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Abstract. A new class of iterative time parallel methods for initiallue ordinary differential equations are developed.
Methods based on a parallel variation of spectral deferoegections (SDC) are compared and contrasted with the galrar
method. It is shown that there is a strong similarity betwienserial step in the parareal algorithm and the correctiep

in the SDC method. This observation is used to construct adhglrategy combining features of both the parareal and SDC
methods which can significantly reduce the computationsd abeach iteration compared to parareal. A numerical elamp
is presented to compare the effectiveness of the hybritegies.
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SPECTRAL DEFERRED CORRECTIONS

The spectral deferred correction method (SDC) is a variftiietraditional deferred and defect correction metho
for ODEs introduced in the 1960s [1, 2, 3]. The original melhoever gained the popularity of Runge-Kutta or line
multi-step methods; however, a recent series of papersiiegjin 2000 has rekindled interest in using such methc
for large scale physical simulations. The SDC method intoedl in [4] couples a Picard integral formulation of th
correction equation with spectral integration rules toieeh stable explicit and implicit methods with arbitrarily
high formal order of accuracy. SDC also provides the flekibilo apply different time-stepping procedures t
different terms in an equation (as in operator splittinghmet) while maintaining the high formal order of accurac
Specifically, the construction of schemes which treat ndhtsrms in the equation explicitly and multiple stiff tais
implicitly but independently has been demonstrated [S}thie current context, we show that the iterative nature
SDC methods is advantageous when used within parallel OQtBade which are themselves iterative.
An overview of the SDC method is now presented. Consider thE (itial value problem

u'(t) = f(t,u(t)),  u(0)=uo (1)

fort € [0,T], whereup, u(t) € CN andf : Rx CN — CN. This equation is equivalent to the Picard integral equatio

u(t) = uo+./0t f(r,u(t))dr, @)

and this latter form is used extensively in the discussia fibllows.
As with traditional deferred correction methods, a singteetsteptn, tn;1] is divided into a set of intermediate sub
steps defined b = [th0, - - -, tn,p]; however, for SDC method, corresponds to Gaussian quadrature nodes. Here

use Gauss-Lobatto nodes so thaf=t, andt,p = tn1. Next, a provisional approximatidﬁ,? = [U,‘%O, .- 7Ur‘3p] is
computed using a standard numerical method Wifla = UQ as the initial value. We denote generic substep valt
with the subscripin, and when the contextis clear, theubscript is omitted to avoid clutter, e.gr‘%m =UQ. LetUQ(t)

denote the continuous counterparﬂﬁ constructed by standard interpolation. Then, an integrahton similar to
(2) for the errord(t) = u(t) —UQ(t) is

50) = [ TH(E.U8(0) +8() — 1 (T.US(D)dr + &), ©

where .
Enlt) = u§+/ £(7,U%(7))dT — UO(1). )
Jtn



Note thaten(tm) can be accurately and stably approximated using spectegiriztion [6] since the provisional solutior
UQ(t) is known at the Gaussian quadrature nodes. Hence we definppheximations

enm=UJ+SN(F(T,Uf)) — U2 (tm), (5)

whereS denotes a spectral integration rule which approximatedéfiaite integral fromy, to tn m. A low-order time-
stepping method is then applied to (3) to approxingdtg at the pointgy resulting in a correction to the provisiona
solution. For example, an explicit time-stepping schemelar to the forward Euler method is

591 = 8o+ Otm[f (tm, UR+ 8%) — f (tm, U] + €01 — £ (6)

The provisional solution is then updated by adding to it theraximation of the correction, and the SDC method the
proceeds iteratively, i.eUktt = UK 4 8k. Each SDC iteration raises the formal order of accuracy efrthmerical
solution by the order of the approximation to (3) provided tuadrature rule in (5) is sufficiently accurate [4, 7
Lastly, using (5), a direct update form of (6) can be derived

UKD = UK+ At F (tm, UKT) — £ (tm, UK)] + S (B, £ (T @)

This form is compared below to the serial step in the paraigalrithm.

