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IMPLICATIONS OF THE CHOICE OF PREDICTORS FOR
SEMI-IMPLICIT PICARD INTEGRAL DEFERRED

CORRECTION METHODS

ANITA T. LAYTON AND MICHAEL L. MINION

High-order semi-implicit Picard integral deferred correction (SIPIDC) methods
have previously been proposed for the time-integration of partial differential
equations with two or more disparate time scales. The SIPIDC methods studied to
date compute a high-order approximation by first computing a provisional solution
with a first-order semi-implicit method and then using a similar semi-implicit
method to solve a series of correction equations, each of which raises the order
of accuracy of the solution by one. This study assesses the efficiency of SIPIDC
methods that instead use standard semi-implicit methods with orders two through
four to compute the provisional solution. Numerical results indicate that using a
method with more than first-order accuracy in the computation of the provisional
solution increases the efficiency of SIPIDC methods in some cases. First-order
PIDC corrections can improve the efficiency of semi-implicit integration methods
based on backward difference formulae (BDF) or Runge–Kutta methods while
maintaining desirable stability properties. Finally, the phenomenon of order
reduction, which may be encountered in the integration of stiff problems, can
be partially alleviated by the use of BDF methods in the computation of the
provisional solution.

1. Introduction

The dynamics of many physical and biological systems of interest today involve
processes with two or more characteristic time scales. When the time scales of the
physical processes vary widely, efficient time-marching of the partial differential
equations (PDEs) that describe the dynamics may require specialized numerical
methods, particularly when one wishes to accurately resolve processes at each time

MSC2000: primary 65B05; secondary 65L20.
Keywords: semi-implicit methods, deferred correction methods, order reduction.
A. T. Layton was supported in part by the National Science Foundation, grant DMS-0340654.
M. L. Minion was supported in part under contract DE-AC03-76SF00098 by the Director, Department
of Energy (DOE) Office of Science; Office of Advanced Scientific Computing Research; Office of
Mathematics, Information, and Computational Sciences; Applied Mathematics Sciences Program;
and by the Alexander von Humboldt Foundation.

1



2 ANITA T. LAYTON AND MICHAEL L. MINION

scale. For example, following the method-of-lines approach, when the PDEs are
discretized in space, the resulting system of coupled ordinary differential equations
(ODEs) typically contains both stiff and nonstiff terms. When the stiffness of one of
these terms corresponds to eigenvalues with a large negative real part (for example,
from the discretization of a diffusive term), an implicit treatment of this term can
allow a much larger stable time step (without significantly sacrificing accuracy) than
an explicit treatment. Hence, the use of semi-implicit methods for such systems,
that is, methods that treat only the stiff terms implicitly, can result in a considerable
improvement in efficiency compared to fully implicit methods, particularly when
other nonstiff terms in the equations are computationally expensive to treat implicitly.
Provided that a sufficiently high level of accuracy is desired, and/or the temporal
interval is sufficiently long, high-order methods for ODEs are more efficient than
low-order methods in that less computational cost is required by high-order methods
to achieve a given, sufficiently stringent error tolerance. Hence the construction of
stable and efficient higher-order semi-implicit methods for ODEs is desirable.

Indeed, semi-implicit (also known as implicit-explicit or IMEX) versions of
popular time-integration methods such as Runge–Kutta (RK), linear multistep, or
backward difference formulae (BDF) methods have been developed to efficiently
integrate ODEs with both nonstiff and stiff components. Semi-implicit RK methods
have been proposed and tested by a number of authors [Ascher et al. 1997; Kennedy
and Carpenter 2003; Pareschi and Russo 2001; Shen and Zhong 1996; Calvo et
al. 2001]; however, owing in part to the complexity of deriving such schemes,
only semi-implicit RK methods with order up to five have so far been developed.
Similarly, several papers have analyzed the stability and accuracy of semi-implicit
methods derived from linear multistep methods [Akrivis et al. 1999; Ascher et al.
1995; Frank et al. 1997; in’t Hout 2002]. In this case, stable schemes up to order
six are easily constructed, although higher-order versions have the disadvantages
that they require multiple starting values, require care when used with variable
time stepping schemes, and, as further discussed in Section 3, have less satisfactory
stability characteristics.

In a series of studies [Minion 2003; Minion 2004; Layton and Minion 2005],
we developed and analyzed a new class of semi-implicit methods for integrating
ODEs that arise from a method-of-lines discretization of PDEs involving time-
scale disparity. The methods are based on a semi-implicit Picard integral deferred
correction (SIPIDC) approach, which is a generalization of the explicit and implicit
spectral deferred correction (SDC) methods introduced in [Dutt et al. 2000]. SDC
methods use a low-order numerical method to compute an approximate solution
with an arbitrarily high order of accuracy. This is achieved by using the low-order
numerical method to solve a series of correction equations, each of which increases
the order of accuracy of the approximation.
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The SDC methods introduced in [Dutt et al. 2000] and the SIPIDC methods
described in [Layton and Minion 2005], as well as most of the SISDC methods
described in [Minion 2003], use a first-order method both to compute the provi-
sional solution and to approximate the correction equations. It has previously been
demonstrated that higher-order versions of these methods are more efficient than
lower-order methods, and that the stability properties of the methods with very high
order remain similar to those with lower order [Dutt et al. 2000; Minion 2003]. A
reasonable question to ask is whether the efficiency of SIPIDC methods can be
improved by using a semi-implicit method with higher than first-order accuracy to
compute the provisional solution. (We will refer to the standard method used to
compute the provisional solution in a particular PIDC method as the predictor.)
Hence we wish to investigate whether using a semi-implicit BDF or RK method
as the predictor in a PIDC method improves the overall efficiency of the PIDC
method. PIDC methods using a predictor with higher than first-order accuracy
require fewer iterations of the correction equation to achieve the same overall order
of accuracy relative to methods using a first-order predictor. However, it is not
immediately clear if the lower computational cost comes at the expense of a loss
in accuracy, or if using such a predictor negatively affects the stability of PIDC
methods. Another relevant question addressed here is whether performing a series
of SIPIDC corrections on a solution generated from a semi-implicit BDF or RK
method results in a SIPIDC method with greater numerical efficiency than that
afforded by simply using the base methods alone. The primary goal of this paper
is to address these questions using the linear stability analysis in Section 3 and
numerical tests in Section 4.

A further issue addressed here concerns order reduction for stiff problems,
something observed in connection with both SIPIDC methods and semi-implicit RK
methods [Minion 2003; Layton and Minion 2005; Kennedy and Carpenter 2003]. In
[Layton and Minion 2005] the effect of the choice of quadrature nodes on the extent
and character of order reduction of SIPIDC methods on stiff problems is investigated.
Both analytical and numerical results in [Layton and Minion 2005] show that, for a
sufficiently stiff problem, SIPIDC methods using a first-order forward-backward
Euler predictor exhibit a reduction of order for a range of time steps, and the extent
and character of the reduction depends on the choice of quadrature rule used in the
method. The results presented in Section 4.3 show that the extent and character of
order reduction also depend critically on the predictor. Specifically, when a kth-
order IMEX BDF predictor is used with uniform quadrature nodes, the convergence
rate in the region of order reduction is k − 1, compared to a reduction to first-order
when an IMEX RK predictor (regardless of order) is used.
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2. SIPIDC methods

Below is a short description of SIPIDC methods. A detailed derivation of the
SIPIDC methods for ODEs and for an advection-diffusion-reaction equation can
be found in [Minion 2003] and [Bourlioux et al. 2003]. The target ODE takes the
form

u′(t)= FE
(
t, u(t)

)
+ FI

(
t, u(t)

)
, t ∈ [a, b]

u(a)= ua,
(1)

where FI is assumed to be significantly stiffer than FE . Thus, SIPIDC methods
compute u(t) by integrating FE explicitly and FI implicitly.

