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Abstract. A new class of iterative time parallel methods for initial value ordinary differential equations are developed.
Methods based on a parallel variation of spectral deferred corrections (SDC) are compared and contrasted with the parareal
method. It is shown that there is a strong similarity betweenthe serial step in the parareal algorithm and the correctionstep
in the SDC method. This observation is used to construct a hybrid strategy combining features of both the parareal and SDC
methods which can significantly reduce the computational cost of each iteration compared to parareal. A numerical example
is presented to compare the effectiveness of the hybrid strategies.
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SPECTRAL DEFERRED CORRECTIONS

The spectral deferred correction method (SDC) is a variant of the traditional deferred and defect correction methods
for ODEs introduced in the 1960s [1, 2, 3]. The original methods never gained the popularity of Runge-Kutta or linear
multi-step methods; however, a recent series of papers beginning in 2000 has rekindled interest in using such methods
for large scale physical simulations. The SDC method introduced in [4] couples a Picard integral formulation of the
correction equation with spectral integration rules to achieve stable explicit and implicit methods with arbitrarily
high formal order of accuracy. SDC also provides the flexibility to apply different time-stepping procedures to
different terms in an equation (as in operator splitting methods) while maintaining the high formal order of accuracy.
Specifically, the construction of schemes which treat non-stiff terms in the equation explicitly and multiple stiff terms
implicitly but independently has been demonstrated [5]. Inthe current context, we show that the iterative nature of
SDC methods is advantageous when used within parallel ODE methods which are themselves iterative.

An overview of the SDC method is now presented. Consider the ODE initial value problem

u′(t) = f (t,u(t)), u(0) = u0 (1)

for t ∈ [0,T ], whereu0,u(t) ∈ CN and f : R×CN → CN . This equation is equivalent to the Picard integral equation

u(t) = u0 +

∫ t

0
f (τ,u(τ))dτ, (2)

and this latter form is used extensively in the discussion that follows.
As with traditional deferred correction methods, a single time step[tn,tn+1] is divided into a set of intermediate sub-

steps defined by~tn = [tn,0, · · · ,tn,P]; however, for SDC methods,~tn corresponds to Gaussian quadrature nodes. Here we
use Gauss-Lobatto nodes so thattn,0 = tn andtn,P = tn+1. Next, a provisional approximation~U0

n = [U0
n,0, · · · ,U

0
n,P] is

computed using a standard numerical method withU0
n,0 = U0

n as the initial value. We denote generic substep values

with the subscriptm, and when the context is clear, then subscript is omitted to avoid clutter, e.g.,U0
n,m =U0

m. LetU0
n (t)

denote the continuous counterpart of~U0
n constructed by standard interpolation. Then, an integral equation similar to

(2) for the errorδ (t) = u(t)−U0
n (t) is

δ (t) =
∫ t

tn
[ f (τ,U0

n (τ)+ δ (τ))− f (τ,U0
n (τ))]dτ + εn(t), (3)

where

εn(t) = U0
n +

∫ t

tn
f (τ,U0

n (τ))dτ −U0
n (t). (4)



Note thatεn(tm) can be accurately and stably approximated using spectral integration [6] since the provisional solution
U0

n (t) is known at the Gaussian quadrature nodes. Hence we define theapproximations

ε0
n,m = U0

n + Sm
n ( f (~t, ~U0

n ))−U0
n (tm), (5)

whereSm
n denotes a spectral integration rule which approximates thedefinite integral fromtn to tn,m. A low-order time-

stepping method is then applied to (3) to approximateδ (t) at the pointstm resulting in a correction to the provisional
solution. For example, an explicit time-stepping scheme similar to the forward Euler method is

δ 0
m+1 = δ 0

m + ∆tm[ f (tm,U0
m + δ 0

m)− f (tm,U0
m)]+ ε0

m+1− ε0
m. (6)

The provisional solution is then updated by adding to it the approximation of the correction, and the SDC method then
proceeds iteratively, i.e.,Uk+1

m = Uk
m + δ k

m. Each SDC iteration raises the formal order of accuracy of the numerical
solution by the order of the approximation to (3) provided the quadrature rule in (5) is sufficiently accurate [4, 7].
Lastly, using (5), a direct update form of (6) can be derived

Uk+1
m+1 = Uk

m + ∆tm[ f (tm,Uk+1
m )− f (tm,Uk

m)]+ Sm+1
m (~tn, f (~Uk

n )). (7)

This form is compared below to the serial step in the pararealalgorithm.

