized collocation formulation for the error equation in (11) becomes
~d� DtSL~d ¼ ~u0 þ DtS~F �~u½0�;

e L ¼ Ip � L (see Section 2.3). Denoting the right hand side by ~�, the SDC procedure iteratively
ximates
ðI� DtSLÞ~d ¼~� ð20Þ
using the low order approximations~d

½j�
for j = 1,2, . . .. The goal of this section is to rewrite SDC methods in a

matrix form and show that the original SDC technique is equivalent to solving Eq. (20) using a preconditioned

Neumann series expansion, i.e., ~d ¼
P1

j¼1
~d
½j�

where ~d
½jþ1�
¼ C~d

½j�
for an explicit matrix C.

3.1. Euler method in matrix form
rst consider the forward Euler method in Eq. (14) which is appropriate for non-stiff problems. For the
correction Eq. (20), a sub-step is given by
dmþ1 ¼ dm þ DtmLdm þ ð�mþ1 � �mÞ. ð21Þ

ing successive values of d and using the fact that both the error d(t) and the residual �(t) are zero at t0,
manipulation givesXm
dmþ1 ¼
i¼1

DtiLdi þ �mþ1. ð22Þ
Pm
e that i¼1DtiLdi is the composite rectangular rule approximation (where the left end point is used) of

tegralZ tiþ1
0

LdðsÞds.
fore, in matrix form, the forward Euler method is equivalent to solving� �

I� DteSL ~d

½1�
¼~�; ð23Þ
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lower

Su
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betwe

where

It is a
~d
½1�
¼ ½d1; d2; . . . dp�T,~� ¼ ½�1; �2; . . . ; �p�T, and

DteS ¼

0 0 � � � 0 0

Dt1 0 � � � 0 0

Dt1 Dt2 � � � 0 0

Dt1 Dt2 � � � 0 0

� � � � � 0 0

2
6666666664

3
7777777775

. ð24Þ
Dt1 Dt2 � � � Dtp�1 0

Notice that eS is a strictly lower triangular approximation of the spectral integration matrix S. Similarly, for

plicit Euler method, the matrix eS takes the form

DteS ¼
Dt0 0 � � � 0 0

Dt0 Dt1 � � � 0 0

Dt0 Dt1 � � � 0 0

� � � � � 0 0

Dt0 Dt1 � � � Dtp�2 0

2
666666664

3
777777775

. ð25Þ
Dt0 Dt1 � � � Dtp�2 Dtp�1

This lower triangular matrix is also an approximation of the spectral integration matrix, with non-zero diag-
onal entries.

To summarize, each correction in the SDC method may be considered as solving an approximation of the

ation formulation of the correction Eq. (20), where the spectral integration matrix is approximated by a

triangular matrix. Clearly, the solution given by� �

~d
½1�
¼ I� DteSL

�1

~� ð26Þ

is a low order approximation of ~d in Eq. (20).

3.2. The Neumann series
ppose after k corrections, we have a provisional approximation ~u½k�, the new residual is then defined as
~� ¼ ~u0 þ DtSL~u½k� �~u½k�.
~½kþ1�
ying Euler method (which is equivalent to Eq. (26)) and denoting the solution by d , the relationship
en ~u½kþ1� and ~u½k� is

~u½kþ1� ¼ ~u½k� þ~d
½kþ1�

¼ ~u½k� þ I� DteSL
� ��1

~�

¼ ~u½k� þ I� DteSL
� ��1

~u0 � ðI� DteSLÞ~u½k� þ DtðS� eSÞL~u½k�� �
� ��1
¼ I� DteSL ~u0 þ C~u½k�; ð27Þ
we define� �

C ¼ I� DteSL

�1

DtðS� eSÞL. ð28Þ
lso straightforward to derive the recursive relationship between ~d
½kþ1�

and ~d
½k�

. First note that� ��1
~u½kþ1� ¼ I� DteSL ~u0 þ C~u½k�
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~u½k� ¼ I� DteSL ~u0 þ C~u½k�1�.
acting the two identities yields
~d
½kþ1�
¼ C~d

½k�
. ð29Þ

½0�
ming our initial provisional approximation is given by ~u , then from the recursive relation (29), the solu-

fter k corrections is given by the Neumann series expansion:

½k� ½0�
Xk

m�1 ½1�

~u ¼ ~u þ

m¼1

C ~d . ð30Þ
an also derive the Neumann series expansion by solving the error Eq. (20). Multiplying both sides by
teSLÞ�1, we have the preconditioned linear system� ��1 � ��1
I� DteSL ðI� DtSLÞ~d ¼ I� DteSL ~�. ð31Þ
e that the right hand side of (31) is ~d
½1�

and the operator on the left is� �
�1
I� DteSL ðI� DtSLÞ ¼ ðI� CÞ; ð32Þ
e C is defined in Eq. (28). Hence, the preconditioned error equation is given by the linear system
½1�

ðI� CÞ~d ¼~d .

e
 is an approximation of the matrix S, when Dt is small, we expect the norm of C to be small. If so, the

ion to the linear system is given by the Neumann series expansion
~d ¼~d
½1�
þ C~d

½1�
þ C2~d

½1�
þ � � � . ð33Þ

This is clearly equivalent to Eq. (30).
There are two immediate consequences of the Neumann series expansion:

Corollary 3.1. For linear problems, given a sufficiently small fixed time-step Dt, the correction iteration in the

SDC method using either of the first order correction procedures described by Eq. (14) or (15) is convergent.

Corollary 3.2. For linear problems, given a sufficiently small fixed time-step D t, each iteration of the correction

equation in the SDC method using either of the first order correction procedures described by Eq. (14) or (15)
increases the formal order of the method by one order of Dt, provided the order is not greater than that of the

underlying quadrature rule.
e proof of both corollaries follows directly from Eq. (33) and the fact that C in Eq. (28) is O(Dt).
4. GMRES accelerated spectral deferred correction methods

In the previous section, we show that for linear problems, an SDC method may be considered as an iter-
ation scheme for solving the collocation formulation (20) using a preconditioned Neumann series expansion.
In this section, we show how this fact can be used to accelerate the convergence of the original SDC method.

4.1. Krylov subspace and generalized minimal residual (GMRES) algorithm
nsider the linear system Ax = b with initial guess x0 = 0 and define the Krylov subspace as
KmðA; bÞ ¼ span b;Ab; . . . ;Ambf g.



The generalized minimal residual (GMRES) algorithm works by searching for the ‘‘best’’ solution
xm 2 KmðA; bÞ that either makes rm ? Km or minimizes rm in some L2 norm where rm = b�A xm. In general,
the convergence of the algorithm depends on the eigenvalue distribution of the matrix A. Rather than simply
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accepting the solution given by the Neumann series in Eq. (33), our strategy here is to use the GMRES method
to co ~

k0 ste
Intere

Th
the ev

Co

efficie
prohi
mpute the ‘‘best’’ value of d in
~½1� ~½1� 2~½1� m~½1�
spanfd ;Cd ;C d ; . . . ;C d g. ð34Þ

Note that the memory required for the GMRES method increases linearly with the iteration number k, and
the number of multiplications scales like 1

2
k2n where n is the number of unknowns and the size of the matrix A

is n · n. When k is chosen to be n, a full orthogonalization cycle is implemented and in theory b � A xn should
be close to machine precision. Although accurate, this procedure is expensive and requires excessive memory
storage. For practical reasons, instead of a full orthogonalization procedure, GMRES can be restarted every
ps where k0 < n is some fixed integer parameter. The restarted version is often denoted as GMRES(k0).
sted readers are referred to the original paper [29] for further discussions.
4.2. GMRES acceleration for linear problems

For linear problems, consider the preconditioned linear system in Eq. (31). The original SDC approximates
this equation using a Neumann series expansion in the matrix C defined in Eq. (28). Since the matrix C con-
tains a factor of Dt, if Dt is sufficiently small (and hence the expansion is convergent), each additional term in
the expansion produces an additional order of accuracy in the approximation. Note however that when the
norm of any eigenvalue of C is greater than 1, the series expansion is divergent. Also, if the norm is smaller
but close to 1, the series expansion will still converge, but will do so slowly. The latter case is the cause of order
reduction for stiff problems analyzed in Section 6.1.

It is straightforward to apply GMRES or GMRES(k0) to the linear system in Eq. (31) and to hence find the
optimal solution in the Krylov subspace. In the following discussions, this new numerical technique will be
referred to as the GMRES-SDC method.
e GMRES algorithm requires a matrix vector product be computed. In the present context, this requires

aluation of

� �
e �1
I� DtSL ðI� DtSLÞ~x0

for any given~x0. However, applying this operator is equivalent to time marching with either the forward or
backward Euler method for the correction equation. The full algorithm is as follows:

Pseudo-code: Matrix vector product algorithm
mment [Suppose input~x0 is given.]
(1) Calculate~� ¼ ðI� DtSLÞ~x0.
(2a) Use the forward Euler method and solve ðI� DteSLÞ~y ¼~� where DteS is defined in Eq. (24).
(2b) Use the backward Euler method and solve ðI� DteSLÞ~y ¼~� where DteS is defined in Eq. (25).

(3) Output ~y.