Without loss of generality, a uniform time step 1t = (b − a)/NT , for some
positive integer NT , is assumed in the numerical discretization. Let tn = n1t , for
n = 0, 1, 2, . . . , NT , be the n-th time-level. In the integration of the solution from tn
to tn+1, the time interval [tn, tn+1] is divided into P subintervals by choosing points
tn,m for m = 0, 1, . . . , P such that tn = tn,0 < tn,1 < · · ·< tn,m < · · ·< tn,P ≤ tn+1.
For notational simplicity, the subscript n in tn,m is omitted and tn,m is written as tm .
Let 1tm ≡ tm+1 − tm ; the interval [tm, tm+1] is referred to as a substep.

For an arbitrary function ψ(t), let ψk and ψk
m denote numerical approximations

to ψ(t) and ψ(tm), respectively, after k iterations. To advance the solution from
tn to tn+1, a SIPIDC method first computes a provisional solution ũ(tm) ≡ u0

m ,
for m = 0, 1, . . . , P , by means of a semi-implicit method that we refer to as the
predictor. Presumably any method could be chosen to compute the provisional
solution, and the main point of this paper is to investigate the relative performance
of SIPIDC methods using different predictors.

Given a provisional solution ũ(t), the accuracy of that solution can be improved
using an estimate of its error (or correction): u(t)− ũ(t), denoted by δ(t). Using
the Picard integral form of the solution to Equation (1), one can express δ(t) as the
solution to the integral equation

δ(t)=
∫ t

a

(
FE(τ, ũ + δ)− FE(τ, ũ)+ FI (τ, ũ + δ)− FI (τ, ũ)

)
dτ + E(t, ũ), (2)

where E is the residual function given by

E(t, ũ)= u0 +

∫ t

a
FE(τ, ũ)+ FI (τ, ũ) dτ − ũ(t).

We have suppressed the time dependence of ũ(t) and δ(t) in the integrands to avoid
clutter. A detailed derivation of Equation (2) is given in [Minion 2003].

In SIPIDC methods, a semi-implicit discretization of Equation (2) is used to
iteratively increase the order of accuracy of the provisional solution, that is,

uk+1
m = uk

m + δk
m .
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Specifically, a forward-backward Euler method for computing δk
m is given by

δk
m+1 = δk

m +1tm
(
FE(uk+1

m )− FE(uk
m)+ FI (uk+1

m+1)− FI (uk
m+1)

)
+ Em+1(uk)− Em(uk), (3)

where the terms Em(uk) are approximated with numerical quadrature. Let

Qm+1
m (F)

be a Pth-order numerical quadrature approximation to
∫ tm+1

tm
F(τ )dτ , that is,

Qm+1
m (F)=1tm

p∑
l=0

qm
l Fl =

∫ tm+1

tm
F(τ )dτ + O(1t P+1). (4)

By adding uk to both sides of (3), one obtains a direct update equation that can be
used to improve the accuracy of uk :

uk+1
m+1 = uk+1

m +1tm
(
FE(uk+1

m )− FE(uk
m)+ FI (uk+1

m+1)− FI (uk
m+1)

)
+ Qm+1

m
(
FE(uk)+ FI (uk)

)
. (5)

Equation (5) is solved at the k-th iteration, referred to as a deferred correction
iteration; see [Minion 2003] for details. The quadrature Q should have at least
the same order of accuracy as the updated approximation uk+1. As in [Bourlioux
et al. 2003; Minion 2003], the quadrature Qm+1

m is computed as the integral of
an interpolating polynomial over the subinterval [tm, tm+1] (see further discussion
below).

In the SDC methods presented in [Dutt et al. 2000], the points tm are chosen to
be the Gaussian quadrature nodes of the interval [tn, tn+1], and the solution is only
integrated at these nodes on the interior of the interval. In [Bourlioux et al. 2003;
Minion 2003] the points tm are chosen to be Gauss–Lobatto quadrature nodes, which
are more convenient in that the solution is directly computed at both endpoints of the
time step interval. However, because Gauss–Lobatto nodes are not evenly spaced
for orders of accuracy >2, predictors with higher than first order are less convenient
to implement (nonetheless, it can be done; see [Minion 2003]). This is particularly
true if the SIPIDC method is used for the temporal integration of PDEs in which
block structured adaptive mesh refinement is used (see [Berger and Oliger 1984]). In
this instance (currently a topic of research by the authors), the colocation of coarse
and fine grid data requires the use of uniform substeps. Other examples in which it
is either convenient or necessary to choose substeps that are uniformly spaced have
been discussed in [Layton and Minion 2005]. For these reasons, SIPIDC methods
presented here use uniform nodes such that 1t1 = · · · =1tm · · · ≡1ts .
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The form of the quadrature rule also has a significant effect on the stability
and accuracy of the SIPIDC method for stiff equations. The methods in [Layton
and Minion 2005] actually use two separate quadrature rules for the two terms in
Qm+1

m
(
FE(uk)+ FI (uk)

)
in Equation (4). It is shown in [Layton and Minion 2005]

that, when function values at the left endpoint tn are omitted in the quadrature
rule associated with the stiff component (that is, qm

0 = 0 for all m), the resulting
SIPIDC method is L(α)-stable. Also, by including the left endpoint in the nonstiff
quadrature rule, the accuracy of the quadrature associated with the explicit piece
is improved. This choice of quadrature rules, denoted LR in [Layton and Minion
2005], is adopted in this study. To construct a method with K th-order accuracy, the
quadrature Q should also have at least K th-order accuracy. If P + 1 nodes (or P
substeps) are used in the interval [tn, tn+1], uniform integration nodes yield order
P accuracy for the integral Qm+1

m over the subinterval [tm, tm+1]. Thus, to construct
a K th-order SIPIDC method with uniform nodes that uses the LR quadrature rule
(which excludes the left endpoints in the stiff quadrature rule), K + 1 nodes or K
substeps are required.

2.1. Moderate-order predictors. The SDC methods presented in [Bourlioux et al.
2003; Dutt et al. 2000] are based on forward-backward Euler methods; that is,
the prediction and correction steps are first order. Because higher-order methods
are generally more efficient than lower-order methods, we investigate SIPIDC
methods that are based on second- through fourth-order semi-implicit methods in
the prediction step. We refer to these predictors as moderate-order predictors. The
methods that we use for computing the provisional solution are based on Euler
methods, IMEX BDF [Ascher et al. 1995], IMEX RK methods [Ascher et al. 1997;
Kennedy and Carpenter 2003], and classical Adams-type multistep methods. These
methods, chosen either for their popularity or known stability, are described below.

IMEX BDF methods. BDF methods are a class of linear multistep methods specifi-
cally developed for the solution of stiff ODEs. Hence it is natural when constructing
semi-implicit generalizations of linear multistep methods to base the treatment of
the stiff piece of the equation on BDF methods. IMEX BDF methods have been
previously studied [Ascher et al. 1995; Akrivis et al. 1998; in’t Hout 2002]. Here
we use second- through fourth-order semi-implicit BDF methods from [Ascher et al.
1995] (denoted BDF2, BDF3, and BDF4) in the provisional step. Forward-backward
Euler methods, which can be considered as either a first-order IMEX BDF or IMEX
RK method, are included here. For brevity, IMEX BDF will be referred to simply
as BDF. The specific formulae are

Euler: u0
m+1 = u0

m +1ts
(
FE(u0

m)+ FI (u0
m+1)

)
, (6)
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BDF2: 3
2 u0

m+1 = 2u0
m −

1
2 u0

m−1

+1ts
(
2FE(u0

m)− FE(u0
m−1)+ FI (u0

m+1)
)
, (7)

BDF3: 11
6 u0

m+1 = 3u0
m −

3
2 u0

m−1 +
1
3 u0

m−2

+1ts
(
3FE(u0

m)− 3FE(u0
m−1)+ FE(u0

m−2)+ FI (u0
m+1)

)
, (8)

BDF4: 25
12 u0

m+1 = 4u0
m − 3u0

m−1 +
4
3 u0

m−2 −
1
4 u0

m−3

+1ts
(
4FE(u0

m)− 6FE(u0
m−1)+ 4FE(u0

m−2)