THE PARAREAL METHOD

The parareal method was introduced in 2001 by Lions, Maday,Tarrinici [8]. Unlike earlier attempts to parallelize
the individual steps within a standard ODE solver (see, ]}, the parareal method employs an iterative strate@y o\
the total interval of integration. The convergence of theapaal algorithm is considered in [10], and the stability
some variations is considered in [11]. Gander and VandevalVe shown that the parareal method can be interpre
as either a space-time multigrid method or as a multiple shgonethod [12]. After introducing the parareal methot
we discuss the advantage of using an iterative solver lik€ Sithin the parareal framework and examine th
connection between the parareal method and the corredjicatien in SDC.

The general strategy for the parareal method is to dividérteinterval of interesio, T] into N, intervals with each
interval being assigned to a different processor. To siyfiie discussion, denote the process@gshroughPy,1,
and consider time intervals of uniform siaé= T /N, so that thenth processor computes the solution on the interv
[tn,th+1] Wheret, = nAt. On each interval, the parareal method iteratively congateuccession of approximation
U#H ~ U(tn+1), wherek denotes the iteration number.

Itis becoming standard to describe the parareal algorithterims of two numerical approximation methods denot
G andF. BothG andF propagate an initial valug,, by approximating the solution to (1) frotptot,, 1. For example,
if G is defined by the forward Euler method, then

G(tn+17tn7Un) == Un+Atf(tn7Un) (8)

Note thatG or F can be defined to be more than one step of a particular nurhevéthod on the intervdty, tn1].
As discussed below, in order for the parareal method to beieaffi it must be the case that tepropagator is
computationally less expensive than theropagator, hence in practid@,s usually a low-order method or compute
on a much coarser time step th&n Since the overall accuracy of parareal is limited by theueacy of theF
propagatorf- is typically higher-order.

The parareal method begins by sequentially computifigor n=1... Np, often usingG, i.e.,

Ur?+1 = G(tn1,tn,UY). ()]

Once each processBy, has a valu&J?, the processors can in parallel compute the approximé&tgn 1,t,,U?). The
parareal algorithm then computes the serial correctignfsten=1...N,

U = Gltng 1, tn, UXT™) + F (th 1,0, US) — Gt 1, tn, UF). (10)

The method proceeds iteratively alternating between thallphcomputation of (tn1,th, UX) and the serial compu-
tation of (10) (which requires computing t&propagator).



Parareal is an iterative method and hence requires a stpppberia. Note that aftek iterations of the parareal
method, the solutiorX for m < k is exactly equal to the numerical solution obtained by usimgF scheme
sequentially. Hence afté\j iterations, the parareal solution is exactly equal to aipglf sequentially. Each iteration
of the parareal method requires the application of Bo#ndG (plus the cost of communication between processor
Hence, the parareal method can only provide significantlphedficiency compared to the sequentascheme if the
number of iterations required to converge to the specifitdra (denoted here big) is significantly less thaNp and
the cost of the serial propagai@ris significantly less than that &f.

PARAREAL DEFERRED CORRECTIONS

Since the parareal algorithm can in principle use any nwakmethod for thé= and G propagators, it would be
straightforward to incorporate SDC into the parareal fraom. However, after the first parareal iteration, it woul
be foolish to ignore the results of tlkepropagator from the parareal iteratiknr- 1 when using SDC in iteratiok
One could instead define the propagator to bgp SDC sweeps applied to the previokssolution (incorporating
the updated boundary condition as well). As the pararegtittns converge, thE solution still converges to the
high-accuracy SDC solution (in fact to the spectral coltasasolution [7]), but the cost of applying tlkepropagator
during each iteration is now onlytimes that of a low-order method. The numerical examples beggest thgh = 1
is sufficient for an efficient method (see the discussionvwglo

Furthermore we establish the connection between defeomddations and the parareal step defined by (10). Bc
F andG are approximations to the exact update given by the Picardtim

Ultner) = ut) + [ F(,u(r)dr. (11)