In this algorithm, the first step is equivalent to evaluating the residual function, and the second step is equiv-
alent to time-stepping the correction equation. Therefore, the amount of work for each matrix vector product

in the GMRES-SDC methods is the same as one correction in the original SDC method. However, depending
on k0, GMRES-SDC requires additional work to search the optimal solution in the Krylov subspace. Notice
that no additional function evaluations are required in this searching process, and so we are expecting minimal
ncy loss due to the use of GMRES. Additional storage is necessary, however, and this could prove to be
bitive when applying the method to PDEs.



4.3. Nonlinear problems

The GMRES-SDC methods can be applied to nonlinear problems as well. This requires the coupling of
Newton iterations with the GMRES-SDC technique. In our current implementation, we use a ‘‘linearly impli-
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this d
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wher

(expl
ormulation as described in [9]. In this formulation, notice that for small d(t), the error Eq. (11) can be
ximated byZ t
dðtÞ ¼
a

Ju½0� ðs;u½0�ÞdðsÞdsþ �ðtÞ þOðjjdjj2Þ; ð35Þ
e Ju½0� is the Jacobian matrix of the function F(t,u[0]) defined as
½0�
Ju½0� ðt;u½0�Þ ¼
oF ðt;u Þ

ou
.

etizing Eq. (35) yields the linear system
ðI � DtSJÞ~d ¼~�; ð36Þ
where J is the tensor form of J~u½0� which represents the Jacobian matrix at each Gaussian node. Since this
equation is of the same type as Eq. (26), it can be solved using the GMRES-SDC methods for linear problems
discussed in the previous section. The Jacobian matrix J is updated after the linear problem is solved to a pre-
scribed precision tolG, as described by the following:

Pseudo-code: Nonlinear GMRES-SDC method

Comment [Compute initial approximation]
½0�
Use the Euler method to compute an approximate solution ~u .
mmen

while

irecti

icit) E
t [Compute successive corrections.]
residual k~�k > tol do
(1) Compute the Jacobian matrix J~u½0� .
(2) Use GMRES-SDC for linear problems to solve Eq. (36) to tolerance tolG.

~½0� ~½0� ~
(3) Update the approximate solution u ¼ u þ d.
end do

Note that an alternative to the above linear implicit algorithm which couples Newton method iterations
with GMRES-SDC is to implement the method under the ‘‘inexact Newton Methods’’ framework [22]. This
alternative is currently being pursued in the more general case of differential algebraic equations. Results along
on will be reported in the future.
5. Stability and accuracy analysis
nsider the model problem

u0ðtÞ ¼ k � uðtÞ; t 2 ½0; 1�;

uð0Þ ¼ 1; ð37Þ
ing the terminology in [9], the amplification factor, Am(k), for k 2 C is defined by the formula
AmðkÞ ¼ euð1Þ; ð38Þ

e euð1Þ is the numerical solution at t = 1 using Dt = 1. If, for a given value of k,
jAmðkÞj 6 1; ð39Þ
then the numerical method is said to be stable for that value of k. When a numerical method is applied to the
model problem, the stability region is defined to be the subset of the complex plane consisting of all k such that
the amplification factor defined in Eq. (38) satisfies jAm(k)j 6 1.

The most interesting stability diagrams are generated by the GMRES-SDC schemes based on the forward

uler method. In Fig. 1, we show the stability regions for the restarted GMRES(k0) using 4 Radau
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IIa nodes. For k0 = 0, this gives the original SDC, and when k0 = 4, GMRES(k0) is equivalent to the full
GMRES which solves the collocation formulation. It can be seen that the stability region of the GMRES-
SDC method is much larger than that of the original SDC method. This is not surprising if one considers
the preconditioned system (31): Even though the explicit Euler method is a bad preconditioner for k with large
negative real part, the GMRES procedure can still converge to the collocation solution as long as the precon-
ditioning process does not produce numerical overflow. This suggests the possibility of using explicit GMRES-
SDC methods for mildly stiff problems. However, we want to mention that when more substeps are used, the
explicit Euler based preconditioner is more likely to encounter overflow problems. Hence the stability region
will be much smaller. This can be seen in Fig. 2 where 10 Radau IIa nodes are used.

For implicit GMRES-SDC methods (using the backward Euler scheme) where the preconditioner is well
conditioned, when the full GMRES is performed, the stability regions can be considered the same as those
of the corresponding collocation method. A-stability of these methods can be proven in some cases (all collo-
cation methods using the Gaussian points are A-stable), and appears to be true for many others based on
numerical results [2]. Our numerical results also show that all the implicit GMRES-SDC methods using Radau
IIa nodes we tested (up to machine precision) are A-stable. Further stability and convergence analysis for the
GMRES-SDC methods are still being pursued, including the B-stability and B-convergence.