− FE(u0
m−3)+ FI (u0

m+1)
)
. (9)

IMEX RK methods. There are several different implementations of second-order
IMEX RK methods. The one used in this study is a two-stage L-stable RK2 method
described by Ascher et al [Ascher et al. 1997]. This particular implementation of
IMEX RK2 is chosen owing to its L-stability, even though it requires two stages
and is thus more costly than some alternative implementations (for example, the
IMEX midpoint [Ascher et al. 1997]). The L-stable IMEX RK2 method, which we
refer to as RK2 for brevity, generates a provisional solution as follows:

RK2: φ(1)m+c1
= u0

m + c11ts
(
FE(u0

m)+ FI (φ
(1)
m+c1

)
)
,

φ
(2)
m+1 = u0

m +1ts
(

c2 FE(u0
m)+ (1 − c2)FE(φ

(1)
m+c1

)

+ (1 − c1)FI (φ
(1)
m+c1

)+ c1 FI (φ
(2)
m+1)

)
,

u0
m+1 = u0

m +1ts
(
(1 − c1)

(
FE(φ

(1)
m+c1

)+ FI (φ
(1)
m+c1

)
)

+ c1
(
FE(φ

(2)
m+1)+ FI (φ

(2)
m+1)

))
,

where c1 = 1 −
√

2/2, c2 = −2
√

2/3.
The third- and fourth-order IMEX RK methods used here are based on the

Additive RK methods developed by Kennedy and Carpenter [Kennedy and Carpenter
2003], specifically, the ARK3(2)4L[2]SA-ERK and ARK4(3)6L[2]SA methods.
These methods, which we refer to simply as ARK3 and ARK4, involve three and
five stages, respectively, and we refer interested reader to [Kennedy and Carpenter
2003] for the relevant coefficients. There is a fifth-order ARK method introduced in
[Kennedy and Carpenter 2003], but Kennedy and Carpenter determine that it is not
competitive with the fourth-order methods, and hence we do not study it here. We
know of no IMEX RK methods of order greater than five in the literature (although
it is possible to construct such methods).
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Multistep methods. We also investigate the well known second- and third-order
multistep methods: Crank–Nicolson/Adam–Bashforth (CNAB) and Adam–Bash-
forth/Adam–Moulton (ABAM) methods. When these methods are used, the provi-
sional solution is given by:

CNAB: u0
m+1 = u0

m +1ts
(

3
2 FE(u0

m)

−
1
2 FE(u0

m−1)+
1
2 FI (u0

m+1)+
1
2 FI (u0

m)
)
,

ABAM: u0
m+1 = u0

m +
1ts
12

(
23FE(u0

m)− 16FE(u0
m−1)+ 5FE(u0

m−2)

+5FI (u0
m+1)+ 8FI (u0

m)− FI (u0
m−1)

)
. (10)

Both BDF and multistep methods require function values from multiple previous
time-levels, values that are not available at the initial substeps of the first time
step [t0, t1]. To generate these starting values for a K th-order SIPIDC method,
initial conditions at t0 are advanced to t1 using one time step (or K substeps) of
the K th-order SIPIDC method that uses the forward-backward Euler method in the
prediction step. The substep values from this first step are then used as starting
values for the subsequent time steps.

We use the notation SIPIDCK [Pname] to denote a K th-order SIPIDC method
using Pname as the predictor, where Pname is one of the methods described above.
The forward-backward Euler method in (3) is used in the correction steps, hence,
if a pth-order predictor is used to construct a K th-order SIPIDC method, then the
correction equation must be iterated K − p times.

3. Linear stability analysis

One of the motivations for the development of high-order SIPIDC methods is that
stable methods with very high order of accuracy can be easily constructed. This
is in contrast to BDF methods, the stability of which degrades significantly as the
order increases, and to IMEX RK methods, where no methods of order greater than
five are known. When using either of these methods as predictors in a SIPIDC
method, it is important to understand the effect these predictors have on the stability
of the overall method.

Hence, the linear stability of SIPIDC methods using BDF or RK predictors is
studied in this section. Traditionally, the stability of single-step implicit or explicit
methods is studied by considering the model problem

u′(t)= λu(t),

u(0)= 1, (11)
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for some complex constant λ. By applying a numerical method to this problem,
one can derive an amplification factor ρ(λ1t), such that

un+1 = ρ(λ1t)un,

where un is the numerical solution at the nth time step.
When studying the linear stability of semi-implicit methods, one must specify

how the standard model problem Equation (11) is decomposed into explicit and
implicit parts. Numerous choices of the splitting have appeared in the literature
[Frank et al. 1997; Ascher et al. 1995; Pareschi and Russo 2001; Zhong 1996;
Pareschi and Russo 2005]. The most general approach is to decompose the problem
into explicit and implicit terms by

u′(t)= λE u + λI u,

u(0)= 1,

where λE and λI are complex constants [Frank et al. 1997; Pareschi and Russo
2001; Liotta et al. 2000; Pareschi and Russo 2005; Zhong 1996]. Then additional
constraints are made to define a stability region which depends only on a single
complex number. For example in [Frank et al. 1997] the stability region is defined
as the set of λI such that the method is stable for all λE in the stability region of
the explicit method. This approach is also used in [Layton and Minion 2005] but
is not used in the following comparisons, since by this definition a method could
have a very large stability region despite a severe restriction on the step size due
to the properties of the explicit method. Instead, the procedure used in [Ascher
et al. 1995; Ascher et al. 1997; Minion 2003] is followed, wherein the imaginary
part of the right side of Equation (11) is associated with the nonstiff process and
treated explicitly, while the real part is associated with the stiff process and treated
implicitly. It should be noted that, regardless of the choice of splitting, the scalar
stability analysis only carries over to linear systems when the matrices which define
the explicit and implicit terms are simultaneously diagonalizable.

SIPIDC methods using a p-step method in the prediction step advance u(tn) to
u(tn+1) using p starting values un−1,P(≡ un), un−1,P−1, . . . , un−1,P−p+1, where
P denotes the number of substeps. Let Eun denote the vector (un−1,0, un−1,1, . . . ,
un−1,P). Then the procedure for advancing un to un+1 can be written in matrix
form:

M(λ1t)Eun = Eun+1,

where M ∈ <
P×P and depends on the product λ1t . To define the stability region

for this method, set 1t = 1 and denote by ρ(λ), the maximum magnitude of the
eigenvalues M(λ). The stability region is then the set of λ such that ρ(λ)≤ 1. For
SIPIDC methods with single-step predictors, this definition reduces to the usual
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definition of the amplification factor of a method. In the following, the stability
regions for SIPIDC methods with multistep predictors are numerically computed
by setting Eun to be e j for j = 1, . . . , P , where the i-th entry of e j is given by

(e j )i =

{
0, i 6= j,
1, i = j.

For each λ, the resulting P vectors Eun+1 form the P columns of M(λ). MATLAB is
used to compute the maximum of the magnitude of eigenvalues of M(λ) at a regular
array of points in the complex plane. The condition number of the eigenvalues
are also monitored to check for degenerate eigenvalues with magnitude near 1,
but none were found. The standard definition of A(α)-stability [Widlund 1967] is
easily extended to the semi-implicit case by defining a method to be A(α)-stable
for some α > 0, if the defined stability region contains the region λ= reiθ , for all
θ ∈ [π −α, π +α].