Jtn

We symbolize this correspondence by implicitly defini@f* and ™ to be approximations to the integral tern
above so that

F(the,tn, UX) = UK 10711 (1,U5),  and  G(thi1,tn, UX) = UK+ QIFLF(t,UK). (12)
Using these definitions, (10) can be rewritten

Uit = U+ QR UR™™) — QRFH(E,Up) + IR (8, Up). (13)
Note the similarity between this equation and (7). In thewdlsion leading to (7), we discretize (3) using forwal
Euler to give a concrete example of a time stepping schen®idkimilarly defined as a single step of forward Eule
thenQR ! = Atf (ty,UX), and (13) becomes

U = UR+ AL (f (1, UXTY) — £(t0, Uf) + 1772 (2,UK), (14)
which is nearly identical to (7). Hence the parareal step) ¢&d be considered a particular incarnation of a deferr
correction step. However, in the parareal method, (10) pnbyides an updated initial condition for the following
parallelF propagator. Instea@ can be applied as a coarse SDC sweep, which updates thedaitg@ition for the next
time step and also improves the current solution inntheinterval.

NUMERICAL EXAMPLE

Here the effectiveness of the hybrid parareal/SDC methadsored using the Lorenz equation test problem fro
[10]. Specifically, we usé&l, = 180 processors to solve

X=0(y-x, Y=x(p-2-y, Z=xy-Bz (15)

in t € [0,10] with the usual choice of parametess= 10, p = 28, andf3 = 8/3 and initial conditiongXx,y,z)(0) =
(5,—5,20). Two parareal methods using a Runge-Kutta (RK) method ®6GtAndF propagator will be compared to
two methods using one SDC sweep in plac&andG. Specifically, the first RK variant is the same as the exam|
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FIGURE 1. Comparison of parareal methods based on Runge-Kutta and SDC

in [10] whereG is one step ané is 80 steps of fourth-order RK. The second RK method usesaimeE, butG is
third-order Runge-Kutta. The SDC variants both use oneatepthird-order Runge-Kutta method applied to (3) i
place ofG, and theF propagator is replaced by one sweep of (6) using either 9 caus&Lobatto nodes i, t1]
the interval. In the SDC methods, after tBepropagator is computed, the correction to the solutiontisrpolated
back to the Gauss-Lobatto nodes using the three stage Yednethe RK method

To compare the cost of these methodsrdeandte denote the cost of applying tiieandF propagators respectively.
Ignoring communication overhead, the total computatiooat ofK iterations of parareal using, processors is then
NpTc + K(Te + T ). This assumes independent processors, so that each mocaisdegin computation &f as soon
as the precedin@ procedure is completed. A reasonable approximation isfio@les and1r in terms of number of
function evaluations. For the first RK methad, = 4, 1= = 320, and hence the total cost is 72& 324, while for the
second it is 54@- K323. For the SDC based methods here= 3, andtg is either 6 or 8. This means the total cos
is 540+ K9 and 540+ K11 respectively. Note this ignores the cost of interpotatire correction and computing (5)
(both of which are simple matrix multiplications).

Figure 1 displays the error versus both iteration numbéiri§let) and computational cost (right plot). To comput
the error, the solutions are compared to a reference so|uatiw thed_, norm in space.,.., norm in time of the difference
is computed. The plot on the left demonstrates that the acguwf theG propagator largely determines the number
iterations required to converge, while the accuracy oRlpeopagator determines the overall accuracy. The rightthe
figure demonstrates the dramatic savings in cost of usinGb@ procedure in place of thHe propagator. It should
be noted that a similar accuracy in the RK-based methodseaclieved using only 6 steps of the 8th-order 11-st
method from [13], which reduces the cost of th@ropagator from 320 to 66.

These results suggest that using an iterative process lbas8@C rather than traditional deterministic methoc
within a parareal framework results in a significant deaeéaghe overall computational cost of the method. Caref
numerical and analytical analysis of these methods is igneiss.
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