For the original SDC methods, recently, Hagstrom and Zhou showed that when p Gauss nodes are used,
after 2p corrections, the order of the method is 2p [13]. This result can be generalized to the GMRES-SDC
methods which solve the collocation formulation as shown by the following theorem. Notice that when
GMRES is applied, at most p corrections are necessary for linear scalar problems, compared with 2p in [13].

Theorem 5.1. Using p Gauss nodes, the collocation method which solves Eq. (19) has order 2p.

Proof. The proof follows closely that of Theorem 1.5 in [14]. Notice that the collocation solution to Eq. (19) at
t is derived by spectral integration, which is equivalent to evaluating at t the degree p polynomial P(t)

Fig. 1. Stability region of GMRES(k0), 4 Radau IIa nodes.
n+1 n+1

obtained by integrating the degree p�1 interpolating polynomial Lpð~F ; sÞwhere~F ¼ ½F ðt1;u1Þ; . . . F ðtp;upÞ�
T , i.e.
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644 J. Huang et al. / Journal of Computational Physics 214 (2006) 633–656
Z t
P ðtÞ ¼ u0 þ
t0

Lpð~F ; sÞds.

For this polynomial P(t) it is straightforward to show:

(1) P(t0) = u0.
(2) P 0(ti) = F(ti,ui) at all Gauss nodes (by the definition of P(t)).
(3) P(ti) = ui for i = 1, . . .,p (from the collocation formulation).
fore, for tn < t < tn+1, the polynomial P(t) satisfies
P 0ðtÞ ¼ F ðt; P ðtÞÞ þ rðtÞ;
e r(t) = P 0(t)�F(t,P(t)) and satisfies r(ti) = 0 at the Gauss nodes. The error P(t)�u(t) then satisfies
P 0ðtÞ � u0ðtÞ ¼ F ðt; PðtÞÞ � F ðt;uðtÞÞ þ rðtÞ.
tructing the Taylor expansion of F(t,P(t)) at F(t,u(t)) yields

oF

P 0ðtÞ � u0ðtÞ ¼

ou
ðt;uðtÞÞðP ðtÞ � uðtÞÞ þ rðtÞ þOðkP ðtÞ � uðtÞk2Þ.
(t0)�u(t0) = 0, the solution to this equation is given by the variation of constants formula (see [15])Z tnþ1
2
P ðtnþ1Þ � uðtnþ1Þ ¼

t0

Rðtnþ1; sÞðrðsÞ þOðkP ðsÞ � uðsÞk ÞÞds;



where R(t,s) is the Green�s function of the corresponding homogeneous differential equation and is smooth
p+1
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Errors
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Error
< t. Applying the theorem that the local truncation error P(t) � u(t) is at least O(Dt ) (see e.g., p.
[14]), we can neglect the term O(iP(t) � u(t)i2) which is at least O(Dt2p+2) and deriveZ tnþ1
P ðtnþ1Þ � uðtnþ1Þ ¼
t0

Rðtnþ1; sÞrðsÞdsþOðDt2pþ2Þ.

Since Gauss quadrature is applied to the integral and r(ti) = 0 at the Gauss nodes, the collocation solution
P(t) has the same order as the underlying quadrature formula. When Gauss–Legendre nodes are used, the or-
f the local truncation error is therefore 2p + 1. The same proof can be applied to show that when Radau
odes are used, the local truncation error is O(Dt2p). h
6. Numerical experiments

In this section, we show some preliminary numerical results for both linear and nonlinear problems.
Depending on the stiffness of the problem, we present results for both the explicit and implicit GMRES-
SDC methods.

6.1. The cosine problem
r the first numerical example, define pðtÞ ¼ cosðtÞ and consider

u0ðtÞ ¼ p0ðtÞ � 1

e
ðuðtÞ � pðtÞÞ; t 2 ½0; tfinal�;
uð0Þ ¼ pð0Þ.

The exact solution is clearly u(t) = p(t). Notice that when e is small, this problem is stiff, however, the solution
itself is smooth and independent of e.

For the first example, we set e = 0.02 and Dt = 1. For each time step, we use 12 Radau IIa nodes. For the
time-stepping we use the explicit Euler method in Eq. (14). In Table 1, we show the numerical error after one
step (Dt = tfinal = 1) for different GMRES(k0). For k0 = 0, the method is the original SDC. Also, for each step,
we fix the number of explicit Euler corrections to 12. The total number of function evaluations is therefore
fixed to 12 · 12.

These results are consistent with the stability analysis in Section 5. Clearly, the GMRES-SDC methods give
better numerical results even though the original SDC method is unstable. Also, for the restarted GMRES(k0),
keeping more data in memory (larger k0) reduces the error. The full orthogonalization process (k0 = 12, the
same as the number of unknowns) returns converged numerical results but loses a few digits in accuracy
due to the fact that the forward Euler predictor is actually unstable here (see also Fig. 3).