It is well known that the size of the stability region for implicit BDF methods
decreases as the order increases; indeed, BDF methods with order above six are
not acceptable [Gear 1971]. However, the stability properties of IMEX versions
of these methods are not as well known and hence are investigated here. The
numerically computed stability diagrams for IMEX BDF methods of orders 2, 3,
4, 6, and 7 are displayed in Figure 1. In this and all other figures in this section,
the axes are scaled cubically to show both detail near the origin and the general
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Figure 1. Stability diagrams for second-, third-, fourth-, sixth-,
and seventh-order IMEX BDF. Stability regions for IMEX BDF
decrease significantly as the order increases, and BDF7 is not stable
near the origin.
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shape of the stability region in the left half of the complex plane. Figure 1 shows
that, as with fully implicit methods, the size of the stability regions of IMEX BDF
methods decreases significantly as the order of the method increases, and that the
seventh-order method is not stable near the origin. In particular, each method is
A(α)-stable with α decreasing with increasing order. The stability of certain IMEX
RK methods of orders up to three has been studied previously (e.g. [Ascher et al.
1997]). For completeness, we include a plot of the stability regions of the ARK
methods of orders 3 and 4 used in this study in Figure 2, which demonstrates that
both methods are A(α)-stable with similar stability regions. As noted previously,
we do not consider fifth-order ARK as it has been deemed to be not competitive
[Kennedy and Carpenter 2003], and we are not aware of sixth- or higher-order
IMEX RK methods.

Extending the standard definition of L-stability [Ehle 1969] requires care since

lim
<(λ)→−∞

ρ (λ) (12)

will in general depend on how the limit is taken. Here we define a method to be
L(α)-stable if it is A(α)-stable and the limit in Equation (12) is zero whenever the
imaginary part of λ is fixed in the limit, that is,

lim
<(λ)→ −∞

=(λ)≡ c

ρ (λ)= 0, (13)

−125 −64 −27 −8 −1 0 10

 

1

 

8

 

27

 

Re(λ)

Im
(λ

)

ARK3
ARK4

Figure 2. Stability diagrams for third- and fourth-order ARK methods.
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for all c ∈ <. This, for example, would be the relevant infinitely diffusive stabil-
ity limit of an approximation to an advection-diffusion equation based on finite
differences and the method of lines.

It is shown in [Layton and Minion 2005] that A(α)-stable SIPIDC methods can
be constructed using forward-backward Euler methods, and that those methods
using LR quadrature rules are also L(α)-stable. Given an SIPIDC method for which
the corrector is based on the forward-backward Euler method and for which the
quadrature rule for the implicit piece does not include the left endpoint, one can
show that if the predictor satisfies Equation (13), then the overall scheme will
also (see [Layton and Minion 2005, Theorems 3.1–3.3].) Hence, since the IMEX
BDF and RK methods that are used as predictors in this paper are L(α)-stable,
A(α)-stability for the SIPIDC methods in this paper implies L(α)-stability. As an
example, stability regions for the SIPIDC6[ARK3] method are shown in Figure 3.
In this figure, stability curves corresponding to ρ(λ)= 0.001 0.01, 0.1, and 1 are
shown to demonstrate that the method is L(α)-stable.

An L(α)-stable method can also be constructed using BDF3 in the prediction
step (not shown). Note also that the stability region of the SIPIDC6[ARK3] method
corresponding to ρ = 1 in Figure 3 is significantly larger than the stability region
of IMEX BDF6 (see Figure 1). However, the SIPIDC6[ARK3] method is also
computationally more expensive than IMEX BDF6, owing to the deferred correction
iterations and the multiple stages. Thus, it is not immediately clear that for a given

−1000 −512 −216 −64 −8 00

 

1

 

8

 

27

 

Re(λ)

Im
(λ

)

SIPIDC6[ARK3]

1

1

1

0.1

0.1

0.1

0.01

0.01

0.01
0.

00
1

0.001

0.
00

1

0.001

Figure 3. Contours of the amplification factor ρ(λ) for
the SIPIDC6 method using ARK3 in the provisional step.
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computational cost, the SIPIDC[ARK3] has a larger stability region than IMEX
BDF6. This issue is further investigated below using scaled stability diagrams.

We will now use three different examples to demonstrate the main point of this
section, namely that higher-order SIPIDC methods using moderate-order predictors
have similar stability regions as the predictors. A corollary to this is that combining
moderate-order IMEX BDF or ARK methods with SIPIDC corrections results in
a higher-order method with better stability characteristics than the corresponding
higher-order IMEX BDF or RK methods. We will demonstrate these points with
three separate comparisons:

(1) a comparison of SIPIDC methods of a fixed order using different types of
predictors of the same order (that is, IMEX BDF, RK, or multistep);

(2) a comparison of SIPIDC methods of a fixed order using one specific type of
predictor with differing orders;

(3) a comparison of SIPIDC methods of differing order using one specific type of
predictor with fixed order.

In the first example, we consider the effect of applying SIPIDC corrections on the
stability region of different third-order predictors. To this end, we obtain stability
diagrams (contour curves of |ρ| = 1) for IMEX BDF3, ARK3, and ABAM. These
stability diagrams, shown in Figure 4A, indicate that BDF3 and ARK3 are A(α)-
stable, whereas ABAM is not. SIPIDC methods using the above three methods as
predictors (not shown) exhibit similar stability properties as the predictors, that is,
SIPIDC6[BDF3] and SIPIDC6[ARK3] are A(α)-stable, but SIPIDC6[ABAM] is
not.
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Although the ARK3 method has the largest stability region of the three predictors
above (see Figure 4A), ARK3 is also more computationally expensive owing to the
multiple stages required. To take into account the additional computational costs,
we show scaled stability diagrams for SIPIDC6 methods using the three predictors
in Figure 4B. By assuming that the solution of the implicit part of the system is
much more expensive than the explicit part (even though in the model problem (11),
the solution of the implicit piece is a simple scalar division), the computational
costs of SIPIDC methods are measured in terms of the numbers of implicit solves.
To obtain the scaled stability diagrams, Re(λ) and Im(λ) are divided by the number
of implicit function evaluations. These results show that even with computational
costs taken into account, SIPIDC6[ARK3] still has the largest stability region.

We now present the second example to examine the effect on the stability of the
overall SIPIDC method for a given type of predictor of differing orders. To this
end, we compare the stability of SIPIDC6 methods implemented using first-order
forward-backward Euler, IMEX BDF2, and IMEX BDF3 in the prediction step,
and using forward-backward Euler methods in the correction steps. Figure 5 shows
the scaled stability diagrams for the three SIPIDC6 methods, with the stability
diagram for BDF6 included for comparison. (Note that the BDF6 method is applied
to compute the solution at each substep of the SIPIDC methods as is done with
the other BDF predictors, hence the stability region for BDF6 is scaled by a factor
of 6 compared to Figure 1.) The unscaled stability diagrams for SIPIDC6[Euler],
SIPIDC6[BDF2], SIPIDC6[BDF3], and BDF6 are qualitatively similar to those
for the predictors (Figure 1); however, when computational costs are taken into
account, the relative size of the stability diagrams change. The scaled stability region
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Figure 5. Scaled stability diagrams for SIPIDC6[Euler],
SIPIDC6[BDF2], SIPIDC6[BDF3], and IMEX BDF6.
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associated with the SIPIDC6[BDF3] is the largest, followed by SIPIDC6[BDF2],
and by SIPIDC6[Euler]. Also noteworthy is that the stability regions of all three
SIPIDC6 methods are substantially larger than that of the BDF6 method, even when
the stability diagrams are scaled by the computational costs. This suggests that
applying PIDC steps to a provisional solution computed by a BDF method generates
an approximation with accuracy comparable to that computed by a high-order BDF
method, without a decrease in the size of the stability region associated with the
BDF6 scheme.

Finally, we consider the stability regions of SIPIDC schemes of varying order
using the BDF3 scheme as a predictor. Figure 6 shows the scaled stability regions
for SIPIDCk[BDF3] schemes for k ranging from 4 to 7, as well as that of the BDF3
method for comparison. Each method is A(α)-stable with roughly the same α.
Comparing Figure 6 with Figure 1 further demonstrates that higher-order SIPIDC
methods do not suffer from a reduction in the size of the stability region as do
the BDF methods. Note in particular that the stability region for SIPIDC7[BDF3]
method is not significantly smaller than that of the moderate-order methods.