THE PARAREAL METHOD

The parareal method was introduced in 2001 by Lions, Maday, and Turinici [8]. Unlike earlier attempts to parallelize
the individual steps within a standard ODE solver (see, e.g., [9]), the parareal method employs an iterative strategy over
the total interval of integration. The convergence of the parareal algorithm is considered in [10], and the stability of
some variations is considered in [11]. Gander and Vandewalle have shown that the parareal method can be interpreted
as either a space-time multigrid method or as a multiple shooting method [12]. After introducing the parareal method,
we discuss the advantage of using an iterative solver like SDC within the parareal framework and examine the
connection between the parareal method and the correction equation in SDC.

The general strategy for the parareal method is to divide thetime interval of interest[0,T ] into Np intervals with each
interval being assigned to a different processor. To simplify the discussion, denote the processorsP0 throughPNp−1,
and consider time intervals of uniform size∆t = T/Np so that thenth processor computes the solution on the interval
[tn,tn+1] wheretn = n∆t. On each interval, the parareal method iteratively computes a succession of approximations
Uk

n+1 ≈ u(tn+1), wherek denotes the iteration number.
It is becoming standard to describe the parareal algorithm in terms of two numerical approximation methods denoted

G andF . BothG andF propagate an initial valueUn by approximating the solution to (1) fromtn to tn+1. For example,
if G is defined by the forward Euler method, then

G(tn+1,tn,Un) = Un + ∆t f (tn,Un). (8)

Note thatG or F can be defined to be more than one step of a particular numerical method on the interval[tn,tn+1].
As discussed below, in order for the parareal method to be efficient, it must be the case that theG propagator is
computationally less expensive than theF propagator, hence in practice,G is usually a low-order method or computed
on a much coarser time step thanF. Since the overall accuracy of parareal is limited by the accuracy of theF
propagator,F is typically higher-order.

The parareal method begins by sequentially computingU0
n for n = 1. . .Np, often usingG, i.e.,

U0
n+1 = G(tn+1,tn,U

0
n ). (9)

Once each processorPn has a valueU0
n , the processors can in parallel compute the approximationF(tn+1,tn,U0

n ). The
parareal algorithm then computes the serial correction step for n = 1. . .Np

Uk+1
n+1 = G(tn+1,tn,U

k+1
n )+ F(tn+1,tn,U

k
n )−G(tn+1,tn,U

k
n ). (10)

The method proceeds iteratively alternating between the parallel computation ofF(tn+1,tn,Uk
n ) and the serial compu-

tation of (10) (which requires computing theG propagator).



Parareal is an iterative method and hence requires a stopping criteria. Note that afterk iterations of the parareal
method, the solutionUk

m for m ≤ k is exactly equal to the numerical solution obtained by usingthe F scheme
sequentially. Hence afterNp iterations, the parareal solution is exactly equal to applying F sequentially. Each iteration
of the parareal method requires the application of bothF andG (plus the cost of communication between processors).
Hence, the parareal method can only provide significant parallel efficiency compared to the sequentialF scheme if the
number of iterations required to converge to the specified criteria (denoted here byK) is significantly less thanNp and
the cost of the serial propagatorG is significantly less than that ofF.

PARAREAL DEFERRED CORRECTIONS

Since the parareal algorithm can in principle use any numerical method for theF andG propagators, it would be
straightforward to incorporate SDC into the parareal framework. However, after the first parareal iteration, it would
be foolish to ignore the results of theF propagator from the parareal iterationk−1 when using SDC in iterationk.
One could instead define theF propagator to bep SDC sweeps applied to the previousF solution (incorporating
the updated boundary condition as well). As the parareal iterations converge, theF solution still converges to the
high-accuracy SDC solution (in fact to the spectral collocation solution [7]), but the cost of applying theF propagator
during each iteration is now onlyp times that of a low-order method. The numerical examples here suggest thatp = 1
is sufficient for an efficient method (see the discussion below).