Next, consider the case e = 10�6. As the problem is very stiff, the implicit GMRES-SDC method is used.
Note that for this example, the original SDC method is stable. As in the explicit examples, the results shown
in Table 2 demonstrate that increasing k0 reduces the error and residual (defined as b�Ax when solving
Ax = b) and that both go to machine precision with the full GMRES.

Note that in both the explicit and implicit examples, the error first decays slowly as a function of k0, and
then suddenly decreases to close to machine precision once k0 is the same as the number of nodes p. The con-
vergence of the GMRES procedure depends in general on the distribution of the eigenvalues of the matrix
considered. In the present context, the eigenvalues of the matrix C defined in Eq. (28) are of interest,
hese in turn depend on the matrix S � eS . The eigenvalues of C for both the explicit and implicit cases

1
versus k0 for the cosine problem for the explicit GMRES-SDC method
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Fig. 3. Eigenvalue distribution of C for both the implicit and explicit method. Note that the axis in the right panel are scaled by 104.

Table 2
Errors and residuals versus k0 for the cosine problem for the implicit GMRES-SDC method

k0 0 1 2 3 4 6 12

Error 1.4e � 4 3.6e � 4 1.6e � 4 5.5e � 5 3.3e � 5 1.2e � 5 4.4e � 16
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above are shown in Fig. 3. The eigenvalues in the implicit case are smaller by about four orders of magnitude
than in the explicit case, but in neither case are the eigenvalues clustered about a single point.

6.1.1. Order reduction

In [24], when the original SDC method is applied to stiff problems and the number of corrections for each
step is fixed, the effective order of accuracy is reduced for values of the time step size in a certain range. This
type of order reduction is also present in many popular types of Runge–Kutta methods [7,8,30]. The implica-
tion of order reduction is that, although the methods are stable for larger time steps, one must use a very small
time step, or increase the number of SDC corrections for the method to converge with full order. However,
with the GMRES-SDC methods, when full orthogonalization is used, order reduction is no longer observed.
In Fig. 4, convergence results are presented for both the original SDC and the new implicit GMRES-SDC
methods for different e and step size selections. In the calculation, 10 Radau IIa nodes are used, and 10 iter-
ations are performed. The order reduction phenomenon can be easily observed when e is small (curves on the

Residual 2.3e � 4 2.9e � 4 1.6e � 4 8.1e � 5 4.8e � 5 1.6e � 5 2.8e � 16
left). The plots also indicate the benefit in terms of computational cost the GMRES acceleration provides. For
example, when e = 10�5, in order to have 13 digits of accuracy, the original SDC requires a step size of
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approximately 10�5. For the GMRES-SDC method with full orthogonalization, the necessary step size is
approximately 0.1, or 4 orders of magnitude greater.

6.2. The linear multiple mode problem

As mentioned above, the convergence of a GMRES-SDC method will depend on the eigenvalues of the
matrix C in Eq. (28), which depend also on the eigenvalues of the linear operator L. Hence in our second
set of tests, we study an ODE system similar to the cosine problem in which we can specify the distribution
of the eigenvalues. When GMRES is applied to the original SDC, it is usually expensive to use the full orthog-
onalization process since it would require k0 = pN iterations for a system of N ODEs using p nodes. This
increases both the memory required and the amount of work performed. Therefore a natural question is, given
some information on the distribution of the eigenvalues, can we determine the ‘‘optimal’’ number k0? The fol-

Fig. 4. Order reduction: the original SDC and the GMRES-SDC.
lowing numerical experiments are intended to provide some basic guidelines.
Th

where
struct

tion.
to 1. I
e problem studied in this example is

�y0ðtÞ ¼ �p0ðtÞ � Bð�yðtÞ � �pðtÞÞ;

�yð0Þ ¼ �pð0Þ;
�yðtÞ and �pðtÞ are vectors of dimension N. The exact solution is again �yðtÞ ¼ �pðtÞ. The matrix B is con-

ed by
B ¼ U TKU ;

where U is a randomly generated orthogonal matrix, and K is a diagonal matrix whose diagonal entries fkigN
i¼1

are all positive. For �pðtÞ, we choose the ith component as cosðt þ aiÞ with phase parameter ai = 2pi/N.
In our first experiment, we set the dimension of the system to 10, and use 10 Radau IIa nodes in the simula-

7
We use Dt = 0.1 and study one time step (i.e., tfinal = Dt). In the left of Fig. 5, we set k1 = 10 , and all other ki

t can be seen that when k0 � 12, the residual converges to machine precision in about 25 iterations. Notice
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that 10 Radau IIa nodes resolve the solution to 14 digits, therefore the residual is equivalent to the error (up to a
constant factor). In the right panel, results are shown for the case when two eigenvalues are 107, two are 104, and
the rest are 1. In this case, more iterations are required to reduce the residual to machine precision, and it
requires a slightly higher k0 of approximately 15 to yield the best convergence results (i.e. results for k0 = 15
are almost identical to those using larger k0). However, these values of k0 are much smaller compared with
the full GMRES which requires k0 = 100. Since the original SDC method would require ten iterations of the
correction equation, in this case, there is a factor of 4 increase in the number of iterations for GMRES-SDC
method, however, this results in a reduction in the error of approximately 10 orders of magnitude.