The accuracy and stability of SIPIDC methods using predictors of differing types
and orders will be further assessed in Section 4 using more complex problems.

4. Numerical examples

In this section, numerical examples are used to further assess the stability and
accuracy of SIPIDC methods. The first example is the van der Pol’s equation,
which is a popular nonlinear test problem for methods for stiff ODEs. The equation
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prescribes the motion of a particle x(t) governed by

x ′′(t)+µ(1 − x(t)2)x ′(t)+ x(t)= 0.

After applying the transformation y1(t)= x(t), y2(t)= µx ′(t), and t = t/µ, one
obtains the system

y1(t)′ = y2(t), (14)

y2(t)′ = 1
ε

(
− y1(t)+ (1 − y1(t)2)y2(t)

)
, (15)

where ε = 1/µ2. As ε approaches zero, these equations become increasingly stiff.
In the integration of (14) and (15), the first equation is treated explicitly, whereas
the second equation is treated implicitly. Equations (14) and (15) are integrated for
t ∈ [0, 0.5] with the equilibrium initial conditions shown in Table 1. Because an
exact solution is not known for this problem, errors are computed from a reference
solution obtained using a 7th-order implicit PIDC[Euler] method and a very small
time step, chosen so that the solutions computed with the PIDC method and the
ARK4(3)6L[2]SA method in [Kennedy and Carpenter 2003] agree to 14 digits.

ε y1(0) y2(0)

10−3 2 -0.66654321
10−4 2 -0.666654321
10−5 2 -0.6666654321
10−6 2 -0.66666654321
10−7 2 -0.666666654321

Table 1. Initial conditions for van der Pol’s equation.

The second example is a linear system of four equations given by

y′(t)= Ay + By (16)

where B ∈ <
4×4 contains at least one eigenvalue with a large negative real part that

scales as 1/ε, and A ∈ <
4×4 has eigenvalues close to the origin. A and B are given
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by

A =


0 c1 0 0

−c1 2a1 0 0
0 0 0 c2

0 0 −c2 2a2

 , D =


−1 0 0 0
0 −10 0 0

0 0 −102 0
0 0 0 1/ε

 ,

S =


1 0.5 0 0
0 1 0.5 0
0 0 1 0.5

0.5 0 0 1

 , B = SDS−1

where a1 = −0.2, b1 = 5, a2 = −0.4, b2 = 12, and ck =
√

ak + bk for k = 1 and 2.
If ε is chosen carefully, then the sum A + B contains one complex eigenvalue pair
with small negative real part, and two negative real eigenvalues, one with magnitude
of ∼1/ε. A and B do not commute, so the eigenvalues of A + B do not correspond
to the sum of eigenvalues of A and B. Equation (16) is integrated for t ∈ [0.4, 2.4].
The initial conditions are chosen to be the sum of the two normalized eigenvectors
corresponding to the complex eigenvalues, so that transients are eliminated from
the solution. We refer to this example as the linear system test.

The third example is the cosine test, which consists of the ODE

y(t)′ = −2π sin(2π t)− 1
ε

(
y − cos(2π t)

)
,

y(0)= 0,

for t ∈ [0, 10]. The exact solution of is y(t)= cos(2π t), and as ε→ 0, this equation
becomes increasingly stiff. In this implementation, SIPIDC methods treat the term
−2π sin(2π t) explicitly and the term −(y−cos(2π t))/ε implicitly. A slightly more
general problem was studied in [Prothero and Robinson 1974] and is considered
here in Appendix A, since its simplicity allows an explicit examination of dominant
error terms.

Because SIPIDC methods can be used to integrate ODEs arising from a method-
of-lines discretization of PDEs, we include here a PDE example: the Kuramoto–
Silvashinsky (KS) equation, which is used in [Akrivis and Smyrlis 2004] to study
the accuracy of IMEX BDF methods. The inhomogeneous KS equation is given by

ut + uux + uxx + νuxxxx = f (x, t), (17)

u(x, 0)= g(x),

for x ∈[0, 2π ] and t ∈[0, T ] and periodic boundary conditions u(x+2π, t)=u(x, t).
As in [Akrivis and Smyrlis 2004], the functions f (x, t) and g(x) are constructed
so that the exact solution is u(x, t) = sin(x + t); T and µ are taken to be 1 and
0.5, respectively. Equation (17) is first discretized in space using a pseudo-spectral
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method as in [Akrivis and Smyrlis 2004], and then integrated in time using SIPIDC
methods.

Note that the use of periodic boundary conditions for this problem avoids the
issue of how to correctly impose boundary conditions for the provisional solutions
in SIPIDC methods applied to PDEs with time-dependent boundary conditions. It
is now well established that a naive imposition of the exact boundary conditions
for PDEs within a RK method often results in a reduction of order of accuracy in
the solution [Sanz-Serna et al. 1987; Carpenter et al. 1995], and a similar problem
exists for PIDC methods. Strategies for addressing this problem have been proposed
for RK methods for certain classes of problems (see [Abarbanel et al. 1996; Pathria
1997; Calvo and Palencia 2002; Alonso-Mallo 2002b; Alonso-Mallo 2002a; Portero
et al. 2004]). Results in this direction for PIDC methods will be reported in future
works.

All calculations reported below were performed using MATLAB programs. For
brevity, we report results of only one or two examples for each study. Unless other-
wise stated, qualitatively similar results were also obtained using other examples.
For the ODE problems, the error reported is the discrete L2 norm of the error in
time of the computed solution y(tn) at each time step. For the KS equation, the
error reported is the discrete L2 norm of the error at the final time.

4.1. Efficiency improvement due to deferred corrections. We first assess the ef-
fect on the accuracy and stability of solutions computed by IMEX BDF and ARK
methods after SIPIDC correction steps have been applied to those solutions. To
this end, we compare the efficiency of IMEX BDF and ARK methods with SIPIDC
methods that use these BDF and ARK methods in the prediction step. The SIPIDC
methods use the first-order Euler method in the correction steps to improve the
accuracy of the intermediate approximations. As noted previously, the solution of
the implicit part of the ODEs is assumed to be much more expensive than the explicit
part. For simplicity, we further assume that the implicit solves in all methods have
similar computational costs. With these assumptions, we measure computational
costs in terms of the numbers of implicit solves. Recall that starting values required
for IMEX BDF and multistep methods are generated using a SIPIDC[Euler] method
to advance the initial solution to t1. The computational cost associated with this
initial step is included in the total cost.

A comparison among SIPIDC5, SIPIDC7, BDF, and ARK methods using the van
der Pol and cosine problems is shown in Figure 7. The comparison is obtained for
the nonstiff case, with the stiffness parameter ε set to 10−1. We first compare IMEX
BDF methods with SIPIDC methods that use BDF as predictor. The left panels of
Figure 7 show log-log plots of solution error versus the number of implicit function
evaluations obtained using SIPIDC5[BDFk], SIPIDC7[BDFk], and BDFk methods,
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for k = 3 and 4. The errors shown in Figure 7 for the van der Pol problem are for y2;
results for y1 are similar. For a sufficiently high accuracy requirement, the method
with the highest order, i.e., the SIPIDC7[BDFk] method, is the most efficient; and
both SIPIDC5[BDFk] and SIPIDC7[BDFk] methods are more efficient than IMEX
BDF3 and BDF4.

The comparisons between SIPIDC5[ARKk], SIPIDC7[ARKk], and ARKk, for
k = 3 and 4, are similar. The results shown in the right-hand panels of Figure 7
indicate that, for a sufficiently high accuracy requirement, SIPIDC7[ARKk] is the
most efficient, and that both SIPIDC methods are more efficient than the moderate-
order ARK methods. Similar results (not shown) were also obtained for SIPIDC
methods of order > 4, using a third- or fourth-order predictor and at least one
correction step.