Furthermore we establish the connection between deferred corrections and the parareal step defined by (10). Both
F andG are approximations to the exact update given by the Picard equation

u(tn+1) = u(tn)+

∫ tn+1

tn
f (τ,u(τ))dτ. (11)

We symbolize this correspondence by implicitly definingQn+1
n and In+1

n to be approximations to the integral term
above so that

F(tn+1,tn,U
k
n ) = Uk

n + In+1
n f (t,Uk

n ), and G(tn+1,tn,U
k
n ) = Uk

n + Qn+1
n f (t,Uk

n ). (12)

Using these definitions, (10) can be rewritten

Uk+1
n+1 = Uk

n + Qn+1
n f (t,Uk+1

n )−Qn+1
n f (t,Uk

n )+ In+1
n f (t,Uk

n ). (13)

Note the similarity between this equation and (7). In the discussion leading to (7), we discretize (3) using forward
Euler to give a concrete example of a time stepping scheme. IfG is similarly defined as a single step of forward Euler,
thenQn+1

n = ∆t f (tn,Uk
n ), and (13) becomes

Uk+1
n+1 = Uk

n + ∆t( f (tn,U
k+1
n )− f (tn,U

k
n ))+ In+1

n f (t,Uk
n ), (14)

which is nearly identical to (7). Hence the parareal step (10) can be considered a particular incarnation of a deferred
correction step. However, in the parareal method, (10) onlyprovides an updated initial condition for the following
parallelF propagator. InsteadG can be applied as a coarse SDC sweep, which updates the initial condition for the next
time step and also improves the current solution in thenth interval.

NUMERICAL EXAMPLE

Here the effectiveness of the hybrid parareal/SDC method isexplored using the Lorenz equation test problem from
[10]. Specifically, we useNp = 180 processors to solve

x′ = σ(y− x), y′ = x(ρ − z)− y, z′ = xy−β z. (15)

in t ∈ [0,10] with the usual choice of parametersσ = 10, ρ = 28, andβ = 8/3 and initial conditions(x,y,z)(0) =
(5,−5,20). Two parareal methods using a Runge-Kutta (RK) method for theG andF propagator will be compared to
two methods using one SDC sweep in place ofF andG. Specifically, the first RK variant is the same as the example
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FIGURE 1. Comparison of parareal methods based on Runge-Kutta and SDC

in [10] whereG is one step andF is 80 steps of fourth-order RK. The second RK method uses the sameF , but G is
third-order Runge-Kutta. The SDC variants both use one stepof a third-order Runge-Kutta method applied to (3) in
place ofG, and theF propagator is replaced by one sweep of (6) using either 9 or 7 Gauss-Lobatto nodes in[tn,tn+1]
the interval. In the SDC methods, after theG propagator is computed, the correction to the solution is interpolated
back to the Gauss-Lobatto nodes using the three stage valuesfrom the RK method.

To compare the cost of these methods, letτG andτF denote the cost of applying theG andF propagators respectively.
Ignoring communication overhead, the total computationalcost ofK iterations of parareal usingNp processors is then
NpτG +K(τG + τF). This assumes independent processors, so that each processor can begin computation ofF as soon
as the precedingG procedure is completed. A reasonable approximation is to define τG andτF in terms of number of
function evaluations. For the first RK method,τG = 4, τF = 320, and hence the total cost is 720+K324, while for the
second it is 540+ K323. For the SDC based methods here,τG = 3, andτF is either 6 or 8. This means the total cost
is 540+ K9 and 540+ K11 respectively. Note this ignores the cost of interpolating the correction and computing (5)
(both of which are simple matrix multiplications).

Figure 1 displays the error versus both iteration number (left plot) and computational cost (right plot). To compute
the error, the solutions are compared to a reference solution, and theL2 norm in space,L∞ norm in time of the difference
is computed. The plot on the left demonstrates that the accuracy of theG propagator largely determines the number of
iterations required to converge, while the accuracy of theF propagator determines the overall accuracy. The right-hand
figure demonstrates the dramatic savings in cost of using theSDC procedure in place of theF propagator. It should
be noted that a similar accuracy in the RK-based methods can be achieved using only 6 steps of the 8th-order 11-step
method from [13], which reduces the cost of theF propagator from 320 to 66.

These results suggest that using an iterative process basedon SDC rather than traditional deterministic methods
within a parareal framework results in a significant decrease in the overall computational cost of the method. Careful
numerical and analytical analysis of these methods is in progress.
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