In our second experiment, we consider the case where N = 100 and the log10 of the eigenvalues are uni-
formly distributed on [0,7]. For 10 Radau IIa nodes, numerical results for different k0 are shown in Fig. 6.
In this example, convergence profiles for k0 > 10 are very similar. Notice that the full GMRES requires
k0 = 1000, hence only a small fraction of the full method is required for machine precision. At present, the
optimal strategy for picking k0 for a given problem is not completely understood, although these experiments
suggest that a successful strategy must depend on the time step, the size of the system, the distribution of the
eigenvalues, and of course any memory restrictions based on the problem size. The authors are currently inves-
tigating strategies for choosing k0 in the broader context of step size selection.

6.3. The Van der Pol oscillator

In our third example, we consider the nonlinear ODE initial value problem which describes the behavior of

Fig. 5. Comparison of errors for different k0.
vacuum tube circuits. It was proposed by B. Van der Pol in the 1920�s, and is often referred to as the Van der
Pol oscillator. As a first order ODE system, the problem takes the form
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y 0 ðtÞ ¼ y2ðtÞ;
�

0

1

0 2
ð40Þ
y2ðtÞ ¼ ð1� y1ðtÞy2ðtÞ � y1ðtÞÞ=e;

where the initial values are given by [y(0),y 0(0)] = [2,�0.6666654321121172]. This is a stiff system when e is
small. For this nonlinear problem, we use the ‘‘linear implicit’’ GMRES-SDC methods discussed in Section
4, and choose the following strategy in the implementation: GMRES(k0) is applied to the linearized system
until the residual b�Ax is reduced by a factor of tolG; once this is done, we update the Jacobian matrix
and restart GMRES(k0).

As our first experiment, we set e = 10�3, and use Dt = 0.001. We apply the explicit GMRES-SDC method,
and in Fig. 7, we show how the residual decays (as the analytical solution is not readily available) for different
k0 when tolG = 0.01 (left) and tolG = 0.1 (right). Here, the residual is defined as the error ib�Axi for the lin-
earized system in Eq. (36). It can be seen that the GMRES-SDC method converges quickly to the solution of
the collocation formulation. This is consistent with the stability analysis in Section 5 and the linear cosine test
problems in Section 6.1. Notice that for this problem, the original SDC method is divergent (not shown on
plot), and GMRES(1) converges very slowly.

Because of the nonlinearity of the problem, the convergence behavior of the GMRES-SDC method also
depends on tolG. The two panels in Fig. 7 compare convergence for tolG = 0.01 and tolG = 0.1. In the left
panel, it appears that using k0 = 10 is sufficient for achieving the best convergence results since the conver-
gence for k0 = 15 is nearly identical. In the right panel, convergence for k0 = 5 is the same as for k0 = 10
and k0 = 15, although the overall number of iterations required to achieve a specified error tolerance increases
slightly compared to tolG = 0.01. Determining the ‘‘optimal’’ choice of tolG or an adaptive strategy for choos-
ing tolG is an open issue.

Next we apply the implicit GMRES-SDC method to the very stiff case with e = 10�8 and Dt = 0.5. The

s are shown in Fig. 8 for different choices of k0 and tolG = 0.1. In all cases, the GMRES-SDC methods
rge more rapidly to the collocation solution than the original SDC method.



0 10 20 30 40
10

–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

Number of corrections

R
es

id
ua

l
tol

G
=0.01

0 10 20 30 40
10

–14

10
–12

10
–10

10
–8

10
–6

10
–4

10
–2

Number of corrections

R
es

id
ua

l

tol
G

=0.1

k0=1
k0=2
k0=5
k0=10
k0=15

k0=1
k0=2
k0=5
k0=10
k0=15

Fig. 7. Comparison of different k0 for the Van der Pol problem, explicit method.