4.2. Comparison of predictors. In the next set of tests, we compare the efficiency
of SIPIDC methods using different predictors. We first consider predictors of
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the same order but differing types (for example, BDF2 versus RK2). Results are
obtained for the van der Pol problem with both nonstiff and stiff parameters. In the
first set of experiments, we compare SIPIDC methods using second-order methods in
the prediction step. Figure 8A1 and Figure 8A2 compare the efficiency of SIPIDC6
methods using three different second-order predictors—BDF2, RK2, and CNAB.
Error curves obtained for IMEX BDF4 and ARK4 are also included for comparison.
The stiffness parameters ε are 10−1 and 10−4 for results in Figure 8A1 and Figure
8A2, respectively. For the nonstiff problem (panel A1), the SIPIDC6[BDF2] and
SIPIDC6[CNAB] methods, which have similar accuracy and the same computational
costs, are the most efficient for sufficiently high accuracy requirement. (The two
error curves approximately overlap.) These methods are more efficient than the
SIPIDC6[RK2] method because of the lower computational costs in their prediction
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methods with second-order predictors. B1, B2: SIPIDC6 methods
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step. The IMEX BDF4 and ARK4 are less efficient, as expected, at sufficiently
high accuracy requirement.

For the stiff case, the results shown in Figure 8A2 are markedly different. First,
in this case SIPIDC6[CNAB] is unstable for sufficiently large 1t , owing to its
lack of L-stability, and thus its error curve is not shown. Secondly, although
approximations computed by BDF4 converge at fourth order, the SIPIDC6[RK2]
and ARK4 methods appear to be converging at approximately a first-order rate in
the range of 1t shown. Finally, the SIPIDC6[BDF2] method exhibits two regions
of convergence: an approximately first-order convergence region at sufficiently
small 1t and a higher-order region at larger 1t (although the latter region is too
small for the order of convergence to be determined).

The results of the above tests are now presented using third-order predictors—
IMEX BDF3, ARK3, and AMAB. The nonstiff results (ε = 10−1) are shown in
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Figure 8B1 and are very similar to those for the second-order predictors in Figure
8B2. The SIPIDC6[BDF3] and SIPIDC6[AMAB] methods are more efficient than
SIPIDC6[ARK3] as well as the BDF4 and ARK4 methods for a sufficiently high
accuracy requirement.

For the stiff problem (ε = 10−4) the observed results shown in panel B2 are
again different from the nonstiff results, although they are similar to the results for
second-order methods in the stiff case shown in panel A2. The SIPIDC6[AMAB]
method, with a predictor that is not L-stable, is unstable like the SIPIDC6[CNAB]
above and is not shown. Both ARK4 and SIPIDC6[ARK3] appear to be converging
at approximately a first-order rate in the range of1t shown, while the BDF4 method
converges at the proper order. Also, the solutions computed by SIPIDC6[BDF3],
show two different convergence regimes, although the limits of machine precision
make it difficult to determine the respective rates. The order reduction behavior
of SIPIDC methods with BDF and RK predictors will be further investigated in
Section 4.3.

We will now compare predictors of the same type but differing orders. For
a SIPIDCK method that is based on a first-order method, K implicit solves are
required (one for each of the K substeps) for the provisional step and for each of the
K −1 correction steps. Thus, a total of K 2 implicit solves are required. On the other
hand, an SIPIDCK method that uses a first-order corrector but a pth-order predictor
requiring s implicit solves per substep will require K − p correction iterations and
thus a total of (K − p + s)K implicit solves per time step. Hence, assuming the
implicit solves require similar computational costs for all methods, the resulting
SIPIDC methods have the same order but a smaller computational cost if p > s
(e.g BDF methods where s = 1). However, regardless of whether p > s, it is not
clear that increasing the order of the predictor results in a more efficient method in
terms of error per function evaluation.

The linear system test is used to assess the extent to which the efficiency of a
SIPIDC method is improved by using IMEX BDF and RK methods in the prediction
step, first for a nonstiff problem with ε=1. For BDF methods, Figure 9A1 compares
the efficiency of SIPIDC6 methods using BDF predictors of order one (Euler)
through three. The error curve for BDF4 is included for comparison. In this case
SIPIDC6[BDF3] requires the fewest correction steps and it is indeed the most
efficient, albeit by a slight amount. Next we compare the efficiency of SIPIDC6
methods using IMEX RK-type predictors of differing orders (see Figure 9B1). For
this comparison, the three SIPIDC6 methods have similar computational costs, but
SIPIDC6[ARK3] and SIPIDC[RK2] appear more efficient than SIPIDC6[Euler].
Similar results were also obtained for SIPIDC methods of other overall orders.

The comparison is repeated for a stiff problem (ε=10−4) in Figures 9A2 and 9B2.
Results in Figure 9A2 show the advantage of using a moderate-order BDF method
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in the provisional step. The error curve for SIPIDC6[Euler] shows three regions of
convergence: for sufficiently large 1t (fewer than 2×103 function evaluations) and
for sufficiently small 1t (more than 104 function evaluations, where convergence
begins to increase), convergence is approximately sixth order; however, order
reduction is observed for middle range 1t , where the curve is flat (i.e., zeroth-order
convergence). Unlike SIPIDC6[Euler], the error curve corresponding to the order
reduction region for SIPIDC6[BDF2] is less flat, although the region is too small
for a reasonable estimate of the order of accuracy. Order reduction is not observed
for BDF4, which is consistent with the analysis for fully implicit BDF methods (see
[Hairer and Wanner 1991] Chapter V). Finally, the behavior of the SIPIDC6[BDF3]
is difficult to determine due to machine precision. The extent of order reduction of
SIPIDC methods using BDF predictors of differing orders is further investigated in
Section 4.3

The stiff test is repeated for SIPIDC6[Euler], SIPIDC6[RK2], SIPIDC6[ARK3],
and ARK4 and the results are shown in Figure 9B2. Three regions of convergence
were obtained for each of these methods. As noted previously, the order reduction
region for SIPIDC6[Euler] error curve is flat. In contrast, the order reduction region
for the error curves associated with SIPIDC6[RK2], SIPIDC6[ARK3], and ARK4
appears to be first order. For sufficiently small 1t , the methods will again exhibit
full order accuracy (in the absence of precision errors).

4.3. Order reduction. Numerical results in [Layton and Minion 2005] show that
the characteristics of order reduction of SIPIDC methods depends critically on
the choice of quadrature nodes: when uniform nodes are used and when the left
endpoint is not used in the quadrature rule associated with the implicit piece (recall
that such quadrature nodes are referred to as “LR” [Layton and Minion 2005]),
an order reduction to O(ε2) is observed, compared to O(ε1t) for SIPIDC methods
using nonuniform nodes (for example, Gauss quadrature nodes) or those including
the left endpoint in the quadrature rules. SIPIDC methods studied in [Layton and
Minion 2005] use Euler in both the provisional and correction steps. Below we
examine convergence behavior and order reduction for stiff problems of SIPIDC
methods using moderate-order methods in the provisional step, using first the van
der Pol’s problem and then the cosine problem.

To investigate the dependence of order reduction on the choice of predictor,
we computed solutions for the van der Pol equation for increasing stiffness (for
ε= 10−k , k = 1, 3, 4, 5, 6) by means of SIPIDC5 methods using different predictors
(Euler, BDF2, BDF3, and ARK3). Log-log plots of errors for y2 versus implicit
function evaluations are shown in Figure 10. For sufficiently stiff parameters
(ε < 10−3), the convergence rate drops to the zeroth order for SIPIDC5[Euler],
to the first order for SIPIDC5[BDF2] and SIPIDC5[ARK3], and to the second
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order for SIPIDC5[BDF3] in the order-reduction regime. We see that for the
methods SIPIDC5[Euler], SIPIDC5[BDF2], and SIPIDC5[BDF3], the magnitude
of the error in the regions of reduced convergence scales approximate as ε2, and
for SIPIDC5[ARK3] it scales approximately as ε. It is noteworthy that the order
reduction results for SIPIDC5[ARK3] are similar to the SIPIDC[Euler] method
using nonuniform points or using the left endpoint in the quadrature rules [Layton
and Minion 2005]. Similar results are also shown for the cosine problem for
increasingly stiff values of ε in Figure 11, shown as log-log plots of errors versus
time step size 1t .