650 J. Huang et al. / Journal of Computational Physics 214 (2006) 633–656
It is possible to apply a different numerical method for the time marching of the correction equation. In the
above examples, either the explicit or implicit Euler method is used for the correction equation. It is reasonable
to expect that the use of a higher-order numerical method for the time marching of the correction equation
would result in a method which requires fewer iterations of the correction equation to converge to a specified
tolerance. In the linear case, this is equivalent to choosing a different preconditioner for the Neumann series
expansion. We investigate this idea by repeating the above numerical example using the trapezoid rule. The
results are compared with those from the implicit Euler method in Fig. 9 for k0 = 1, 2 and 10. From this figure,
we can see that using larger k0 again improves the numerical convergence in both cases. However, when
k0 = 10, the trapezoid rule results are not significantly better than those computed with the first-order method.
Hence, at least for this limited experiment, using a higher-order marching method does not seem to have a
significant effect on the convergence when the GMRES acceleration procedure is used (see also [19]).

6.4. The nonlinear multi-mode problem
In
is giv

The a
with
this example, we study a nonlinear generalization of the multi-mode example in Section 6.2. The problem
en by a system of N nonlinear equations

y0ðtÞ ¼ p0ðtÞ � kiyiþ1ðtÞðyiðtÞ � piðtÞÞ; 1 < i < N � 1;
�

i i

y0N ðtÞ ¼ p0N ðtÞ � kiðyiðtÞ � piðtÞÞ; i ¼ N .
nalytical solution is again �yðtÞ ¼ �pðtÞ where the ith component of �pðtÞ is given by piðtÞ ¼ 2þ cosðt þ aiÞ
phase parameter ai = 2pi/N. In our first experiment, we set N = 7 and the eigenvalues are chosen as
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[108,108,1,1,1,1,1]. In the left of Fig. 10, as in the first linear multi-mode test, we show how the residual decays
in one time step for different k0 where tolG = 10�1. In the simulation, we use the implicit GMRES-SDC meth-
od with p = 10 Radau IIa nodes and Dt is chosen to be 0.3. It can be seen that the linear implicit GMRES-
SDC greatly improves the convergence of the SDC procedure. Also, when k0 > p, the convergence of the method
is very satisfactory. In our second experiment, we choose the eigenvalues as [108,108,105,105,1,1,1] so that
there are two eigenvalue cluster points away from 1 as in the second linear multi-mode example. The right
panel of Fig. 10 shows that somewhat more corrections are required for convergence in this case; however,
the minimum k0 required for reasonable performance does not increase over the case with only one cluster.
In both cases, k0 = 5 now gives convergence behavior very similar to using larger k0.

6.5. The ring modulator problem
In
electr

with

In th
our last example, we consider a stiff nonlinear ODE system of 15 equations. The problem originates from
ical circuit analysis. Specifically, it describes the behavior of the ring modulator [1], and takes the form
d~y
dt
¼ ~f ðt;~yÞ; ~y ¼~y0;
~y 2 R15; 0 6 t 6 10�5.
is equation, the function ~f is defined by



The a

and t

Ou
solve
~f ðt;~yÞ ¼

C�1ðy8 � 0:5y10 þ 0:5y11 þ y14 � R�1y1Þ
C�1ðy9 � 0:5y12 þ 0:5y13 þ y15 � R�1y2Þ

C�1
s ðy10 � qðU D1Þ þ qðU D4ÞÞ

�C�1
s ðy11 � qðUD2Þ þ qðU D3ÞÞ

C�1
s ðy12 þ qðU D1Þ � qðU D3ÞÞ

�C�1
s ðy13 þ qðUD2Þ � qðU D4ÞÞ

C�1
p ð�R�1

p y7 þ qðU D1Þ þ qðU D2Þ � qðUD3Þ � qðU D4ÞÞ
�L�1

h y1

�L�1
h y2

L�1
s2 ð0:5y1 � y3 � Rg2y10Þ
�L�1

s3 ð0:5y1 � y4 þ Rg3y11Þ
L�1

s2 ð0:5y2 � y5 � Rg2y12Þ
�L�1

s3 ð0:5y2 � y6 þ Rg3y13Þ
L�1ð�y þ U in1ðtÞ � ðRi þ Rg4Þy Þ

0
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1
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s1 1 14
L�1
s1 ð�y2 � ðRc þ Rg1Þy15Þ
uxiliary functions UD1,UD2,UD3,UD4,q,Uin1 and Uin2 are given by

U D1 ¼ y3 � y5 � y7 � U in2ðtÞ;
U D2 ¼ �y4 þ y6 � y7 � U in2ðtÞ;
U D3 ¼ y4 þ y5 � y7 þ U in2ðtÞ;
U D4 ¼ �y3 � y6 þ y7 þ U in2ðtÞ;
qðUÞ ¼ cðedU � 1Þ;
U in1ðtÞ ¼ 0:5 sinð2000ptÞ;

U in2ðtÞ ¼ 2 sinð2000ptÞ.
eters are
The values of the param
r results suggest that the new GMRES-SDC method is a very competitive alternative t
rs. However, in order to perform more extensive (and convincing) tests, an automatic ste
C = 1.6 Æ 10�8
 R = 25000

C = 2 · 10�12
 R = 50
s

C = 10�8

i

R = 50
p
 p
Lh = 4.45
 Lc = 600

Ls1 = 0.002

�4

Rg1 = 36.3
Ls2 = 5 · 10
�4
Rg2 = 17.3

Ls3 = 5 · 10 Rg3 = 17.3
c = 40.67286402 · 10�9 d = 17.7493332
he initial value ~y0 is given by
~y0 ¼~0.