The above results for SIPIDC5[Euler] are consistent with those reported in
[Layton and Minion 2005] for SIPIDC6[Euler] and SIPIDC7[Euler] using LR
uniform nodes. The error formula derived in [Layton and Minion 2005] shows
that the dominant error term for these methods, after one correction step, is O(ε2);
thus, the region of reduced convergence is flat with magnitude that scales as ε2.
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Figure 10. Error curves obtained for the van der Pol problem with
a range of ε values, computed using the SIPIDC5 methods with
differing predictors. The region of order reduction shows zeroth-
order convergence in A, first-order in B and D, second-order in C.
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Analogous error formulae are derived in the Appendix for SIPIDC[BDF2] and
SIPIDC[BDF3]; these error formulae show that for SIPIDC[BDF2], the dominant
error term is O(ε21t), and for SIPIDC[BDF3], it is O(ε21t2), thereby explaining
the shape of the error curves shown in Figure 10 and Figure 11.

4.4. A ladder approach. The approximations computed by the provisional step
and by the initial correction steps have lower orders of accuracy than the final
solution. A “ladder” approach makes use of this fact to reduce the computational
cost of a SIPIDC method without compromising the overall order of the solution.
This is achieved by allowing larger temporal or spatial errors in the initial PIDC
iterations. One such ladder approach was implemented in [Minion 2003]. To
obtain a K th-order solution, the quadrature Q in (5) must be approximated to K th
order. When LR uniformly-spaced nodes are used, K + 1 nodes or K substeps are
required. In [Minion 2003], based on the observation that the kth correction equation
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Figure 11. Error curves obtained for the cosine problem with
a range of ε values, computed using the SIPIDC methods with
differing predictors. The region of order reduction shows O(ε2) in
A, O(ε21t) in B, O(ε21t) C, and O(ε1t) in D.
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computes a globally O(1tk+1) approximation (Euler is used in the predictor in
[Minion 2003]), the number of substeps used to compute the solution during the
initial PIDC iterations was reduced, i.e., fewer substeps were used when k is small.
Although no significant improvement in efficiency was noted in [Minion 2003]
when this approach was applied to a linear problem, the nonlinear KS equation
(17) is used here to re-examine the effects of ladder approach, with a new focus on
SIPIDC methods using BDF2 and BDF3 as predictors.

We compare the efficiency among SIPIDC6 methods using Euler, BDF2, and
BDF3 methods in the provisional step, and with or without incorporating the ladder
approach. Results are shown in Figure 12 . Consistent with results described
previously, SIPIDC6 methods using moderate-order predictors are more efficient.
Also, although the ladder approach reduces computational cost, it also increases
error. These two competing effects result in a negligible improvement in efficiency.
Qualitatively similar results were also obtained for SIPIDC methods of other orders.

5. Discussion

We have presented alternative implementations of SIPIDC methods for the temporal
integration of ODEs with both nonstiff and stiff components corresponding to
eigenvalues with large negative real part. In these implementations, various types
of second- through fourth-order integration methods are used in the prediction step.
The stability and efficiency of these SIPIDC methods are assessed and compared to
traditional IMEX methods. High-order SIPIDC methods are proposed as alternatives
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Figure 12. Error curves obtained for the KS equation using the
SIPIDC6 methods. ‘-L’ denotes methods using ladder approach.
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to IMEX BDF or IMEX RK methods, which exhibit instability at high orders. In
contrast, our stability analysis shows attractive stability properties for high-order
SIPIDC methods using a moderate-order IMEX BDF or IMEX RK method in the
prediction step.

Another goal of this study is to determine whether SIPIDC methods that use
moderate-order predictors are more efficient. Numerical results suggest that using
moderate-order IMEX BDF methods in the prediction step gives rise to SIPIDC
methods that are more efficient and also stable for stiff problems. In contrast,
moderate-order predictors based on IMEX RK do not significantly improve effi-
ciency because of the multiple implicit solves required at the stages, and predictors
based on multistep methods such as AMAB result in overall methods that are
unstable when applied to stiff problems.

Although we only consider SIPIDC methods that use the forward-backward Euler
method to solve the correction equations, moderate-order integration methods can
no doubt be used in the correction steps. For example, the correction Equation (2)
may be discretized by means of a second-order method, for example, CNAB, IMEX
RK2, or IMEX BDF2. Such methods require fewer iterations of the correction
equation to achieve the same overall order of accuracy relative to methods based
on first-order methods, but each iteration of the correction equation may be more
expensive. The behavior of various moderate-order correctors is the focus of an
on-going project.

IMEX BDF predictors also change the extent and characteristics of order re-
duction of the SIPIDC methods when applied to stiff problems. The convergence
rate in the region of order reduction is k − 1 for a kth-order BDF predictor, with
errors of O(ε2) magnitude, where ε is the stiffness parameter such that as ε → 0
the problem becomes increasingly stiff. In contrast, IMEX RK predictors give rise
to first-order convergence in the region of order reduction, with O(ε) errors. Thus,
for stiff problems SIPIDC methods with IMEX BDF predictors likely generate
solutions with higher accuracy than SIPIDC methods using non-BDF predictors.

A uniform time-step has been assumed throughout this work. However, SIPIDC
methods are suitable candidates for adaptive time-marching: the correction term
can be used to dynamically determine the appropriate time step size to meet certain
accuracy requirements. However, when a BDF or multistep predictor is used, where
solution values at k previous substeps are needed to advance the solution, care must
be taken in computing the provisional solution at the first k−1 substeps, because the
substep size may not be equal in [tn−1, tn] and [tn, tn+1]. In this case, variable-step
form of the methods can be used for the first k −1 iterations, where the coefficients
in (7)–(9) and in (10) depend on the relative substep sizes.

The ultimate target applications for PIDC methods are PDEs with multiple stiff
terms, such as the advection-diffusion-reaction equations. Indeed, in earlier studies
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[Bourlioux et al. 2003; Layton and Minion 2004], we have proposed the multi-
implicit PIDC (MIPIDC) methods (formerly MISDC methods) which decouple
the stiff processes and integrate them separately, possibly using differing time
steps. The MIPIDC methods developed so far are based on the forward/backward
Euler methods and a first-order splitting. A project that develops and analyzes the
performance of MIPIDC methods based on moderate-order IMEX BDF methods and
on a moderate-order splitting is underway. It should be noted that no analysis of semi-
and multi-implicit PIDC methods applied to PDEs with stiffness characterized by
rapidly oscillatory modes (that is, corresponding to eigenvalues with large imaginary
parts) has yet been attempted.

A ladder approach, which uses fewer substeps in the initial PIDC iterations,
fails to significantly improve the efficiency of SIPIDC methods. Because of the
extra effort involved in its implementation, the value of this ladder approach is not
obvious. Alternatively, when integrating a PDE, one may use a less refined spatial
grid during the initial PIDC iterations. This spatial ladder approach is likely to be
particularly effective in higher spatial dimensions and warrants attention.

Appendix

In this Appendix we develop an analytical formulation for the truncation error for
SIPIDC methods applied to the simple stiff equation analyzed in [Prothero and
Robinson 1974].

Given a smooth function p(t), consider the ODE with exact solution y(t)= p(t)
given by

y′
= p′(t)−

1
ε

(
y − p(t)

)
, (A.1)

y(0)= p(0).

Here ε is the stiffness parameter where the equation becomes more stiff as ε → 0.
We integrate (A.1) by treating the first term explicitly and the second term implicitly.
The following analysis applies to the stiff case where ε �1t .

We first consider a provisional solution computed using the BDF2 method given
by (7). Let pm ≡ p(tm) and yk

m ≡ yk(tm). Given a previously computed value y0
m

with error e0
m = y0

m − pm , one step of BDF2 applied to Equation (A.1) yields

y0
m+1 =

2y0
m −

1
2 y0

m−1 +1tm(2p′
m − p′

m−1 +
1
ε

pm+1)

3
2 +

1tm
ε

. (A.2)

When ε < 1tm , the quantity 1/( 3
2 +

1tm
ε
) can be expanded into the series

1
3
2 +

1tm
ε

=
ε

1tm

(
1 −

3
2
ε

1tm
+

(3
2
ε

1tm

)2
− . . .

)
. (A.3)
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Substituting (A.3) into (A.2) yields

y0
m+1 = pm+1 +

(
2p′

m − p′

m−1 +
2y0

m −
1
2 y0

m−1 −
3
2 pm+1

1tm

)
×

(
ε−

3
2
ε2

1tm
+

(
3
2
ε

1tm

)2

ε− . . .

)
(A.4)

To simplify (A.4), we make use of the following relations derived using Taylor’s
expansion

2p′

m − p′

m−1 = p′

m+1 −1t2
m p(3)m+1 +1t3

m p(4)m+1 + O(1t4
m),

−
3

21tm
pm+1 = −p′

m+1 −
1
1tm

(
2pm −

1
2 pm−1

)
+
1t2

m

3
p(3)m+1

+
3
41t3

m p(4)m+1 + O(1t4
m). (A.5)

From (A.5), one obtains

2p′

m − p′

m−1 +
2ym −

1
2 ym−1 −

3
2 pm+1

1tm
=

2em −
1
2 em−1

1tm

−
2
31t2

m p(3)m+1 +
3
41t2

m p(4)m+1 (A.6)

Thus,

ym+1 = pm+1 +

(2em −
1
2 em−1

1tm
−

2
31t2

m p(3)m+1 +
3
41t3

m p(4)m+1

)
×

(
ε−

3
2
ε2

1tm
+

(
3
2
ε

1tm

)2
ε− . . .

)
. (A.7)

Substituting (A.6) into (A.4) and making use of the definition of e0
m ≡ pm − y0

m ,

e0
m+1 =

2e0
m −

1
2 e0

m−1

1tm

(
ε−

3
2
ε2

1tm
+

(3
2
ε

1tm

)
ε

)
−

2
31t2

m p(3)m+1

(
ε−

3
2
ε2

1tm
+

(3
2
ε

1tm

)
ε

)
+ O(ε1t3)+ O(ε21t2)+ O(ε3). (A.8)

Now consider the correction equation given a provisional solution y0
m . Note

that f (y0
m, tm) = p′

m −
1
ε
e0

m . The direct form of the correction equation using
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forward-backward Euler for (A.1) is

y1
m+1 =

y1
m +1tm

(
p′

m − p′

m −
1
ε
(y1

m+1 − pm+1)+
1
ε
(y0

m+1 + pm+1)
)

+ Qm+1
m (y0)

= y1
m +1tm

(
−

1
ε
(y1

m+1 − y0
m+1)

)
+ Qm+1

m (y0).

Solving for y1
m+1 yields

y1
m+1 =

y1
m +

1tm
ε

y0
m+1 + Qm+1

m
(

p′(t)− 1
ε
e0(t)

)
1 +

1tm
ε

. (A.9)

To derive an error formula for y1
m+1, we first consider the last quadrature term in

the numerator. The integration rule given by Equation (4) defines

Qm+1
m

(
p′(t)− 1

ε
e0(t)

)
=1tm

p∑
l=0

ql
m

(
p′

l −
1
ε
e0

l
)
.

Since the integration rule is assumed to be O(1tq), the first term can be integrated
to give

Qm+1
m

(
p′(t)− 1

ε
ẽ(t)

)
= pm+1 − pm + O(1tq)−

1tm

ε

p∑
l=0

ql
me0

l .

Substituting this expression into Equation (A.9) gives

ym+1 =

y1
m + pm+1 − pm+

1tm
ε

(
y0

m+1 −
∑p

l=0 ql
me0

l

)
+ O(1tq)

1 +
1tm
ε

.

Applying the expansion (A.3), one obtains

y1
m+1 =

ε

1tm

(
y1

m + pm+1 − pm+
1tm

ε

(
y0

m+1 −

p∑
l=0

ql
me0

l

)
+ O(1tq)

)

−

( ε

1tm

)2
(

y1
m + pm+1 − pm+

1tm

ε

(
y0

m+1 −

p∑
l=0

ql
me0

l

)
+ O(1tq)

)

+

( ε

1tm

)
3
(

y1
m + pm+1 − pm+

1tm

ε

(
y0

m+1 −

p∑
l=0

ql
me0

l

)
+ O(1tq)

)
. . . ,
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hence

y1
m+1 = y0

m+1

(
1 −

ε

1tm
+

( ε

1tm

)2
. . .

)
+

(
y1

m − pm + pm+1

)(
ε

1tm
−

( ε

1tm

)2
+

( ε

1tm

)3
. . .

)
−

( p∑
l=0

ql
me0

l

)(
1 −

ε

1tm
+

( ε

1tm

)2
. . .

)
+O(ε1tq−1)+ O(ε21tq−2)+ O(ε31tq−3) . . . .

Finally, define the error in the updated solution e1
m = y1

m − pm . Then subtracting
pm+1 from both sides of the equation and manipulating yields

e1
m+1 = e1

m

(
ε

1tm
−

( ε

1tm

)2
+

(
ε

1tm

)3

. . .

)
+

(
e0

m+1 −

p∑
l=0

ql
me0

l

)(
1 −

ε

1tm
+

( ε

1tm

)2
. . .

)
+O(ε1tq−1)+ O(ε21tq−2)+ O(ε31tq−3)+ . . . . (A.10)

Consider now the first time step of a SIPIDC method for Equation (A.1). Assume
that the error at the beginning of the time step is given by e0

0. The dominant error
terms in the provisional solution Equation (A.8) are

e0
m+1 = −

2
3
1t2

m p(3)m+1

(
ε−

2
3
ε2

1tm

)
+ zm, (A.11)

where

zm =


ε
1tm

(
2e0

0 −
1
2 e0

−1

)
, m = 1,

−
4
3 p(3)1 1tmε

2
−

ε
21tm

e0
0, m = 2,(

4
3 p(3)m −

1
3 p(3)m−1

)
1tmε

2, m > 2.

In deriving the above expression, we made use of the assumption of uniform substep,
i.e., · · · = tm−2 = tm−1 = tm = . . . . Likewise, the dominant pieces of the correction
equation error (A.10) comes from the term

e1
m+1 = e0

m+1 −

p∑
l=0

ql
me0

l + e1
m
ε

1tm
. (A.12)
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Substituting the dominant provisional error (A.11) into the dominant correction
error (A.12) gives

e1
m+1 = −

2
3
1t2

m p(3)m+1

(
ε−

2
3
ε2

1tm

)
+

zm −

p∑
l=1

ql
m

(
−

2
3
1t2

m p(3)l

(
ε−

2
3
ε2

1tm

)
+ zl

)
. (A.13)

The summation term can be rewritten via a Taylor series expansion

p∑
l=1

ql
m

(
−

2
3
1t2

m p(3)l

(
ε−

2
3
ε2

1tm

)
+ zl

)

= −
2
3
1t2

m p(3)m+1

(
ε−

2
3
ε2

1tm

)
+ O(ε1t3

m + ε21t2
m)+

p∑
l=1

ql
mzl . (A.14)

Substituting (A.14) into (A.13) and simplifying gives

e1
m+1 = zm −

p∑
l=1

ql
mzl + O(1tq

+ ε1t3
+ ε21t2) (A.15)

owing to the mismatch between zm for m = 1 and 2 and for m > 2, zm −
∑

ql
mzl =

O(ε21tm). Thus, e1
m+1 = O(1tq

+ ε21t).
Following similar procedures, an error formula for the correction step of a SIPIDC

method using uniform quadrature nodes and BDF3 in the predictor step can be
shown to be O(1t p

+ ε21t2).
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