In the simulation, we use the implicit GMRES-SDC method with p = 7 Radau IIa nodes. We set tolG = 0.1,
k0 = p + 1, and tfinal = 10�5. Our uniform step GMRES-SDC method is then compared with available adaptive

ODE packages described in [1] and the results are shown in Table 3. In the table, the parameters rtol, atol and
h0 for each method are chosen experimentally to produce a numerical solution with at least 9 significant digits,
which has the fewest possible number of function evaluations.
o existing ODE
p-size selection



Table 3
Performance comparison of different solvers

G-SDC DASSL GAMD MEBDFI PSIDE RADAU VODE

Rtol 1e � 8 1e � 12 1e � 10 1e � 9 1e � 10 1e � 9 1e � 11
Atol * 1e � 12 1e � 10 1e � 11 1e � 11 1e � 10 1e � 14
h0 2.5e � 6 * 1e � 10 1e � 10 * 1e � 10 *

Rerr 3.0e � 9 1.1e � 9 3.1e � 9 2.9e � 9 2.1e � 9 2.1e � 9 1.3e � 9
F 1134 2104 4057 2284 3417 2172 2961
Steps 4 1591 76 669 154 47 2277

*, not needed; rtol, relative tolerance; atol, absolute tolerance; h0, initial step-size; rerr, maximum relative error; F, number of function
evaluations; steps, number of steps taken.
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strategy is required for the GMRES-SDC method. In Fig. 11, we show the step-sizes used by the adaptive solv-
ers MEBDFI and RADAU. Currently, we are studying strategies for step-size selections along with strategies
for computing better initial provisional solutions, for adaptively choosing the parameters k0 and tolG, and for
adaptively varying the order of the SDC method. Progress will be reported in the future.

Finally for this section, we want to mention that we have also studied several other problems from the Test
Set for IVP solvers [1]. In all cases, the convergence of the original SDC methods is greatly improved by the
GMRES-SDC procedure.

7. Conclusions

In this paper, a matrix based analysis of the original SDC method for linear problems shows that the iter-
ated corrections are equivalent to a preconditioned Neumann series expansion. By introducing the Krylov
subspace based GMRES method, we show how the convergence of the original SDC can be accelerated. Pre-
liminary analytical and numerical results show that the stability and accuracy of this new class of methods are
greatly improved for both linear and nonlinear problems compared to the original method.

In order to fully explore the efficiency of the new accelerated SDC methods, a direct comparison with exist-

Fig. 11. Step-sizes selected by RADAU and MEBDFI.
ing methods on standard test problems needs to be carried out. This requires that a variable time step selection
algorithm be implemented with the GMRES-SDC method. The authors have been investigating strategies for



varying both the time step and the order of the method to optimally achieve a desired error tolerance. The
problem of developing a robust algorithm is further complicated by the fact that the performance of the
GMRES acceleration depends on the size of the time step, the size of the system, the stiffness of the equation,
and on the restart parameter k0. We have also investigated more effective methods of coupling the GMRES
process with Newton�s method for the implicit version on nonlinear problems. Results along these lines will be
presented in the future.

One case where it is clear that the GMRES acceleration is advantageous is for ODE initial value problems
where the stiffness is caused by only a few eigenvalues with large negative real parts. For this case, the reduc-
tion to first order accuracy for a range of time step size which is observed for the original SDC methods is
effectively eliminated in the tests presented in Section 6.1. The analysis here clearly shows that order reduction
is equivalent to the slow decay of the Neumann series expansion derived in Section 3.

Several other extensions of the accelerated method are also being pursued. One advantageous feature of
SDC methods in general is that semi- and multi-implicit versions of the method for problems with more than
one stiff time scale have been developed [6,26]. Acceleration of these methods is also being pursued. It should
be noted that for PDE applications (for which the semi- and multi-implicit methods were developed), the size
of the linear system that GMRES is being applied to in the current methods may be very large, and hence
memory restrictions may require that a small restart parameter k0 be used. More numerical tests need to
be conducted in such cases to determine the benefits of the GMRES acceleration.
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Finally, a generalization of the GMRES-SDC method has been applied to differential algebraic equations.

Initial numerical results are very promising, and a paper reporting on these results is in preparation [21].
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